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2Linné FLOW Centre, KTH Mechanics, Stockholm, SE-10044, Sweden
3Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ,

United Kingdom

(Received xx; revised xx; accepted xx)

The influence of the large scale organisation of free-stream turbulence on a turbulent
boundary layer is investigated experimentally in a wind tunnel through hot-wire mea-
surements. An active grid is used to generate high-intensity free-stream turbulence with
7.2% 6 u′

∞
/U∞ 6 13.0% and 302 6 Reλ,∞ 6 760. In particular, several cases are

produced with fixed u′

∞
/U∞ and Reλ,∞, but up to a 65% change in Lu,∞/δ. It is shown

that while qualitatively the spectra at various wall-normal positions in the boundary
layer look similar, there are quantifiable differences at the large wavelengths all the way
to the wall. Nonetheless, profiles of the longitudinal statistics up to fourth-order are well
collapsed between cases at the same u′

∞
/U∞. It is argued that a larger separation of

the integral scale would not yield a different result, nor would it be physically realisable.
Comparing cases across the wide range of turbulence intensities and free-stream Reynolds
numbers tested, it is demonstrated that the near-wall spectral peak is independent of the
free-stream turbulence, and seemingly universal. The outer peak was also found to be
described by a set of global scaling laws, and hence both the near-wall and outer spectral
peaks can be predicted a priori with only knowledge of the free-stream spectrum, δ,
and Uτ . Finally, a conceptual model is suggested that attributes the increase in Uτ as
u′

∞
/U∞ increases to the build-up of energy at large wavelengths near the wall because

that energy cannot be transferred to the universal near-wall spectral peak.

Key words: (to be entered by typesetter)

1. Introduction

A canonical zero-pressure-gradient turbulent boundary layer offers several mathemat-
ical simplifications that make it a desirable flow for experimental research, however, it
is not without limitations. For instance, very large facilities are required to produce
Reynolds numbers, Reτ = Uτδ/ν where Uτ is the friction velocity and δ is the boundary
layer thickness, that begin to approach those in flows of practical interest (c.f., Nickels
et al. (2005, 2007), Klewicki (2010), Vincenti et al. (2013)). Alternatively, a boundary
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layer subjected to free-stream turbulence (FST) can be studied to gain significant insight
on the mechanics of wall-bounded flows (Dogan et al. 2017). For instance, free-stream
turbulence intensity (u′

∞
/U∞) is a dominant factor in promoting laminar-to-turbulent

transition of a developing boundary layer, influencing both the start of the transition
region and its length (Fransson et al. 2005). With direct numerical simulations (DNS),
it has been demonstrated that FST also influences streak instabilities (Hack & Zaki
2014) and turbulent spots in bypass transition (Kreilos et al. 2016; Wu et al. 2017).
Furthermore, the DNS of Brandt et al. (2004) showed that if u′

∞
/U∞ = 4.7% was

fixed, then transition occurred earlier for larger values of the integral length scale in the
free-stream (L∞). Shahinfar & Fransson (2011) later performed a series of wind tunnel
experiments and confirmed this result for low u′

∞
/U∞, but noted that the opposite

appeared to be true for higher u′

∞
/U∞. Thus, it would appear that both u′

∞
/U∞ and

L∞ are parameters to which a boundary layer is sensitive if subjected to free-stream
turbulence.

There has also been a focus on the mechanisms and interactions of FST and a TBL once
the flow has fully transitioned to turbulence. Castro (1984) showed that the skin friction
increased with u′

∞
/U∞ for low Reθ = U∞θ/ν, where θ =

∫

∞

0
(u(y)/U∞)(1−u(y)/U∞)dy

is the boundary layer momentum thickness. In a pair of studies, Hancock & Bradshaw
(1983, 1989) also probed the relative impact of the free-stream turbulence intensity and
length scale on the boundary layer. Their set-up consisted of a flat plate placed in grid-
turbulence flows. They changed their external length scale and turbulence intensity by
moving the plate’s leading edge relative to the grid position and performing scans at
different locations. This gave them a parameter space roughly spanning 2% 6 u′

∞
/U∞ 6

6% and 0.7 6 Lu
e/δ995 6 4.9, where they defined their length scale as a dissipation length

scale in the free-stream assuming isotropy and δ was estimated based on where the local
velocity reached 99.5% of the free-stream velocity. They suggested the skin friction scaled
with a joint parameter of the turbulence intensity and free-stream scale they defined
as β = (u′

∞
/U∞)/ (Lu

e/δ995 + 2). This experiment was undoubtedly insightful, but not
without limitations. For instance, the achievable u′

∞
/U∞ at the time was low because only

static grids were in common usage for producing approximately homogeneous free-stream
turbulence. Because of this, the authors were required to vary their measurement station
in the range 12 6 x/M 6 59 to achieve their desired parameter space. This significantly
changes the time the boundary layer and free-stream turbulence have evolved in each
other presence. Furthermore, some of these measurements (particularly at their highest
u′

∞
/U∞ and Lu

e/δ995) were performed for x/M < 20 where some residual inhomogeneities
remain in the free-stream and the Reynolds shear stress components are not guaranteed
to have reached their far-field states (Corrsin 1963; Ertunç et al. 2010; Isaza et al.

