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Robust Federated Learning With Noisy

Communication
Fan Ang, Li Chen, Nan Zhao, Senior Member, IEEE, Yunfei Chen, Senior Member, IEEE, Weidong Wang,

F. Richard Yu, Fellow, IEEE

Abstract—Federated learning is a communication-efficient
training process that alternate between local training at the
edge devices and averaging of the updated local model at the
center server. Nevertheless, it is impractical to achieve perfect
acquisition of the local models in wireless communication due to
the noise, which also brings serious effect on federated learning.
To tackle this challenge in this paper, we propose a robust design
for federated learning to decline the effect of noise. Considering
the noise in two aforementioned steps, we first formulate the
training problem as a parallel optimization for each node under
the expectation-based model and worst-case model. Due to the
non-convexity of the problem, regularizer approximation method
is proposed to make it tractable. Regarding the worst-case model,
we utilize the sampling-based successive convex approximation
algorithm to develop a feasible training scheme to tackle the un-
available maxima or minima noise condition and the non-convex
issue of the objective function. Furthermore, the convergence
rates of both new designs are analyzed from a theoretical point
of view. Finally, the improvement of prediction accuracy and the
reduction of loss function value are demonstrated via simulation
for the proposed designs.

Index Terms—Expectation-based model, federated learning,
robust design, worst-case model.

I. INTRODUCTION

FUTURE wireless computing applications demand higher

bandwidth, lower latency and more reliable connections

with numerous devices [1], [2]. With the burgeoning develop-

ment of artificial intelligence technologies, the edge devices

need to generate a sheer volume of raw data to be transmitted

to the center, which results in excessive latency and privacy

concerns [3], [4]. To solve this problem, federated learning has

been proposed to encounter a paradigm shift from computing

at the center to computing at the edge devices [5].
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Federated learning can be traced back as federated optimiza-

tion to decouple the data acquisition and computation at the

central server [6]. Federated optimization has recently been

extended to deep learning platforms, which was known as

federated learning [5], [7]. Federated learning was designed as

an iterative process between distributed learning at the edge

devices and averaging the updated local models at the central

server. In contrast to the conventional centralized training,

federated learning is more efficient in communication by up-

loading no raw data but only local models. To further improve

the availability of enormous data from edge devices, federated

learning was adopted in several scenes of future wireless

networks [8]–[11]. Using federated learning and distributed

MEC systems, the authors studied the trade-off between local

computing and global aggregation under the given resource-

constrained model in [8]. Moreover, the attractive property of

lower latency drew attention to exploiting federated learning

in latency-sensitive networks, such as vehicular networks [9],

[11].

Due to the high-dimensional local model, as well as the

long-term training process, the updating step of federated

learning still consumes a lot of communication resources. The

key issues are to reduce the overhead in the updating steps

and to accelerate the training process. A series of research

concentrating on reducing the overhead in the updating step

was to transmit the compressed gradient vector via exploiting

the quantization scheme [12], [13]. Another research focused

on scheduling the edge devices to save the transmission

bandwidth [14]–[18]. Specifically, some novel updating rules

were worked out, which only allowed the edge devices with

significant training improvement [15], or the fast responding

devices [16], to transmit their gradient vectors in each up-

loading round. Arranging the adaptive maximum number of

transmission-permitted edge devices was also an intelligent

way when time was limited [18]. Furthermore, the authors

developed a momentum method and cp-stochastic gradient

descent algorithm to accelerate the training process for each

edge device in local training in [13], [19]. Utilizing the dif-

ferent computation capability of each node, an asynchronous

federated learning scheme was proposed to reduce the training

delay in [20]–[22].

The aforementioned pioneering works are all based on

the assumption that the received signals at both the central

server and the edge nodes are perfectly detected. In practice,

this is difficult in wireless communications due to imperfect

channel estimation, feedback quantization, or delay in signal

acquisition on fading channels. In other words, the noise is
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indispensable during the training process. Furthermore, neural

networks were proved to be not very robust to noise, which

leads to the delay in the training process [23].

In conventional centralized learning, a branch of research

has been dedicated to eliminate the effects of noise, among

which several works used the denoising autoencoder to filter

noise, such as contractive auto-encoders and denoising auto-

encoders [24], [25], while others considered representing the

effect of noise as imposing a penalty during the training

process, known as the regularization scheme [26]–[30]. In

particular, the addition of noise with infinitesimal variance as

the input of training dataset was proved to be equivalent to

the punishment on the norm of the weights for some training

models [26], [27], whereas the added noise in the model

was derived as appending a regularizer in the loss function

which pushes the model to find the minima in the flat regions

[28], [29]. Besides, the key idea of the Dropout method is to

randomly drop units from the neural network during training

to simulate the regularization [30].

The centralized learning only occurs on the center and the

communication between the center and the edge node is the

dataset updating and the optimal broadcasting. Consider the

wireless communication, the noise will be brought into the

dataset, which can be known as the input noise. However,

the communication in federated learning is the local model

updating and the global model broadcasting. Therefore, the

noise will effect the received model, which can be known as

weight noise. In all, the noise problem in centralized learning

is different from the one in federated learning. A branch

of research focus on improving the robustness of federated

learning [31]–[33]. To solve the Byzantine failures, biased

local datasets, and poisoning attacks, a robust aggregation rule

was proposed which detects and discards bad or malicious

local model updates at each training iteration [31]. Consider

the characteristic of the training data, the authors proposed a

new compression framework that is specifically designed to

meet the requirements of the Federated Learning environment

as the non-i.i.d. data [32]. In a heterogeneous environment,

the authors develop an algorithm which matches the lower

bound on the estimation error in dimension and the number

of data points to solve the heterogeneous data distribution for

federated learning [33]. The aforementioned works concentrate

on the construct of the federated learning network rather than

the communication noise. However, to the best of our knowl-

edge, no communication noise reduction has been studied for

federated learning and it is still an open problem.

Motivated by these observations, we propose a robust fed-

erated learning method to alleviate the effects of noise in

the training process. Robust designs are first introduced using

the expectation-based model and the worst-case model. More

specifically, the former model is based on the statistical proper-

ties of the noise uncertainty and the latter model represents the

fixed uncertainty sets of noise. Furthermore, the corresponding

convergence analysis is provided to illustrate the performance

of the proposed designs. The main contributions of this work

are summarized as follows.

. Robust design under the expectation-based model.

