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Abstract
Federated learning is a paradigm that enables local devices
to jointly train a server model while keeping the data decen-
tralized and private. In federated learning, since local data are
collected by clients, it is hardly guaranteed that the data are
correctly annotated. Although a lot of studies have been con-
ducted to train the networks robust to these noisy data in a
centralized setting, these algorithms still suffer from noisy la-
bels in federated learning. Compared to the centralized set-
ting, clients’ data can have different noise distributions due
to variations in their labeling systems or background knowl-
edge of users. As a result, local models form inconsistent
decision boundaries and their weights severely diverge from
each other, which are serious problems in federated learn-
ing. To solve these problems, we introduce a novel federated
learning scheme that the server cooperates with local models
to maintain consistent decision boundaries by interchanging
class-wise centroids. These centroids are central features of
local data on each device, which are aligned by the server
every communication round. Updating local models with the
aligned centroids helps to form consistent decision bound-
aries among local models, although the noise distributions in
clients’ data are different from each other. To improve local
model performance, we introduce a novel approach to se-
lect confident samples that are used for updating the model
with given labels. Furthermore, we propose a global-guided
pseudo-labeling method to update labels of unconfident sam-
ples by exploiting the global model. Our experimental results
on the noisy CIFAR-10 dataset and the Clothing1M dataset
show that our approach is noticeably effective in federated
learning with noisy labels.

Introduction
Modern edge devices such as smart phones have been able
to access an abundant amount of data, which is suitable
for training deep learning models. Since each client device
should transmit its local data to the central server for conven-
tional centralized learning, it can lead to serious data privacy
issues. To address these problems, federated learning has
been actively studied to shift a learning environment from
the central server to each edge device. In detail, federated
learning allows a server model to be trained on each client’s
private data without transmitting raw data to the server.

The federated learning paradigm consists of two stages:
1) In the beginning of each round, a server broadcasts
the server model to selected clients, and these clients train

Figure 1: Test accuracy on the CIFAR-10 dataset at vari-
ous noise ratios in the centralized setting (solid line) and the
federated setting (dotted line). For federated learning with
noisy labels, we distribute noisy data to clients in an i.i.d.
fashion. Co-teaching (Han et al. 2018) and Joint Optimiza-
tion (Tanaka et al. 2018) are novel methods for the central-
ized setting, but these algorithms combined with FedAvg
(McMahan et al. 2017) suffer from performance degradation
in the federated setting. Best viewed in color.

models on their own data for multiple iterations. 2) Af-
ter the clients train their models, the server aggregates the
clients’ model parameters. The above process iterates un-
til the global model converges. In FedAvg (McMahan et al.
2017), model parameters of clients are aggregated in an
element-wise manner with coefficients, which are propor-
tional to the local dataset size. The global model effectively
converges by FedAvg, especially when the local dataset fol-
lows an i.i.d. distribution. Many studies have been conducted
to apply it to practical applications, e.g., dealing with non-
i.i.d. data (Li et al. 2018; Zhao et al. 2018; Shoham et al.
2019; Wang et al. 2020; Li et al. 2020b), noisy communica-
tion (Ang et al. 2020), domain adaptation (Peng et al. 2020),
fair resource allocation (Li et al. 2020a), and continual learn-
ing (Yoon et al. 2020).

Although the above studies try to solve practical applica-
tion issues related to preserving privacy, there are still re-
maining problems when local devices are used for training
neural networks. In practice, all local data should be an-
notated by alternative labeling techniques such as exploit-
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ing machine-generated labels (Kuznetsova et al. 2018) due
to privacy issues. These labels are inevitably corrupted un-
less the labeling techniques of all clients are accurate. Sim-
ilarly, in the centralized setting, robust learning with noisy
labels has attracted attention due to its applicability for real-
istic situations, and various algorithms have been proposed
to train models accurately in the presence of noise. Recent
algorithms have tried to minimize the effect of the noisy la-
bels by sampling reliable data (Han et al. 2018; Wei et al.
2020; Huang et al. 2019; Guo et al. 2018), updating labels
(Tanaka et al. 2018; Yi and Wu 2019), or estimating labels
from matched prototypes (Han, Luo, and Wang 2019; Lee
et al. 2018). These approaches have evolved into training
the model with noisy labels successfully.