2014; Hearst & Lavoie 2016). Moreover, the underlying assumptions used to estimate
a meaningful dissipation length scale in the manner employed by Hancock & Bradshaw
(1983, 1989) are not yet valid in this region because the balance between dissipation and
the large scale energy is still evolving (Valente & Vassilicos 2012; Hearst & Lavoie 2014;
Vassilicos 2015). There is thus a need to investigate these flows further without these
limitations.

To expand the range of realisable turbulence intensities (up to u′

∞
/U∞ ∼ 10%), Sharp

et al. (2009) used a similar set-up to the pioneering works, but generated their FST with
an active grid based on the design of Makita (1991). They similarly found that FST
influenced the wall shear stress but also noted that the spectrogram composed of the
pre-multiplied spectra at various wall-normal positions produced the distinctive inner
and outer spectral peak geometry reminiscent of canonical high Reτ TBLs as described
by Hutchins & Marusic (2007a). Dogan et al. (2016) explored this further and clearly
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identified the near-wall spectral peak as being located in the same position as for a
canonical TBL by using a smaller probe that allowed them to approach the wall. They
also identified that a log-region existed whose fitting parameters roughly matched those
found by Marusic et al. (2013) for high Reτ canonical wall-bounded flows; the log-law is
given by,

U+ =
1

κ
ln
(

y+
)

+ B, (1.1)

where U is the local mean velocity, y is the wall-normal position, κ and B are fitting
parameters, and the superscript ·+ indicates normalisation by inner (wall) units, i.e.,
U+ = U/Uτ and y+ = yUτ/ν. Significantly, Dogan et al. (2016, 2017) also showed
that the scale interactions, as assessed through the amplitude modulation mechanisms
established by Hutchins & Marusic (2007b), were preserved when FST was used to
increase Reτ . The implication of this is that it may be possible to use FST in a traditional
wind tunnel to study TBLs at higher Reτ than achievable without FST and without the
need of a large facility.
Despite continued research in this area with both direct implications for practical

flows and that offers insight into high Reτ boundary layers at a traditional laboratory
scale, there has been no investigation on the effect of integral length scale for constant
turbulence intensity at a fixed far-field position, and at high turbulence intensities. The
significance of using a fixed downstream position is that the evolution to that point is
thus comparable between cases, and should be chosen to be sufficiently far from the
grid such that the free-stream flow field has reached some canonical state of decaying
turbulence; Corrsin (1963) suggested x/M > 30. The present study thus focusses on
investigating multiple cases with fixed turbulence intensities and Reynolds numbers, but
varying large scale organisation. Moreover, higher turbulence intensities and Reynolds
numbers than previous works are achieved by using an active grid to generate the FST.
This not only provides new insights on the effects of FST on TBL but also allows us to
test the hypothesis of Marusic et al. (2017) that the increase of near-wall peak turbulence
intensity with increasing Reτ is only due to the superposition of outer coherent motions.
Here, we will be able to impose a wide range of outer motions (different strengths and
intensity) that can penetrate down to the wall and alter near-wall turbulence.

2. Experimental procedure & free-stream characteristics

The experimental database used in the present study is a combination of the data
acquired by Dogan et al. (2016, 2017), supplemented with some new test-cases. The
experimental apparatus and acquisition protocol used for the new cases is the same as
described by Dogan et al. (2017). In short, a rake of four single-wire hot-wires was
traversed through a TBL subjected to FST in the 0.9 m × 0.6 m ×4.5 m suction
wind tunnel at the University of Southampton. The TBL was formed over a false-
floor/boundary layer plate placed in the wind tunnel and was passively tripped. The FST
was generated with an active grid placed at the inlet of the test-section. Measurements
were performed at a fixed position 43M downstream of the grid and Reθ > 2000 for all
measurements making the influence of the tripping mechanism negligible (Schlatter &
Örlü 2012). The set-up of Dogan et al. (2016) was similar to the above, except only a
single wire was traversed through the TBL with another fixed in the free-stream. See
Dogan et al. (2016, 2017) for more details on the experimental set-ups.
The test-cases used in the present study are summarized in table 1. They are labelled

with letters in order of increasing u′

∞
/U∞. Additionally, they are separated into groups

where free-stream turbulence intensity (u′

∞
/U∞) and the Taylor microscale Reynolds
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number (Reλ,∞ = u′

∞
λ∞/ν) are approximately matched; the Taylor microscale was

estimated assuming local isotropy in the free-stream,

λ2 =

〈

u2
〉

〈(∂u/∂x)2〉 . (2.1)

Streamwise velocity gradients were approximated with Taylor’s frozen flow hypothesis
(∂(·)/∂t = U∂(·)/∂x) and a sixth-order centred-difference scheme; the latter has been
shown to balance the needs of spatio-temporal resolution and high-frequency noise
(Hearst et al. 2012). In table 1, the integral length scale was estimated from,

Lu =

∫ r0

0

〈u(x)u(x+ r)〉
〈u2〉 dr, (2.2)

where r0 is the first zero-crossing of the autocorrelation. The boundary layer parameters
listed in the table (δ, Uτ , κ) were fit using the approach of Rodŕıguez-López et al. (2015)
as modified for FST by Esteban et al. (2017). Due to the relatively high Reτ of the
present experiments and the ℓ = 1 mm sensing length of the hot-wire probes, the inner-
unit length of the probes ranged 18 6 ℓ+ 6 33. As such, the variance in the near-wall
region was compensated for using the approach of Smits et al. (2011). Any differences
between the values reported in table 1 and our earlier works are a result of the different
fitting process used here and the adjustments for spatial resolution.