With the consideration of noise at the central server and

the edge nodes, we formulate the training problem using

the expectation-based model as a parallel optimization

problem for each edge node. To handle the statistical

property of noise, as well as the non-convexity of the

objective function, we propose a regularization for loss

function approximation (RLA) algorithm to approach

the objective function and develop the corresponding

training process. The proposed solution is superior to the

conventional scheme that ignores noise in terms of both

prediction accuracy and performance of loss function.

. Robust design under the worst-case model. The train-

ing problem under the worst-case model meets the

challenges that are the unavailable maxima or minima

noise condition and the non-convex issue of the ob-

jective function. We solve the former problem via the

sampling method and tackle the latter one by utilizing

the successive convex approximation (SCA) algorithm

to generate a feasible descent direction for the training

process. The simulation results show that the proposed

design outperforms the conventional one for prediction

accuracy and values of loss function.

. Convergence analysis for the proposed designs. The

convergent property of all proposed designs are derived.

Specifically, it is found that the proposed training pro-

cess under the expectation-based model converges at the

equivalent rate to the centralized training scheme that

ignores noise, and the convergent property of proposed

robust design under the worst-case model outperforms the

conventional centralized one.

The remainder of the paper is organized as follows. Section

II introduces the system model of the federated learning

considering noise. Section III presents the formulated problem

under the expectation-based model and the worst-case model.

The robust design under the expectation-based model and its

convergence analysis are developed in Section IV. Section

V shows the robust design under the worst-case model and

the corresponding convergence analysis. Simulation results are

provided in Section VI.

Throughout the paper, we use boldface lowercase to refer

to vectors, and lowercase to refer to scalar. Let (·)T denote

the transpose of a vector. Let | · | denote size of the set, 0

denotes zero matrix, and I denotes unit matrix. E {·} is the

expectation function.

II. SYSTEM MODEL

We consider a distributed learning system consisting of a

single central server and N edge nodes, as shown in Fig.

1. A shared learning process with the global model w is

trained collaboratively by the edge nodes. Each node collects

a fraction of labelled training datasets D1,D2, ...,DN .

The loss function is to facilitate the learning and we define

it as fj(w,xj , yj) for each data sample j, which consists of

the input vector xj and the output scalar yj . For convenience,

we rewrite fj(w,xj , yj) as fj(w). The typical loss function

in federated learning is shown in Table I. Then the global loss

function on all distributed datasets can be defined as
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Fig. 1. Federated learning with wireless communication.

TABLE I
SOME EXAMPLES OF LOSS FUNCTION

Model Loss function

Squared-SVM λ
2
∥w∥2 + 1

2
max 0; 1− yjw

T
xj

Linear regression 1

2
∥1− yjw

T
xj∥

2

K-means 1

2
minl ∥xj −wl∥

2

Cross-Entropy −
∑

ycp(y = c|x,w)

F (w) =

∑

j∈D
fj(w)

| ∪i Di|
, (1)

where | · | denotes the size of the datasets and each dataset

Di satisfies Di ∩ Dj = ∅ when i ̸= j, i, j = 1, 2, ..., N . The

training target is to minimize the global loss function F (w)
according to the distributed learning, i.e., to find

w
∗ = argminF (w). (2)

One way to search for the optimal w
∗ is to update the

datasets of the distributed nodes, which only contains the input

vector xj and the output scalar yj , called centralized learning.

The center completes the training process using the whole

datasets, and broadcasts the optimal model from (1) and (2) to

all nodes. However, the datasets are generally large in machine

learning. Therefore, centralized learning requires numerous

communication resources to collect the whole datasets. In

other words, the training process will be limited by the

communication rates.

Another way to solve (2) is a distributed manner as demon-

strated in Fig. 1, which focuses on the model-averaging for

the global model w, called federated learning. The global loss

function F (w) cannot be directly computed without sharing

datasets among all edge nodes in federated learning. The

federated learning algorithm alternates between two stages.

In the first stage, the local models at each node are sent to

the center for model-averaging via wireless links, and the

center updates the global model w. In the second stage, the

center broadcasts the current model to all edge nodes at each

iteration. Based on the received global model w, each node

updates its own model to minimize the local loss function

using its own dataset. The updating rules follow:

Center : w =

∑N
j=1 Djwj

D
, (3a)

Local : wj = argminFj(w), j = 1, 2, ..., N, (3b)

where wj denotes the local model of node j, D denotes the

size of the whole datasets ∪jDj , Dj denotes the size of the

dataset Dj , j = 1, 2, ..., N , Fj(w) is the local loss function

of node j with dataset Dj , and can be written as

Fj(w) =
1

|Dj |

∑

i∈Dj

fi(w) =
1

Dj

∑

i∈Dj

fi(w). (4)

The training process requires the iterations between (3b) and

(3a) until convergence, and each node can obtain the optimal

model w∗.

Since the center and each node are connected using wireless

links, it inevitably introduces noise. Therefore, the received

signal has the aggregation noise at the center via local updating

and the broadcasted global model with noise in each iteration

for the node j can be modeled as

Aggregation : w̃ = w +∆w̃,

Broadcast : w̃j = w̃ +∆w̃j , j = 1, 2, ..., N,
(5)

where ∆w̃ refers to the aggregation noise at the center, and

∆w̃j refers to the broadcast noise for node j.

The imperfect estimation is a major problem in wireless

communication. In federated learning, it leads to the changing

of optimization in the local update process. The noise in

estimation error of the model will make the output data point

blurred and make the training difficult to fit the input data

point precisely for neural networks. Furthermore, the neural

networks were proved to be not robust against noise. In

other words, the performance of the learning scheme may be

significantly reduced by noise. To solve this problem, robust

design is proposed to ensure a certain level of the performance

under the uncertainty model.

III. PROBLEM FORMULATION

In this section, we formulate the robust problem using two

robust models. According to the different characteristics of the

two robust models, the corresponding problem is totally dif-

ferent. We write the corresponding problems in the following.

The aggregation noise and broadcasted noise in (5) can be

modelled as the stochastic and the deterministic. The former
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is the expectation-based model and the latter is the worst-case

model. According to that, each node updates its own model

with a different initial point, w̃j , the corresponding local loss

function Fj(w) is rewritten as Fj(w̃j), j = 1, 2, ..., N , and the

global loss function F (w) is rewritten as F (w̃). The iteration

process still follows (3a) and (3b).