The aforementioned approaches for dealing with noisy la-
bels suffer from performance degradation in the federated
setting, as illustrated in Fig. 1. Unlike centralized learning,
noise distributions in clients’ data can be different from each
other due to the discrepancy between their labeling systems
or background knowledge. As a result, local models form
inconsistent decision boundaries and their weights severely
diverge from each other, i.e., weight divergence. This causes
aggregation difficulties of local models, which are a serious
problem in federated learning (Li et al. 2018; Chen, Bhard-
waj, and Marculescu 2020; Lim et al. 2020).

Therefore, in federated learning with noisy labels, differ-
ent noise distributions in clients should be considered, and
the learning directions of clients’ models should be kept sim-
ilar. To treat these difficulties, we introduce a new federated
learning scheme that the server cooperates with local models
to maintain consistent decision boundaries by interchang-
ing class-wise centroids, as described in Fig. 2. In detail, we
store local class-wise centroids on each device, which are
central features of local data, and upload them on the server
in every round. The server aggregates them into global cen-
troids and broadcasts these centroids to clients. The cen-
troids are used to update local models to maintain consistent
decision boundaries with other clients, although the noise
distributions in clients’ data are different from each other.

In local updates, we compute local centroids based on
samples with relatively small-losses to reduce the effect of
noisy data, motivated by (Han et al. 2018). We adjust these
centroids based on the similarity with global centroids to
prevent them from being corrupted by representations of
noisy data. Based on the centroids, we select confident sam-
ples to prohibit the model from fitting to noisy labels. We
also utilize a global model for unconfident samples to correct
the given labels, which alleviate overfitting to noisy samples
in each local model.

To the best of our knowledge, this is the first federated
learning algorithm dealing with noisy labels. We present a
new federated learning scheme interchanging additional in-
formation called centroids and propose novel algorithms for
reducing the effect of noisy data. Our approach maintains
high performance on various noise ratios in the federated
setting (Fig. 1).

Related work
Federated learning
Federated learning has drawn striking attention in recent
years because of the increasing number of edge devices and
local data collected by them. Federated learning aims to
fully utilize the information of each local data without caus-
ing any serious data privacy and communication issues by
transmitting the local network’s parameters instead of local
raw data. For preventing the server from those issues, there
are several restrictions on federated learning, and they raise
various problems: 1) statistical challenges (non-i.i.d. data),
2) lower network bandwidth, 3) inconsistent accuracy across
devices, and 4) noisy communication. FedProx (Li et al.
2018), FedMA (Wang et al. 2020), and research about the
convergence of FedAvg (Zhao et al. 2018; Li et al. 2020b)
focus on the algorithms that converge the model in non-i.i.d.
data. For the limitation of network bandwidth, DGC (Lin
et al. 2018), signSGD (Bernstein et al. 2018), and STC (Sat-
tler et al. 2019) only transmit important gradient changes.
To maintain uniform accuracy of clients, Li et al. (Li et al.
2020a) propose fair resource allocation. For noisy commu-
nication, Ang et al. (Ang et al. 2020) aim to cope with the
disturbance of noisy communication. Furthermore, various
studies on specific tasks considering privacy-preserving are
increased in a few years, e.g., domain adaptation (Peng et al.
2020), and continual learning (Shoham et al. 2019; Yoon
et al. 2020).

The aforementioned studies assume that every client has
a clean dataset. However, correct annotation is not guaran-
teed since the local data are created by clients. Therefore,
we consider that the local dataset consists of data with noisy
labels and propose an algorithm to deal with it.