The incoming conditions for the various test-cases were changed by adjusting the active
grid settings as well as the incoming Reynolds number. The grid was operated in one of
two modes: ‘synchronous’ or ‘fully random’. In ‘synchronous’ mode, all motors of the grid
were updated simultaneously at 1 Hz. In ‘fully random’ mode, updates to each motor of
the grid were randomised at intervals between 0.4 and 20 Hz. The actuation velocity of
the wings (Ω) was varied to produce different free-stream conditions. The range of Ω is
shown for each case in table 1 and was always a top-hat distribution. The chosen test
cases were modelled after those of Kang et al. (2003), Larssen & Devenport (2011), and
Hearst et al. (2016). Additionally, two different wing geometries were used: solid square
wings or wings with holes. Changing the wing geometry has been shown to offset the
produced u′

∞
/U∞ (Thormann & Meneveau 2014; Hearst & Lavoie 2015; Dogan et al.

2016).
The free-stream velocity spectra are shown for all cases in figure 1. In figure 1(a), the

spectra are normalised by λ which is expected to collapse the spectra in the scaling (or
inertial) range as shown. The slope of the nearly two decade long scaling range is close to,

but not exactly, k
−5/3
x ; this agrees with previous active grid studies (Mydlarski & Warhaft

1996; Hearst & Lavoie 2015). The same spectra are shown in pre-multiplied form plotted
against δ-normalised wavelength (ζx = 2π/kx) in figure 1(b). As also shown by Dogan
et al. (2016), the peak in the pre-multiplied spectra for all cases is roughly collapsed
around ζx = 10δ. Figure 1 highlights two key features of the flow for all cases. First, and
not insignificantly, these are relatively high-Reλ,∞ FST flows and as such their spectral
shape does not significantly vary between cases. This is not a consequence of poor choice
of test cases, but rather is a consequence of the governing fluid dynamics that results in a
spectrum that may be approximately described by the Richardson-Kolmogorov cascade
and cannot be significantly changed. Second, at this evolution distance (x/M = 43)
downstream of the turbulence generation the spectra appear to have all taken-on a rough
form where their pre-multiplied peak is approximately 10δ. Given that δ, u′

∞
/U∞ and

Reτ change by factors of 0.5, 2, and 3, respectively, across all cases in table 1, figure 1(b) is
highly suggestive that the boundary layer adjusts such that the peak in the pre-multiplied
turbulence is at ∼ 10δ and that this not simply a coincidence.
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Case Ω Wings U∞ u′

∞/U∞ Reλ,∞ Lu,∞ δ Uτ Reτ Reθ κ Symbol
[Hz] [m/s] [%] [m] [m] [m/s]

A 4 Holes 6.1 7.2 302 0.27 0.11 0.27 1890 2940 0.40 3

B 5.25± 1.75 Holes 6.2 7.3 322 0.27 0.11 0.27 1960 2760 0.38 ⊲
C 4± 2 Holes 6.1 7.4 319 0.23 0.11 0.27 1960 2770 0.37 ∗

D 4 Holes 8.1 7.7 390 0.33 0.11 0.35 2480 3860 0.39 ▽

E 4± 2 Holes 8.1 7.8 412 0.28 0.11 0.35 2420 3730 0.39 ⋆

F 5.25± 1.75 Holes 8.2 7.9 417 0.29 0.11 0.35 2520 3830 0.39 ⊳

G† 4± 2 Holes 9.9 8.1 460 0.33 0.13 0.43 3590 4550 0.41 #

H†‡ 2± 1 Holes 8.9 8.2 446 0.22 0.13 0.38 3200 4030 0.40 �

I 5.25± 1.75 Holes 12.2 8.5 607 0.39 0.14 0.51 4550 5870 0.39 △
J 4± 2 Holes 12.2 8.6 609 0.36 0.14 0.51 4490 5980 0.39 ⋆

K 4 Solid 8.0 11.9 515 0.42 0.17 0.35 3900 4990 0.42 �

L 5.25± 1.75 Solid 8.1 12.1 533 0.36 0.17 0.35 3960 5340 0.41 H

M 4± 2 Solid 8.0 12.1 532 0.35 0.16 0.35 3760 4430 0.41 �

N† 4± 2 Solid 10.0 12.2 620 0.26 0.16 0.44 4480 5000 0.44 ◮

O 4 Solid 9.8 12.4 607 0.43 0.16 0.43 4510 4400 0.43 ◭

P 5.25± 1.75 Solid 11.6 13.0 750 0.44 0.17 0.49 5360 7530 0.42  

Q 4± 2 Solid 11.7 13.0 760 0.42 0.16 0.49 5240 7620 0.44 N

Table 1. Flow parameters for all test-cases. The dagger (†) identifies test-cases acquired with
the set-up of Dogan et al. (2017); all other test-cases are from Dogan et al. (2016). The
double-dagger (‡) indicates the test performed in ‘fully random’ mode; all other tests were
conducted in ‘synchronous’ mode.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-6