A. Training Under Expectation-based Model

Expectation-based model is a stochastic method to represent

the random condition, which can only be used when statistical

properties of noise are available [34]. The stochastic model

assumes that the estimation value is a random quantity and

its instantaneous value is unknown, but its statistics property,

such as the mean and the covariance, is available. In this case,

the robust design usually aims at optimizing either the long-

term average performance or the outage performance. The

corresponding robust model is called the expectation-based

model and defined as follows.

Definition 1 (Expectation-based Robust Model [35], [36]):

The expectation-based robust model refers to the stochastic

property of noise as shown in Fig. 2 (a). For node j, the

entries of the uncertainty vector are assumed to be Gaussian

distributed with E {∆w̃j} = 0, and E
{

∆w̃j ·∆w̃
T
j

}

= σ2
j I,

j = 1, 2, ..., N , E
{

∆w̃i ·∆w̃
T
j

}

= 0, i ̸= j and the aggre-

gation noise at the center is assumed to satisfy E {∆w̃} = 0,

and E
{

∆w̃ ·∆w̃
T
}

= σ2
I.

With the assumption that the aggregation noise ∆w̃ and

the broadcast noise ∆w̃j are Gaussian, we can obtain another

summed Gaussian noise as ∆wj so that the received value for

node j can be expressed as [37]

w̃j = w +∆wj , j = 1, 2, ..., N, (6)

and ∆wj is Gaussian with E {∆wj} = 0, and

E
{

∆wj ·∆w
T
j

}

= σ2
ej
I, j = 1, 2, ..., N , where σ2

ej
=

σ2 + σ2
j .

Therefore, using the stochastic property of noise, we should

focus on improving the stochastic performance for the net-

work. Furthermore, the optimization object in federated learn-

ing is to find the local optimal model wj in (3b) and to utilize

the combination method to find the global optimal model w

in (3a).

Since the combination method is determinate, we only need

to optimize the local model wj for each node. Based on

the aforementioned analysis, we formulate the robust training

problem using the expectation-based model for each node as

P1 : min
w

E∥Fj(w +∆wj)∥
2

s.t. E{∆wj} = 0, j = 1, 2, ..., N,

E{∆wj ·∆w
T
j } = σ2

ej
I, j = 1, 2, ..., N,

(7)

where the constraints in P1 represent the stochastic character-

istic of noise from imperfect estimation in wireless communi-

cation.

We aim at improving the stochastic performance for the

training process. Due to the expectation calculation, the

2

e
s

(a) Noise under expectation-based
model in two-dimensional space.

2

w
s

(b) Noise under worst-case model in
two-dimensional space.

Fig. 2. Noise under expectation-based model and worst-case model in two-
dimensional space

objective function is non-convex. To tackle this challenge,

we consider adding the regularizer into the loss function to

approximate the objective function and to represent the effect

of noise. We provide the corresponding federated learning

process in Section IV.

B. Training Under Worst-Case Robust Model

In contrast to the expectation-based model, the worst-case

model is a deterministic method to represent the instantaneous

condition, which has fixed uncertainty sets, and to maximize

the performance under the worst uncertainty [38], [39]. Using

the worst-case robust design, we can guarantee a performance

level for any value of estimation realization in the uncertainty

region. It is applied to design which requires strict constraints,

and is more suitable for characterizing instantaneous estima-

tion value with errors. The worst-case approach assumes that

the actual estimation value lies in the neighborhood of the

uncertainty region with a known nominal estimation value. The

size of this region represents the amount of estimation value

uncertainty, i.e., the bigger the region is, the more uncertainty

there is. We show the brief definition of the worst-case model

as follows.

Definition 2 (Worst-Case Robust Model [35], [36]): The

worst-case robust model assumes that the estimation lies in a

known set of possible values shown as Fig. 2 (b), which can

not be exactly known. The norm of the uncertainties vector

∆w̃ and ∆w̃j are bounded by the spherical region, which

can be expressed as

∥∆w̃j∥
2 ≤ σ2

j , j = 1, 2, ..., N,

∥∆w̃∥2 ≤ σ2,
(8)

where σ2
j ≥ 0 denotes the radius of the spherical uncertainty

region of the broadcast noise, while σ2 ≥ 0 denotes the

aggregation noise.

Consider the superposition of noise, the uncertainty is

expanded to the larger region with the size σ2
j +σ2. Therefore,

we reformulate the received value at node j as [37]

w̃j = w +∆wj , j = 1, 2, ..., N, (9)
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where ∆wj denotes the whole noise and satisfies ∥∆wj∥
2 ≤

σ2
wj

, j = 1, 2, ..., N .

Similarly, the optimization is to find the local optimal

model wj in (3b), and follows the aggregation rules in (3a).

Therefore, we formulate the robust training problem under the

worst-case model as a min-max problem for each node

P2 : min
w

max
∆wj

Fj(w +∆wj)

s.t. ∥∆wj∥
2 ≤ σ2

wj
, j = 1, 2, ..., N,

(10)

where the constraints in P2 represent the noise lies in a

spherical region with radius σ2
wj

.

One challenge to solve the problem is that the worst

condition may not be available. The other is the non-convex

objective function. We settle the challenges using the sampling

method and the SCA algorithm to generate a feasible descent

direction for the learning process in Section V.

IV. ROBUST DESIGN USING EXPECTATION-BASED MODEL

In this section, we consider the robust design in federated

learning using the expectation-based model. We propose the

corresponding RLA algorithm to represent the effects of noise

for the expectation-based model so that the local optimal

model can be found via optimization.

A. Proposed Training Algorithm

We first model the noise under the expectation-based noise

model, which is a stochastic method to represent the random

condition, as shown in P1. We aim at optimizing the average

performance based on the expectation-based model. However,

the random noise results in the non-convexity property and

uncertainty value of the local loss function.

To solve this problem, we propose the RLA to approximate

the non-convexity local loss function and utilize the distributed

gradient descent to find the optimal global model. The approx-

imation method is inspired by previous works where training

with noise was approximated via regularization to enhance the

robust of neural networks [28]. We give a brief introduction

in the following.

Lemma 1: Training with noise is equal to adding a regular-

izer Ω(w), which can be expressed as

F (w̃) ≈ F (w) + λΩ(w), (11)

where F (·) denotes the loss function, Ω(·) is the designed

function, w is the learning model, w̃ represents the learning

model including noise, and λ is a constant.

Proof: Refer to [40].

There are many regularization strategies in the aforemen-

tioned works [26]–[29]. However, there is no specific reg-

ularizer that is universally better than any others for the

learning algorithm. In other words, there is no best form of

regularization. We need to develop a specific form of Ω(w)
using the expectation-based model.