10
-4

10
-2

10
0

10
2

Figure 1. Velocity spectra in the free-stream (a) normalized by Taylor scales and (b) in
pre-multiplied form. Lightest to darkest lines represent increasing u′

∞/U∞.
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Figure 2. Pre-multiplied velocity spectra in the free-stream for cases (a) G and H, (b) K and
M, and (c) N and O. (—) cases G, K, and N; (− · −) cases H, M, and O. The bottom panes
(d), (e), and (f) show the ratio of the two curves presented in (a), (b) and (c), respectively; i
represents the solid line and j represents the dashed line.

Before leaving this section, we draw the reader’s attention to variation in Lu,∞ for the
various groups of cases in table 1. The variations in Lu,∞ are a result of the changes to
the active grid settings. For some groups, the variation in Lu,∞ is marginal, however, we
draw particular attention to cases G (Lu,∞/δ = 2.5) and H (Lu,∞/δ = 1.7) with a 50%
change in integral scale at u′

∞
/U∞ ≈ 8.1%, K (Lu,∞/δ = 2.8) and M (Lu,∞/δ = 2.2)

with a 20% change in the integral scale at u′

∞
/U∞ = 12.0%, and N (Lu,∞/δ = 1.6) and

O (Lu,∞/δ = 2.7) with a 65% change in the integral scale at u′

∞
/U∞ ≈ 12.3%. We note

that to achieve the same u′

∞
/U∞ for G and H, it was necessary to change U∞ marginally,

however, the ratio U∞/Uτ = U+
∞

was approximately the same for both cases.
The free-stream spectra associated with the identified cases with significant differences

in Lu,∞ are shown in figure 2(a-c). The area under the two curves in each pair is
approximately equal because u′/Uτ is approximately the same for each pair. While the
spectra may appear quite similar at first, this is a consequence of the fact that a high
Reλ,∞ turbulent field has a relatively fixed shape. The ratio of each set of curves is shown
in figure 2(d-f), where the difference between the free-stream flows is more apparent;
peaks on the order of 20% difference exist at the peak in the premultiplied spectrum,
signifying a significant change in the energy distribution for the same Reλ,∞.

3. Impact on the boundary layer

Wall-normal profiles of the inner-normalised mean velocity and variance profiles are
provided in figures 3(a) and (b), respectively. The eye is immediately drawn to the
collapse of the flows at a given u′

∞
/U∞ for both the mean velocity and the variance.
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Figure 3. Wall-normal profiles of the (a) mean velocity and (b) turbulent fluctuations, both
normalised by wall-units. See table 1 for symbols. Lightest to darkest symbols represent
increasing u′

∞/U∞. Each set of profiles have approximately the same u′

∞/U∞ and are offset
by +5 from one-another. In (a) the parameters used for the log-law fit are κ = 0.39 and B = 4.3,
which are taken roughly from Marusic et al. (2013).

The similarity between the curves in the log-law region can be quantified by κ in table 1,
where the difference in κ between the cases with matched u′

∞
/U∞ does not exceed 0.03.

Furthermore, for a given group of profiles, δ and U∞/Uτ = U+
∞

do not change appreciably.
This is particularly significant given that it also holds for the previously identified pairs
where Lu,∞ changes by up to 65% and U∞ changes by 1 m/s (representing a 20% change
in bulk energy). This suggests that the bulk characteristics of the TBL subjected to FST
are dependent primarily on u′

∞
/U∞ and Reλ,∞ rather than Lu,∞. This also suggests that

figure 11(a) in Dogan et al. (2016) that shows the variance gain in the boundary layer for
different u′

∞
/U∞ may be sufficient to predict the variance profile given the free-stream

turbulence intensity.
Similar characteristics are present in the higher-order statistics for these flows. Namely,

the velocity skewness (Su =
〈

u3
〉

/
〈

u2
〉3/2

) and flatness (Fu =
〈

u4
〉

/
〈

u2
〉2
) are plotted

for each case in figures 4(a) and (b), respectively, and demonstrate that for a given
u′

∞
/U∞ these statistics are approximately collapsed near the wall. Some scatter is present

in the free-stream, particularly visible in the flatness, however, nearer the wall all the
curves are collapsed, suggesting the near-wall dynamics are the same. The values of Su

and Fu both resemble those measured previously by Sharp et al. (2009) in a similar set-up.
Ultimately, the results demonstrate that at these Reλ,∞ the intermittent discontinuity
between the canonical laminar free-stream and a turbulent boundary layer does not exist
for these flows with FST, but rather the flow takes on the characteristics of approximately
homogeneous, isotropic turbulence near the outer regions of the boundary layer. For
reference, a Gaussian distribution has Su = 0 and Fu = 3.
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Figure 4. Wall-normal profiles of the streamwise velocity (a) skewness and (b) flatness. See
table 1 for symbols. Lightest to darkest symbols represent increasing u′

∞/U∞. Each set of profiles
have approximately the same u′

∞/U∞ and are offset by +1 from one-another.