Motivated by this observation, we propose a new regular-

ization term to approximate the original loss function for fed-

erated learning in the training process. Using the expectation-

based model, we intend to reduce the impact of noise for the

training process. Due to the stochastic property of noise, we

aim at optimizing the average performance in P1. We propose

the corresponding training problem in the following.

Proposition 1 (Robust Training Under Expectation-based

Model): The robust training problem under the expectation-

based model in P1 for each node can be reformulated as

P3 : min
w

F e
j (w),

(12)

where F e
j (w) denotes the new loss function for node j and

can be written as

F e
j (w) = Fj(w) + σ2

e∥∇Fj(w)∥2. (13)

Proof: Under the expectation-based model, we can obtain

the objective function of P1 utilizing Taylor expansion accord-

ing to the work in [27] so that the objective loss function of

the optimization problem is written as

E∥Fj(w +wj)∥
2 = E∥Fj(w) +wj∇Fj(w) + o(w)∥2

≈ E∥Fj(w)∥2 + σ2
e∥∇Fj(w)∥2.

(14)

The first term E∥Fj(w)∥2 refers to the training process

with perfect estimation in (3b), and the second term is the

additional cost of the loss function in training, which is

determined by noise. Therefore, the objective loss function

under the expectation-based equals adding the regularizer

σ2
e∥∇Fj(w)∥2.

Remark 1: The penalty over the first-order of the loss

function yields a preference for mapping f that are invariant

locally at the training points and drop the global model w into

the flat region.

To solve the training problem in (12), we utilize the gradient

descent algorithm to find the optimal local model w for each

node, and the details are shown as follows.

In each iteration, the local update at each node is performed

based on the previous iteration and the first gradient of the pro-

posed loss function, and the center aggregates the distributed

models to find the optimal global model for the next iteration.

Therefore, the update rules of the gradient descent can be

written as:

Center : wt+1 =

∑N
j=1 Djw

t+1
j

D
, (15a)

Local : wt+1
j = w

t − η∇F e
j (w

t), j = 1, 2, ..., N, (15b)

where η is the step size for all nodes. The iteration is executed

and it will stop if a specific condition is satisfied. This process

is illustrated in Algorithm 1.

To solve the robust problem, we develop the training process

by adding the regularizer to approximate the original loss
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Algorithm 1 Distributed Gradient Descent Learning Algorith-

m Under Expectation-based Model

Input: η
Output: w

1: number of iteration time t = 0.

2: Update w:

3: repeat

4: Update w
t+1
j , j = 1, 2, ..., N according to w

t+1
j =

w
t − η∇F e

j (w
t)

5: Update w
t+1 according to the aggregated rules

6: t← t+ 1
7: until converge

function. We transfer the stochastic and non-convex problem

into a deterministic and convex problem so that we can

utilize the gradient descent method to find the optimal global

model w. The corresponding performance is shown through

simulation in Section VI.

B. Convergence Analysis

In this subsection, we derive the convergence property of

the proposed design under the expectation-based model. To

obtain the convergence rate of the proposed scheme under

the expectation-based model, we first prove that the proposed

federated learning is equivalent to a centralized learning, and

then derive the corresponding convergence rate.

We start with the essential assumption of the loss function,

which can be satisfied normally.

Assumption 1: We assume the following conditions for the

loss function of all nodes:

(1) Fi(w) is convex,

(2) Fi(w) is L−Lipschitz, i.e. ∥Fi(w)−Fi(w
′

)∥ ≤ L∥w−
w

′

∥ for any w, w
′

,

(3) Fi(w) is β−smooth, i.e. ∥∇Fi(w)−∇Fi(w
′

)∥ ≤ β∥w−
w

′

∥ for any w, w
′

.
Then, we give a brief definition of centralized learning.

Definition 3 (Centralized learning problem under

expectation-based model): Given the proposed local loss

function in (13), the global loss function can be written as

F e(w) =

∑N
i=1DiF

e
i (w)

D
, (16)

so that we aim at minimizing F e(w) at the center by using

the same whole datasets. Therefore, the centralized learning

problem is to find the optimal global model as

P4 : min
w

F e(w).
(17)

The optimization can be easily solved by using the gradient

descent, and the center completes the iteration until the specific

condition is met. We derive that the proposed federated learn-

ing is equivalent to the centralized learning problem under the

expectation-based model as follows.

Lemma 2: Given P1 and P4 under the expectation-based

model, the proposed federated learning is equal to the central-

ized learning for each iteration t, t = 0, 1, 2, ..., which can be

written as

w
t+1 = w

t − η∇F e(wt). (18)

Proof: Considering the global aggregation, we can obtain

that

w
t+1 =

∑N
j=1 Djw

t+1
j

D

=

∑N
j=1 Dj(w

t − ηF e
j (w

t))

D

=

∑N
j=1 Djw

t

D
− η

∑N
j=1 DjF

e
j (w

t)

D

= w
t − η∇F e(wt).

(19)

To prove the convergence of the proposed distributed learn-

ing, we only need to derive that the equivalent centralized

learning is convergent.

Lemma 3: Given the original loss function under Assump-

tion 1, there exist constants η and β so that the loss function

fj(w), j = 1, 2, ..., N satisfies that

Fi(w
t)− Fi(w

∗) ≤ ∥w0 −w
∗∥2 ·

1

η
(

1− βη
2

) ·
1

t
, (20)

where w
0 is the initialization point of w.

Proof: Refer to [41].

Lemma 4: F (w) is convex, L−Lipschitz and β−smooth.

Proof: We can obtain that F (w) is the linear combina-

tion of Fi(w) via (16). Straightforwardly from the convexity

property, this lemma holds.

Proposition 2 (Convergence Under Expectation-based Mod-

el): Algorithm 1 yields the following convergence property

for the optimization of the global loss function under the

expectation-based model

F e(wt)− F e(w∗) ≤ ∥w0 −w
∗∥2 ·

1

η
(

1− (1+λσ2
e)βη

2

) ·
1

t
,

(21)

where w
0 is the initialization point of w. It means the

convergence rate is O(1/t).
Proof: The details are shown in Appendix A.

Remark 2: The proposed robust design under the

expectation-based model converges at O(1/t). The conver-

gence property as (21) is reduced to the one in (20) as

σ2
e = 0, i.e., it is equivalent to the convergence property that is

training without noise. The convergence rate will decrease with

the increase in σ2
e and the proposed design cannot converge

when
(

1− (1 + σ2
e)βη/2

)

≤ 0 specifically. The comparison

between the proposed design and the centralized training is

simulated specifically in Section VI.

Remark 3: When the proposed loss function does not satisfy

the convex assumption, i.e., the loss function is non-convex.

The convergence rate of the proposed algorithm is hard to

prove in a closed form. However, the authors in [42] show
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that the GD algorithm will find a local optimal result. It was

called a saddle point where ∇F e(wt) = 0.

V. ROBUST DESIGN USING WORST-CASE MODEL

In this section, we solve the optimization problem using the

worst-case model. To solve the uncertainty of noise and the

non-convexity problem, we utilize the sampling-based SCA

method to represent noise and approximate the objective loss

function. We then propose the training process for the robust

federated learning and finally derive the convergence property

of the proposed design.

A. Proposed Training Algorithm

The training process is proposed to solve the learning

problem under the worst-case model. We utilize the sampling-

based SCA method to approximate the original objective

function, and develop the corresponding updating rules.

The feasible sets of both the local model and the noise are

convex sets, and there always exists a saddle point. However,

the unavailability of noise results in that the finding of the

global minimum point is, in general, NP hard. Therefore, the

objective problem faces the main issues: i) the impossibility to

estimate accurate value of noise of the worst condition; ii) the

non-convexity of the objective functions leading to unavailable

optimization.

Considering the uncertainty of noise, it is often possible to

obtain a sample of the random noise, either from past data or

from computer simulation as shown in [43]. Consequently, one

may consider an approximate solution to the problem based on

sampling, known as the sample average approximation (SAA)

method, and we give a brief introduction as follows.

Lemma 5: The SAA method is to find the optimal x for the

stochastic objective in the optimization problem as,

x∗ = minE[f(x; ξ)], (22)

where f(x; ξ) is a given function and affected by the random

vector ξ which follows the distribution V . However, the

distribution V is unknown, and only sample values of the

random vector ξ are available. To solve this problem, the SAA

approach approximates the problem by solving

x̂∗ = min
1

N

N
∑

j=1

f(x; ξj), (23)

where ξj is the random sample of the random vector ξ,

and the collection of N realizations satisfies independent and

identically distributed.

Proof: Refer to [43].

Motivated by this method, we consider sampling noise ∆wj

in the objective function Fj(w+∆wj), and can easily obtain

that the worst condition of noise occurs on the boundary. Based

on the above consideration, we propose the sampling-based

method. At each iteration t of each node, a new realization

of the noise ∆w
t
j is obtained and the optimization of the

objective functions is updated via the loss function as follows,

Fj(w +∆wj) = Fj(w +∆w
t
j), t = 1, 2, .... (24)

where ∆w
t
j satisfies ∥∆w

t
j∥

2 = σ2
w.

It provides a simple way to approach the objective function

under the perfect estimation, but the non-convexity of the

objective function is still not resolved. To tackle this challenge,

we utilize the SCA scheme to maintain the convexity of the

objective functions.

Lemma 6: The SCA algorithm is proposed to approximate

an arbitrarily function f(x) by expansion around xt which is

a definite point in the feasible set. It can be simply written as

f(x) ≈ f̃(x, xt) = ρtf(x) + (1− ρt)⟨x− xt, g(xt)⟩, (25)

where ρt ∈ (0, 1] is a sequence, and g(xt) is the weight

average of the first gradient and can be expressed as

g(xt) = (1− ρt)g(xt−1) + ρt∇f(xt). (26)

Proof: Refer to [44].

With the consideration of SAA and SCA methods, we

propose the sampling-based SCA algorithm to solve the robust

training problem under the worst-case model of P2 in the

following.

Proposition 3 (Robust Training Under Worst-case Model):

For the robust training problem under the worst-case model in

P2,the optimization problem of each node can be reformulated

as

P5 : min
w

Fw
j (w;wt,∆w

t
j) (27)

where ∆w
t
j is a sequence by sampling the noise ∆wj satis-

fying that ∥∆w
t
j∥

2 = σ2
w, Fw

j (w;wt,∆w
t
j) is denoted as the

loss function for the node j, and expressed as

Fw
j (w;wt,wt

j) =ρtFj(w +∆w
t
j) + λ∥w −w

t∥2

+ (1− ρt)⟨w −w
t, Gt−1

j ⟩, (28)

and Gt
j is an accumulation vector updated recursively accord-

ing to

Gt
j = (1− ρt)Gt−1

j + ρt∇wj
Fj(w +∆w

t
j), (29)

with ρt ∈ (0, 1] being a sequence to be properly chosen (ρ0 =
1), t = 0, 1, ....

Proof: The details are shown in Appendix B.

The objective function of node j is obtained by replacing

the uncertain value with a suitably chosen incremental sample

estimate of it. Specifically, a random noise ∆w
t
j is realized

at iteration t, and the loss function for node j is expressed as

follows:

Remark 4: Generally speaking, each node minimizes a

sample approximation of the original unstable function. The

first term in (28) refers to the sample objective function.

The second term refers to the cost which controls the pace

for each iteration. The vector Gt
j in the last term represents
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Algorithm 2 Distributed Gradient Descent Learning Algorith-

m Under Worst-case Model

Input: ∆w, γ
Output: w

1: number of iteration time t = 0.

2: Update w:

3: repeat

4: Update w
t+1
j , j = 1, 2, ..., N according to w

t+1
j =

w
t + γt+1

(

w
w
j (w

t,∆w
t
j)−w

t
)

5: Update w
t+1 according to the aggregated rules

6: t← t+ 1
7: until converge

the incremental estimate of the unknown ∇wFj(w + ∆w
t
j)

by samples collection over the iterations. Provided that the

parameter ρt is properly chosen, and the estimation is expected

to be more and more accurate as t increases.

Due to the involving of the past optimized model wt, we

consider utilizing the conditional gradient descent method for

each node. Similarly, we aggregate the local update at the

center and broadcast the new global model for next iteration.

The aggregated model w
t+1 should be broadcasted to all

nodes and it is used to complete the next iteration until meets

the specific condition. Given w
w
j (w

t,∆w
t
j), the iteration rule

is briefly written as follows.

Center : wt+1 =

∑N
j=1 Djw

t+1
j

D
, (30a)

Local : wt+1
j = w

t + γt+1
(

w
w
j (w

t,∆w
t
j)−w

t
)

, (30b)

where γt ∈ (0, 1], t = 0, 1, 2, .... The iteration follows the

process illustrated in Algorithm 2.