Further insight on the resilience of the boundary layer to changes in the FST can be
gained by looking at the spectral distribution of energy, viz. the spectrograms, which
are shown in figure 5 for the cases with the identified significant changes in Lu,∞. For
brevity, we define φ+ = kxφu/U

2
τ . All flows exhibit spectral inner and outer peaks, similar

to observations made in canonical TBLs (Hutchins & Marusic 2007a). The inner peak
is situated at a wavelength of ζ+x ≈ 1000 and a wall-normal position of y+ ≈ 15, for all
cases, in agreement with previous investigations in canonical TBLs (Hutchins & Marusic
2007a) and TBLs subjected to FST (Dogan et al. 2016, 2017). The outer peak is situated
near ζx/δ ≈ 10 and y/δ ≈ 0.4, which is substantially higher than where it is found in
canonical TBLs at similar Reτ (Hutchins & Marusic 2007a). This is because the outer
peak is effectively imposed on the boundary layer by the free-stream spectrum. Further
comparison of the present flows with canonical zero-pressure-gradient spectrograms is
presented by Dogan et al. (2016).
Qualitatively, each pair of spectrograms look quite similar, and we thus present their

differences in the right hand panes of figure 5. Despite the similar appearance of the
spectrogram for each pair there are differences in the large scales present all the way to
the wall. These differences are quantified by the parameter ∆+ = (φ+

a − φ+
b )/φ

+
a (where

a and b can be any pair of test cases from table 1), demonstrating differences between
the flows on the order of 40% exist near the wall at large wavelengths. The strips of high-
difference that track from the outer region all the way to the lowest measurement station
are directly correlated to the differences in the free-stream spectra shown in figure 2(d-f),
thus the differences in the free-stream spectra track all the way to the wall. In contrast,
the spectra at low ζx are nearly identical for each pair. This is illustrated explicitly
for the spectra at the near wall peak, y+ ≈ 15, in figure 6, where the small scales are
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Figure 5. Spectrograms of the inner-normalised pre-multiplied velocity spectra for pairs of test
cases with the same turbulence intensity but different integral scales. The illustrated test name
is given in each pane of the figure. The differences between these spectrograms are shown in the
right-hand panes of the figure as ∆+ = (φ+

a − φ+

b )/φ
+
a , where a and b can be any pair of test

cases.

collapsed but there is still a difference in the large scales for all cases. Moreover, the
least turbulent case (A) and the most turbulent case (Q), which differ in both U∞ and
u′

∞
/U∞ by a factor of 1.8 or greater, are contrasted in figure 7, showing that they differ

nearly everywhere except the near-wall peak. Finally, the spectral coherence,

γ2 =
|φu(yinner)u(youter)|2
φuu(yinner)φuu(youter)

, (3.1)

between the inner peak location (y+inner ≈ 15) and a location in the log-layer (y+outer ≈ 600)
is illustrated for cases G, H, and N in figure 8; these cases were used because they were
acquired with the four-wire set-up of Dogan et al. (2017). The outer location was dictated
by the fixed separation between the wires on the moving rake. The coherence was filtered
with a 25% bandwidth moving filter as per Baars et al. (2016). The coherence figure
illustrates that there is no correlation between wavelengths below ζ+x = 7000 for these
three cases. This provides more evidence that the small scales are independent of the large
scale organisation in the log-layer. We note that ζ+x = 7000 or similar values were found
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Figure 6. Inner-normalised pre-multiplied spectra for all cases in table 1 at y+ ≈ 15. Lines
are coloured from lightest to darkest in order of increasing turbulence intensity.

Figure 7. Spectrograms of the inner-normalised pre-multiplied velocity spectra for cases A and
Q from table 1. The difference between these spectrograms are shown in the right-hand pane
as ∆+ = (φ+

Q − φ+

A)/φ
+

Q. The contour lines in the right-hand pane identify the location of the
inner peak for case A.

to approximately separate the inner and outer peaks independently of Reτ in previous
studies (Hutchins & Marusic 2007b; Mathis et al. 2009; Baars et al. 2016; Marusic et al.

2017). It is not immediately clear why this particular value should be meaningful, but it
is reproducable for different Reτ and u′

∞
/U∞ here, and is present in other studies. The

overall picture painted by the above is that the spectral distribution of the FST leaves a
footprint on the energy signature at the wall, but for a given u′

∞
/U∞ (within the tested

range) does not influence the mean properties of the flow or the small-scales of the flow
across the entire range of wall-normal locations.
An alternative way of looking at the spectrograms is to plot them as a ‘gain’ function

relative to the spectrum in the free-stream. We define this gain function as the ratio
between the local spectrum and the free-stream spectrum at each wavenumber and wall-
normal position, G(kx, y) = φ+(kx, y)/φ