We develop the training process utilizing the sampling-

based SCA algorithm to approximate the training objective

function for each node. With the iteration between the condi-

tional gradient descent and the aggregation step, we can obtain

the optimal global model w. The corresponding performance

is shown through simulations in Section VI.

B. Convergence Analysis

To obtain the convergence rate of the proposed scheme un-

der the worst-case model, we similarly prove that the proposed

federated learning is equal to the centralized learning, and then

derive the corresponding convergence rate.

Without loss of generality, we first give some assumptions

before the further analysis.

Assumption 2: We assume the following for the loss function

of all nodes

(1) F̃i(w,∆w) is convex,

(2) F̃i(w,∆w) is L − Lipschitz, i.e., ∥F̃i(w,∆w) −
F̃i(w

′

,∆w
′

)∥ ≤ L∥w −w
′

∥ for any w, w
′

and ∆w,

(3) F̃i(w̃,∆w) is β − smooth, i.e., ∥∇F̃i(w,∆w) −
∇F̃i(w

′

,∆w)∥ ≤ β∥w −w
′

∥ for any w, w
′

and ∆w.

We first develop a brief introduction of the optimization

problem in centralized learning under worst-case model.

Definition 4 (Centralized learning problem under worst-case

model): Given the local loss function in (28), we can obtain

that the global loss function in iteration t is

Fw(w;wt,∆w
t) =

∑N
i=1DiF

w
i (w;wt,∆w

t)

D
, (31)

where w
t is the global model in last iteration t− 1, and ∆w

t

denotes the sampled noise in last iteration t−1, which satisfies

∥∆w
t∥2 ≤ σ2

w.

Due to that we aim at minimizing the global loss function,

the centralized learning problem is to find the optimal global

parameter in iteration t, i.e.,

P6 : min
w

Fw(w;wt,∆w
t). (32)

The problem can be solved by the SCA algorithm, and

the center completes the iteration until meets the specific

condition.

In the following, we first prove that the federated learning

is equivalent to the centralized learning under the worst-case

model. Secondly, we show that the centralized learning under

the worst-case model is convergent.

Lemma 7: Given problem under Assumption 2, suppose that

τ > 0 and step size γt and ρt are chosen as γt
i = γt = 1

tα

and ρti = ρt = 1
tβ

, 0.5 < β < α < 1 so that the distributed

learning equals to the centralized learning at iteration t, which

is expressed as

w
w(wt,∆w

t) = argminFw(w;wt,∆w
t), (33)

and the global model aggregation obeys the updating rules as

w
t+1 = w

t + γt+1(ww(wt,∆w
t)−w

t). (34)

Proof: For any iteration t+ 1, wt+1 satisfies

w
t+1 =

∑N
j=1 Djw

t+1
j

D

=

∑N
j=1 Dj

[

w
t + γt+1

(

w
w
j (w

t,∆w
t
j)−w

t
)]

D

=

∑N
j=1 Djw

t

D
+ γt+1

∑N
j=1 Djw

w
j (w

t,∆w
t)

D

− γt+1

∑N
j=1 Djw

t
j

D

=w
t + γt+1(ww(wt,∆w

t)−w
t).

(35)

To prove the convergence of the distributed learning, we

only need to prove that the equivalent centralized learning is

convergent.

Lemma 8: Given problem under Assumption 2, we can

achieve that the global loss function Fw(w;wt,∆w
t) satisfies

the Assumption 2.

Proof: According to the aggregation rules, the global loss

function Fw(w;wt,∆w
t) is written in (31), which is the
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linear combination of the Fw
j (w;wt,∆w

t). Straightforwardly

from the convexity property, we can derive the conclusion.

Proposition 4 (Convergence Under Worst-case Model): Giv-

en problem under Assumption 2, suppose that τ > 0 and

step size γt and ρt are chosen as γt = 1
tα

and ρt = 1
tβ

,

0.5 < β < α < 1 for the centralized learning. Let {wt}
be the sequence generated by algorithm, Fw(w;wt,∆w

t) be

Fw(w) and w
w(wt,∆w

t) be w
w,t. The global loss function

Fw(w) converges at O(γt) so that there exists a constant M
satisfying

Fw(wt)− Fw(w∗) ≤Mγt. (36)

Proof: Firstly, we can obtain that Gt =
∑N

i=1DiG
t
i/D,

and F̃ t =
∑N

i=1DiF̃
t
i /D via the updating rules. Furthermore,

according to lemma, we have that F̃ t also satisfies the As-

sumption 2. Invoking the first-order optimality conditions of

Fw(w), we have

ρt
⟨

w
t −w

w,t,∇F̃ (ww,t,∆w
t
j)
⟩

+ λ∥wt −w
w,t∥2 + (1− ρt)

⟨

w
t −w

w,t, Gt
j

⟩

=ρt
⟨

w
t −w

w,t,∇F̃ (ww,t,∆w
t)−∇F̃ (wt,∆w

t)
⟩

+
⟨

w
t −w

w,t, Gt
⟩

+ λ∥wt −w
w,t∥2 ≥ 0

(37)

Considering the convexity of the F̃ (·,∆w
t) , we can obtain

that

⟨

w
t −w

w,t, Gt
⟩

≤ −λ∥wt −w
w,t∥2. (38)

Given Fw(w) under the Assumption 2, there will exist a

constant L so that

Fw(wt+1) ≤ Fw(wt) + γt+1
⟨

w
t −w

w,t,∇Fw(wt)
⟩

+ L(γt+1)2∥wt − ŵ
t∥2

= Fw(wt) + L(γt+1)2∥wt −w
w,t∥2

+ γt+1
⟨

w
t −w

w,t,∇Fw(wt)−Gt +Gt
⟩

≤ Fw(wt)− γt+1(λ− Lγt+1)∥wt −w
w,t∥2

+ γt+1∥wt −w
w,t∥∥∇Fw(wt)−Gt∥

(39)

Suppose that limt→+∞ ∥w
t − ŵ

t∥ ≥ W ≥ 0, so that we

can derive that

Fw(wt+1) ≤ Fw(wt)− γt+1(λ− Lγt+1)W 2

+ γt+1∥∇Fw(wt)−Gt∥W.
(40)

We focus on a realization that limt→+∞ ∥∇F
w(wt) −

Gt∥ = 0. Therefore, there exists a t0 sufficiently large so

that for ∀t > t0

λ− Lγt+1 −
1

W
∥∇Fw(wt)−Gt∥ ≥ λ̃ > 0. (41)

Therefore, the global loss function Fw(w) follows

Fw(wt+1)− Fw(wt) ≤ −λ̃W 2γt+1. (42)

We show next that the gap between the Fw(wt) and the

optimal Fw(wt∗) is

Fw(wt)− Fw(w∗) =
[

Fw(wt)− Fw(wt0)
]

+
[

Fw(wt0)− Fw(wt∗)
]

≤λ̃W 2

(

−
t
∑

m=t0

γm −
t0
∑

m=t∗

γm

)

=λ̃W 2

(

−
γt0(1− γt)

1− γ

)

− λ̃W 2

(

γt∗(1− γt0)

1− γ

)

≤λ̃W 2 1

1− γ
γt.