+
∞
(kx). These gains are illustrated in figure 9

for the previously identified pairs. Additional contour lines are included at φ+ = 0.6 to
identify the energetic region of the spectra. Like the spectrograms, the gain plots are
remarkably similar, particularly within the region enclosed by the φ+ = 0.6 thresholds.
The difference is quantified in the right-hand panes of figure 9 by the parameter ∆G =
(Ga−Gb)/Ga (where a and b are any two cases from table 1), which supports the notion
that the gain plots are similar in the most relevant region.
The concept of the spectral gain function is particularly useful if there was a single
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Figure 9. Contour plots of the gain of the pre-multiplied velocity spectra relative to the
free-stream spectrum and the difference between the shown cases. Additional contour lines are
drawn at a threshold of φ+ = 0.6 to identify the area in the plot that represents the most energy.
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global gain function (Gg) that could be used to predict the spectrogram of a turbulent
boundary layer given an arbitrary free-stream turbulence spectrum. This could then be
integrated to give the variance profile. The above observations based on the spectrograms
are insightful, but beg at least two questions. The first is whether the separation in
Lu,∞/δ between the cases is in fact sufficient to make meaningful observations. The
second is whether such a global Gg function exists and can reproduce the boundary layer
spectrogram from just the free-stream spectrum. These concerns are addressed in the
next section.

4. Implications and discussion

Given the spectrograms and velocity profiles for each group of cases at matched
u′

∞
/U∞ are so markedly similar, it is natural to wonder if the free-stream conditions

were sufficiently different between cases to begin with. We first remind the reader that
the intention of this study was to keep certain parameters constant (u′

∞
/U∞ and Reλ,∞)

while varying others (Lu,∞ and the overall large scale organisation). To this end, we must
demonstrate that the varied conditions are sufficiently different from one another. First,
the largest change in Lu,∞/δ investigated here is from 1.6 for case N to 2.7 for case O.
This is over an entire δ change. This change is also comparable to the relative change in
Lu,∞ produced by Shahinfar & Fransson (2011), who did observe a measurable impact
on transition; in dimensional units, the change here is an order of magnitude larger than
in Shahinfar & Fransson (2011). Moreover, this change in Lu,∞/δ covers ∼ 25% of the
range of the experiments of Hancock & Bradshaw (1983), who did report an impact of
Lu,∞ on the TBL for lower values of u′

∞
/U∞; recall there is some ambiguity relating to

the means by which they interpreted their integral scales. Second, for the comparison
between G and H the mean velocity changes result in a significant difference in total
energy in the mean flow, (U2

∞,G −U2
∞,H)/U2

∞,G ≈ 0.2, but the profiles and spectrograms
remain the same. We also remind the reader that for a turbulent free-stream at a given
Reλ,∞, the shape of the spectrum is relatively fixed and the only part of the spectrum
that can be varied between cases is the largest scales (Hearst & Lavoie 2015), which are
beyond the peak in the pre-multiplied spectrum. Finally, and perhaps most convincingly,
in figure 5 the difference spectrograms show that the difference in the spectra in the
free-stream between cases is felt all the way to the lowest measurement station at the
large wavelengths. Nonetheless, the impact on the mean statistics is negligible (for a
given u′

∞
/U∞). If there had been a factor of 10 change in Lu,∞ while keeping u′

∞
/U∞

fixed (which we note is seemingly not possible with an active grid (Larssen & Devenport
2011; Hearst & Lavoie 2015) and in this facility would result in a length scale comparable
to the size of the facility), pushing it to even larger wavelengths, the difference in the
spectra would still exist all the way to the wall, but there is no reason to believe that
those larger wavelengths would have a stronger presence. The alternative would be to
make Lu,∞ smaller, in order to inject energy at the same wavelength as the inner peak,
however, this may not physically be possible (in the sense of fully-developed FST over
a TBL because a turbulent spectrum at a given Reλ,∞ has a given shape that does not
vary by much at the small scales).

The second item that deserves further discussion is the significance of a global gain
function Gg. To test this concept, we produce a global gain function Gg(kx, y) that is
simply the average of the gain functions from all but three cases in table 1; cases C,
G, and N are reserved to test the methodology because they represent a distribution
of the turbulence intensities realised in this experiment. We are happy to perform this
average because the spectrograms (figure 5) and gain functions (figure 9) were remarkably
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similar within the region that contained the most energy. We then reconstruct the
spectrograms for our reserved cases (C, G, N) that were not included in the formation
of Gg based on the global gain function, φ̃+(kx, y) = Gg(kx, y) · φ+

∞
. The reconstructed

spectrograms are given in figures 10(a), (b), and (c), respectively, with the differences
between the reconstruction and the original spectrograms, ∆C = (φ+ − φ̃+)/φ+, given
in figures 10(d), (e), and (f). To guide the eye and to facilitate comparison with the
measured spectrograms, contours are drawn for every 0.3 increment in φ+ starting from
φ+ = 0.9. What is significant here is that a single Gg can approximately reconstruct the
spectrogram for these test cases and identify the location of both the inner and outer peak.
In particular, for these cases the outer peak is resolved to within 10% (for the worst case
which is the lowest u′

∞
/U∞ case C), and the inner peak location appears accurate, but

it’s magnitude is resolved to within 40% (for the worst case which is the highest u′

∞
/U∞

case N). This identifies that the particular form of Gg found here is not ‘universal’, but
it also provides a key point of insight. The ability of the approach to predict the position
and magnitude of the outer peak to within 10% for these diverse cases suggests there
is a consistent manner in which the boundary layer filters and selectively amplifies the
spectra in the outer region of the TBL subjected to FST. Furthermore, the failure of
the ‘gain’ methodology to capture the small wavelengths near the wall is because it is
superseded by a different universality. That is, the spectrograms at small wavelengths
near the wall are the same in viscous units, independent of both Reτ and u′

∞
/U∞. This

was illustrated at y+ ≈ 15 for all cases in figure 6 and by contrasting the most and
least intense free-stream flows in figure 7. This echoes the observation by Dogan et al.

(2016) that the spectral inner peak remains in the same location for increasing u′

∞
/U∞

and further identifies that its shape and magnitude are also independent of u′

∞
/U∞. The

primary energetic region not captured by either the ‘universal’ near-wall peak or the
outer region gain function is the large wavelengths close to the wall. While this region is
similar for cases with fixed u′

∞
/U∞ (figure 6), it becomes more energetic with increasing

u′

∞
/U∞, which in turn results in higher Reτ .
In figure 10 the wall-normal position y+ =

√
Reτ is identified with a vertical dashed

line. This location appears to consistently separate the near-wall flow (and the inner
spectral peak) from the outer flow (and the outer spectral peak). It also roughly separates
the region governed by the gain function and the region governed by the universal inner
spectral peak. This is consistent with the mean momentum balance physical model of
the boundary layer (Klewicki et al. 2007, 2009) and represents the approximate extent to
which viscous forces play a dominant role. This

√
Reτ scaling is also thought to hold for

the smallest wall-attached eddies (Klewicki et al. 2009; Marusic et al. 2013) and hence
the beginning of the log-layer (Klewicki 2010). Marusic et al. (2017) showed that their
outer scaling roughly held down to a lower limit of y+ ∼

√
Reτ . Therefore, any scale

with sufficient energy that is larger than this smallest attached-eddy will likely penetrate
farther down to the wall. The figures suggest that the smaller-scale FST fluctuations
appear to be attenuated. In fact, all fluctuations are attenuated and only the large-scales
in the FST are able to penetrate through to the wall as they contain significantly more
energy than the wall-attached eddy at every wall-normal location.
From here, one can construct a conceptual model that appears to govern the spectral

scaling for a TBL subjected to FST. For this model, the spectrogram is divided into four
regions separated along y+ =

√
Reτ and ζ+x = 7000. The divider in wavelength separates

the large and small scales as discussed in the previous section. These regions are depicted
in figure 11(b) and can be described as follows:

I. (y+ <
√
Reτ , ζ

+
x < 7000): This region is home to the near-wall spectral peak

(typically centred at y+ ≈ 15, ζ+ ≈ 1000). The near-wall spectral peak scales with
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Figure 10. Reconstructed spectrograms based on the global gain map for (a) case C, (b) case G,
and (c) case N from table 1. The corresponding difference maps between the reconstructed and

measured spectrograms are given in (d), (e), and (f), respectively, as ∆C = (φ+ − φ̃+)/φ+. The
solid lines represent contours at φ+ = 0.9, 1.2, 1.5, 1.8 and 2.1 from the measured spectrograms.
The solid line contours increase from outer most to inner most. The vertical dashed lines are at
y+ =

√
Reτ .

viscous units, making its location, shape, and normalised magnitude universal.
This means that we can use this information to obtain skin-friction of boundary
layers under the influence of FST. For example, a hot-wire measurement in the
near-wall region could be used in liaison with scaling identified here to determine
Uτ and hence Cf by adjusting the estimate of Uτ until the inner peak was collapsed
on the expected value.

II. (y+ <
√
Reτ , ζ

+
x > 7000): This region is influenced by variations in the FST.

Increases in u′

∞
/U∞ penetrate all the way to the wall, resulting in an increase in

Uτ and correspondingly Reτ . This occurs because the energy that exists at the
large wavelengths is not transferred to the near-wall peak in region (I) such that
the latter is fixed and universal. Note that because the near-wall peak in region (I)
is collapsed for all tested u′

∞
/U∞ and Reτ , it suggests that the increase in area

under the spectral curve at ζ+x > 7000 is proportional to the growth in Uτ . Changes
in Lu,∞ penetrate down to this region (figure 5), but do not appear to influence
the mean velocity or variance profiles for the u′

∞
/U∞ investigated here.

III. (y+ >
√
Reτ , ζ

+
x > 7000): In this region, the boundary layer acts as a universal

filter to the most energetic wavelengths in the free-stream spectrum. It preferen-
tially amplifies certain wavelengths, resulting in the outer peak. The amplification
is independent of u′

∞
/U∞, and hence this region is governed by global laws different

from those in region (I).
IV. (y+ >

√
Reτ , ζ

+
x < 7000): This region is not home to a significant amount of the

energy and seemingly does not play as strong a role in the dynamics.
This model explains the increase in Uτ with increasing u′