(43)

Let the constant M satisfy M = λ̃W 2/(1− γ), and we

obtain the convergence rate expression in (36).

Remark 5: The proposed robust design under the

expectation-based model converges at O(γt). The central-

ized training process converges at O(1/t), which utilizes the

gradient descent under perfect estimation. Compared with

the centralized training, the proposed design converges at a

higher speed when iteration time t increases. The comparison

between the proposed design and the centralized training is

simulated specifically in Section VI.

Remark 6: When the loss function under worst-case model

is non-convex, the convergence of the proposed loss function

is not clear. However, we notice that the authors in [44] first

separate the non-convex objective function into the convex part

C and the non-convex part Cc , and then add another term in

SCA algorithm. Therefore, to solve the nonconvex problem

similarly, we need to revise our proposed loss function via

adding a new term ⟨w −w
t,∇FCc

(wt + ∆w
t
j)⟩, where

∇FCc
(wt +∆w

t
j) denotes the non-convex loss function, and

the corresponding convergence rate is proved to be O(1/t).

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed

algorithms in image classification. The simulation parameters

are set as follows unless otherwise specified. For illustration,

we consider the learning task of image classification using

the well-known MNIST dataset that consists of 10 categories

ranging from digit 0 to 9 and a total of 70,000 data (60,000 for

training and 10,000 for testing). Besides, we exploit the SVM

classification as our loss function for the training process,

which outputs a binary label that corresponds to whether the

digit is even or odd [45]–[47]. We consider the data partitions

as i.i.d. in the distributed nodes, i.e., each data sample is

randomly assigned to the nodes. The performance is measured

as the prediction accuracy and the values of loss function with

respect to the training dataset versus iteration count t.
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(b) The loss function performance versus iterative times under
expectation-based model.

Fig. 3. The corresponding performance versus iterative times under
expectation-based model.

For an intuitive comparison, we consider the following

baseline approaches:

. Centralized training, where the model is trained via a

standard gradient descent procedure and the received

value is estimated perfectly.

. Conventional federated training, which is consist of the

parameter noise and utilizes the imperfect estimated value

to represent the real value for the training process. The

model is trained via a standard gradient descent procedure

and the loss function is the same as the centralized

gradient descent.

A. Simulation Under Expectation-based Model

We set the noise variance for expectation-based model as

σ2
e = 1. We evaluate the prediction accuracy and the loss

function values as a function of iterative times in Fig. 3. This

agrees with our intuition that the noise has the serious impact

on the learning model. The prediction accuracy of the proposed

algorithm is obviously higher than the conventional federated

training. The performance gap between two schemes increases
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(b) The loss function performance versus number of nodes under
expectation-based model

Fig. 4. The corresponding performance versus number of nodes under
expectation-based model.

with the iteration process as in Fig. 3(a). The result has a

profound and refreshing implication that the added regularizer

draws the model into a flat region so that the learning model

has the ability to resist the noise. In Fig. 3(b), the loss function

values of the proposed scheme outperform the conventional

method, which reflects that our designed regularizer imposes

appropriate punishment.

Fig. 4 shows the prediction accuracy and the loss function

values for different numbers of nodes. The observations align

with our conclusion that the proposed algorithm shows better

performance than the conventional scheme on both the predic-

tion accuracy and the loss function values. Furthermore, we

notice that the performance of the learning model decreases

with the growth of the numbers of nodes, due to that we

randomly divide the data samples to all nodes. The division

mode makes that the each node has uniform information but

not the full information, and it will cause the hardship to find

the optimal point in training process. With the growth of the

numbers of nodes, each node can only obtain less and less

samples and information, which leads to the decrease of the
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(a) The accuracy performance versus iterative times under worst-case
model.
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(b) The loss function performance versus iterative times under worst-case
model.

Fig. 5. The corresponding performance versus iterative times under worst-
case model.

learning performance. As shown in Fig. 4(a), it is interesting

to find that accuracy of the proposed design is approaching

to the centralized learning with few nodes, which proves the

remarkable performance of the proposed design and verifies

the direct effects of the proposed regularizer. As illustrated

in Fig. 4(b), the loss function values of the proposed design

outperform than the conventional scheme with the growth of

the nodes number especially.

B. Simulation Under Worst-case Model

We set the spherical region size of the noise for worst-case

model as σ2
w = 1, and choose the sample noise sequence

as ∥∆w
t
j∥

2 = σ2
w, j = 1, 2, ..., N , t = 0, 1, 2, .... Fig. 5

illustrates the prediction accuracy and the loss function values

of the different iterative times. Without consideration of robust

design, we notice that the noise reduces both performance of

the training processes as shown in Fig. 5(a). The accuracy

performance of the proposed scheme is significantly improved,

which verifies that the added punishment of the loss function

positively affects the noise. With the development of the
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(a) The accuracy performance versus number of nodes under worst-case
model.
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(b) The loss function performance versus number of nodes under worst-
case model.

Fig. 6. The corresponding performance versus number of nodes under worst-
case model.

iteration process, we can obtain that the performance of the

proposed design approaches to the centralized training method.

The observations align with our discussions in Remark 3. As

shown at Fig. 5(b), the loss function values of all three schemes

decrease with the iteration process. It is interesting to see that

the proposed scheme shows better performance, which proves

the effectiveness of the approximation method.

We show the prediction accuracy and the loss function

values with different number of nodes in Fig. 6. With the

increase of number of nodes, the prediction accuracy and the

loss function values performance of all designs are decreased.