∞
/U∞ and suggests that a

measurement at y+ ≈ 15 is sufficient to estimate Uτ for these flows. Futhermore, one
can in principle predict the location of both the inner and outer spectral peaks given
the spectrum of the FST. This is because Gg approximately describes the flow in regions
(II), (III) and (IV), and region (I) is independent of the other regions. We thus propose
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Figure 11. (a) Inner-normalised pre-multiplied spectra at y+ ≈ 15 for all cases. (b) Conceptual
map identifying four regions in a generic spectrogram of a TBL subjected to FST.
(c) Inner-normalised pre-multiplied spectra in the free-stream for all cases. For the spectra,
the lightest to darkest lines represent increasing u′

∞/U∞. The identified regions are separated
along y+/

√
Reτ = 1 and ζ+ = 7000.

using Gg to reconstruct the flow in regions (II), (III), and (IV) from only the free-stream
spectrum, and then using the inner peak from our best resolved case (A) in region (I)
to reconstruct the same cases as shown in figure 10. Ideally, the inner peak geometry
would come from an analytical expression, however, for the time being our best resolved
measurement of the empirical curve will suffice. This proposed reconstruction process
is illustrated in figure 12, where weighting functions are used to blend the inner peak
reconstruction (region (I)) with the gain reconstruction (regions (II)-(IV)). The weighting
decays linearly outside of the bounds specified in the conceptual model to a total extent
of 5 times the limit. The results of this reconstruction are presented in figure 13, where it
can be seen that both the inner and outer peaks are now captured by the reconstruction
methodology based on only the free-stream spectrum; both the location and magnitude
of the inner peak are now in agreement between the reconstruction and the measured
spectrograms to within 6%, a vast improvement over figure 10 where only the gain
function was used.

5. Conclusions

The influence of the large-scale organisation of an external turbulent flow on a turbulent
boundary layer was investigated experimentally by generating free-stream turbulence
flows where the turbulence intensity (u′

∞
/U∞) and Reynolds number (Reλ,∞) were fixed,

but the free-stream integral scale (Lu,∞) and the distribution of energy in the spectrum
was varied. This was achieved by generating free-stream turbulence with an active grid
over a false floor in a wind tunnel. While a wide array of tests were presented, three
specific groupings with (i) u′

∞
/U∞ = 8.2%; Reλ,∞ ≈ 455, (ii) u′

∞
/U∞ = 12.0%; Reλ,∞ ≈

525, and (iii) u′

∞
/U∞ = 12.3%; Reλ,∞ ≈ 615, were investigated with integral scales

changing between 20% and 65%. It was found that the longitudinal mean velocity,
variance, skewness, and flatness profiles, as well as the peaks in the spectrograms appear
to be approximately collapsed for a given turbulence intensity, and are thus dependent
only on u′

∞
/U∞ and Reλ,∞ for the cases investigated here. This result appears to contrast

with earlier results, e.g., Hancock & Bradshaw (1983, 1989), which were conducted at
much lower Reλ,∞ and u′

∞
/U∞, and where the estimation of the integral scale may have

been susceptible to errors associated with the equation used. Regardless, for a range of
Lu,∞/δ that overlapped with the region where previous studies showed an impact of
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Figure 12. Proposed reconstruction methodology. Region (I) in figure 11 is constructed from
the inner peak of a well-resolved case. Regions (II), (III) and (IV) are constructed by multiplying
the free-stream spectrum by the global gain function (Gg) and a weighting function. These two
spectrograms are then summed to produce the reconstruction.

Lu,∞, none was observed here. If this was not an err in the previous campaigns, it may
be a result of the increased Reλ,∞ here. It was explicitly demonstrated that the large
scales of the spectrograms remain disparate between cases with matched u′

∞
/U∞ right

to the wall if they have different Lu,∞. Nonetheless, this does not result in changes to
the mean statistics.
It was also demonstrated that a gain function could be composed that approximately

reproduced the outer peak in the spectrograms of the TBL subjected to FST using
only the spectrum in the free-stream. This same function was able to estimate the
location of the near-wall peak as well, but the magnitude was only within 40% of the
measured magnitude. This failure was a result of the seemingly universal nature of the
near-wall peak, which was shown to have the same location and magnitude (in inner
units) independent of the FST. A conceptual model was suggested, identifying that
the outer boundary layer filters the free-stream spectrum using a global gain function,
and then always produces the same universal near-wall peak. Because the excess energy
that penetrates down through the boundary layer for an increase in u′

∞
/U∞ cannot be

transferred to the universal near-wall peak, it must remain at larger wavelengths and
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Figure 13. Reconstructed spectrograms using the methodology presented in figure 12 for
(a) case C, (b) case G, and (c) case N from table 1. The corresponding difference maps between
the reconstructed and measured spectrograms are given in (d), (e), and (f), respectively, as

∆C = (φ+ − φ̃+)/φ+. The solid lines represent contours at φ+ = 0.9, 1.2, 1.5, 1.8 and 2.1 from
the measured spectrograms. The solid line contours increase from outer most to inner most. The
vertical dashed lines are at y+ =

√
Reτ .

results in an increase in Uτ . This model allows for the description of the spectrograms of
a TBL subjected to FST a priori, with only knowledge of the free-stream spectrum, and
describes the mechanism for the increase in Uτ with increasing u′

∞
/U∞. It was also able

to demonstrably reconstruct the boundary layer spectrogram, resolving both the inner
and outer peaks within 10%, given only the free-stream spectrum, Uτ and δ.
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