However, the robust design of the proposed algorithm per-

forms a remarkable gap in accuracy performance than the

conventional design. It is observed that the gap between the

conventional training and the proposed design increases with

nodes as illustrated in Fig. 6(a). Such accurate learning of

proposed design is due to the positive punishment of the loss

function and the proper approximation method which makes

the global model robust against noise. In Fig. 6(b), the loss

function values of the proposed design outperform than the
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conventional method, and the gap is still increasing with the

growth of the nodes number. The phenomenon verifies that

the added punishment and the approximation method behave

good effects on the training process.

VII. CONCLUSIONS

In this paper, we have proposed the robust federated learning

to resist the noise from wireless communications. Considering

the noise in both aggregation and broadcast process, we

have formulated the problem with effective noise as parallel

optimization problem under the expectation-based model and

worst-case model. The corresponding optimization problem

under the expectation-based model has been handled via the

SAM algorithm, which can transform the effect of noise as the

regularizer in the loss function during the training process. We

have proposed the sampling based SCA algorithm to solve the

optimization problem under the worst-case model. Moreover,

the convergent properties of both proposed designs have been

derived that proposed designs have acceptable convergence

rates. Simulation results have illustrated that both proposed

training process under the mentioned models have improved

the prediction accuracy and the loss function values due to the

proper punishment in the training.
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[31] L. Muñoz-González, K. T. Co, and E. C. Lupu, “Byzantine-robust
federated machine learning through adaptive model averaging,” arXiv

preprint arXiv:1909.05125, 2019.

[32] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” arXiv

preprint arXiv:1903.02891, 2019.

[33] A. Ghosh, J. Hong, D. Yin, and K. Ramchandran, “Robust feder-
ated learning in a heterogeneous environment,” arXiv preprint arX-

iv:1906.06629, 2019.

[34] F. Ang and L. Chen, “An efficient training scheme to acquire massive
CSI in analog function computation networks,” in Proc. IEEE Wireless

Communications and Networking Conference (WCNC), 2019.

[35] S. A. Vorobyov, A. B. Gershman, and Z.-Q. Luo, “Robust adaptive
beamforming using worst-case performance optimization: A solution to
the signal mismatch problem,” IEEE Trans. Signal Process, vol. 51,
no. 2, pp. 313–324, 2003.

[36] F. Ang, L. Chen, N. Zhao, Y. Chen, and F. R. Yu, “Robust design for
massive CSI acquisition in analog function computation networks,” IEEE

Trans. Veh. Technol., vol. 68, no. 3, pp. 2361–2373, 2019.

[37] T. T. Soong, Fundamentals of probability and statistics for engineers.
John Wiley & Sons, 2004.

[38] H. Shen, J. Wang, W. Xu, Y. Rong, and C. Zhao, “A worst-case robust
MMSE transceiver design for nonregenerative mimo relaying,” IEEE

Trans. Wirel. Commun., vol. 13, no. 2, pp. 695–709, 2013.



13

[39] J. Wang, M. Bengtsson, B. Ottersten, and D. P. Palomar, “Robust MIMO
precoding for several classes of channel uncertainty,” IEEE Trans. Signal

Process., vol. 61, no. 12, pp. 3056–3070, 2013.

[40] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press,
2016.

[41] E. K. Chong and S. H. Zak, An Introduction to Optimization. John
Wiley & Sons, 2013, vol. 76.

[42] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht, “Gradient
descent only converges to minimizers,” Conference on learning theory,
pp. 1246–1257, 2016.

[43] A. J. Kleywegt, A. Shapiro, and T. Homem-de Mello, “The sample
average approximation method for stochastic discrete optimization,”
SIAM J. Optim., vol. 12, no. 2, pp. 479–502, 2002.

[44] Y. Yang, G. Scutari, D. P. Palomar, and M. Pesavento, “A parallel de-
composition method for nonconvex stochastic multi-agent optimization
problems,” IEEE Trans. Signal Process., vol. 64, no. 11, pp. 2949–2964,
2016.

[45] E. Osuna, R. Freund, and F. Girosi, “An improved training algorithm
for support vector machines,” Neural networks for signal processing VII.

Proceedings of the 1997 IEEE signal processing society workshop, pp.
276–285, 1997.

[46] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “IoT security techniques
based on machine learning,” arXiv preprint arXiv:1801.06275, 2018.

[47] L. Xiao, D. Jiang, D. Xu, W. Su, N. An, and D. Wang, “Secure mobile
crowdsensing based on deep learning,” China Communications, vol. 15,
no. 10, pp. 1–11, 2018.

APPENDIX A

PROOF OF PROPOSITION 2

The proposed loss function of the node j is

F e
j (w) = Fj(w) + σ2

e∥∇Fj(w)∥2. (44)

Taking the derivation of it, we can obtain

∇F e
j (w) = ∇Fj(w) + σ2

e∇tr(∇Fj(w)∇Fj(w)T )

= ∇Fj(w) + σ2
e∇Fj(w)

= (1 + σ2
e)∇Fj(w).

(45)

Following the Lemma 4, we can obtain that the loss function

F e
j (w) of the node j is β − smooth with β̃ = (1 + σ2

e)β.

Therefore, F e
j (w) satisfies

F e
j (w)−F e

j (w
∗) ≤ ∥w0−w∗∥2 ·

1

η
(

1− (1+σ2
e)βη
2

) ·
1

t
. (46)

Furthermore, we can develop the conclusion that F e(w) is

β − smooth to satisfy (21). The optimization of the global

loss function converges at O(1/t).

APPENDIX B

PROOF OF PROPOSITION 3

As the efficient solutions of the SCA algorithm, the

objective function Fj(w,∆w
t
j) at the iteration t is de-

termined by the latest updated model ∆w
t
j and de-

fined as Fw
j (w;wt,∆w

t
j), which is consist of the o-

riginal function Fj(w + ∆w
t
j), and the first gradient

Ω1(w) = ⟨w −w
t, Gt−1

j ⟩. We develop the objective function

as follows,

Fw
j (w;wt,∆w

t
j) = ρtFj(w+∆w

t
j)+(1−ρt)⟨w −w

t, Gt−1
j ⟩,
(47)

and Gt
j is an accumulation vector updated recursively accord-

ing to

Gt
j = (1− ρt)Gt−1

j + ρt∇wFj(w +∆w
t
j), (48)

with ρt ∈ (0, 1] being a sequence to be properly chosen (ρ0 =
1) at iterations t = 0, 1, ... respectively.

Notice that the expansion is established only when w is

close to w
t. We add a regularizer as the cost of shrinking the

gap between w and w
t as:

Ω2(w) = ∥w −w
t∥2. (49)

Therefore, we propose the local loss function as in P4.
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