Learning on noisy data
There are many studies on the robustness of networks
against noisy labels in the centralized setting. Since deep
networks have sufficient capacity to fit on the whole noisy
dataset (Zhang et al. 2016), it is essential to develop ro-
bust training methods against noisy labels. Noise cleaning-
based approaches (Han et al. 2018; Guo et al. 2018; Huang
et al. 2019; Lyu and Tsang 2019; Wei et al. 2020) aim to
detect noisy samples and train with clean samples. In par-
ticular, Co-teaching (Han et al. 2018) introduces a pair of
networks with the same structure, and each network guides
its peer network by using its small-loss instances. Among
the label correction approaches (Tanaka et al. 2018; Yi and
Wu 2019), Joint Optimization (Tanaka et al. 2018) updates
all dataset labels with pseudo-labels to prevent the network
from fitting onto the noisy dataset. A new type of recent re-
search focuses on label correction by adopting the represen-
tation power of the network to distinguish clean labels (Lee
et al. 2018; Han, Luo, and Wang 2019). Deep self-learning
(Han, Luo, and Wang 2019) determines the label of the sam-
ple by comparing its features with several prototypes of the
categories. Furthermore, meta-learning based methods (Ren
et al. 2018; Li et al. 2019; Shu et al. 2019) focus on optimiz-
ing parameters that are less prone to overfitting, and another
effective approach is to design robust loss functions (Zhang
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Figure 2: (a) An illustration of the federated setting with noisy labels, where each client has a dataset with a different noise
ratio. Our proposed method permits the server and the clients to interchange class-wise centroids. (b) Without any restrictions
on the local model, the clients’ decision boundaries can be significantly different with each other since the client’s model is
trained on the individual noisy dataset for a large number of local epochs. Aggregating these local models can induce the server
model to have incorrect boundaries. We leverage class-wise centroids to achieve local decision boundaries similar to the others.

and Sabuncu 2018; Wang et al. 2019) for a noise-tolerant
model.

Previous algorithms for noisy labels aim to train networks
in the centralized setting, not the federated setting. In the
noisy federated setting case, clients have data with various
noise distributions, and this can result in inconsistent deci-
sion boundaries and severe weight divergence in local mod-
els. To tackle these problems, we let the server cooperate
with the clients to maintain consistent decision boundaries
via class-wise centroids. By exploiting the centroids, we en-
sure that all local models have similar feature representa-
tions of classes. Moreover, we propose an algorithm for se-
lecting confident samples and a self-training scheme suitable
for the federated setting.

Robust federated learning with noisy labels
In this section, we start with the problem definition, then de-
scribe our proposed local update and global update methods.

Problem definition and notations
In the federated setting with multiple clients and a global
server, local training data of the k-th client consist of im-
ages and the corresponding labels Dk = {(xik, yik)}

nk
i=1, and

the server cannot access any training data. In the noisy fed-
erated learning scenario, local datasets inevitably contain
noise samples, where some of the given labels are not ac-
curate, and noise distributions in clients’ data are different
from each other. The models can overfit to noisy data and
suffer from weight divergence leading to aggregation diffi-
culties in federated learning (Zhao et al. 2018; Lim et al.
2020).

To solve the above problem, we introduce global and lo-
cal class-wise centroids, which are central features of each
class in a server and clients, respectively. Local centroids
are the average feature vectors from the global average pool-
ing layer in each local dataset, and global centroids are cal-
culated by reflecting the local centroids of selected clients,
which are depicted in the next sections in detail. We denote

global centroids and local centroids of the k-th client cor-
responding to class c by f cG and f ck . In addition, yi

k and ŷi
k

indicate the one-hot vector of the ground truth label and a
pseudo-label extracted by the softmax layer, respectively.

Local updates
At the beginning of each round, selected clients receive both
global model parameters and global class-wise centroids
from the server for local updates.

Before local updates, selected clients download the global
model parameters, and their models are trained with their
own local dataset by exploiting the following loss function:

Lk
c = mklce(Ck(Fk(xk)),yk)

+ (1−mk)lce(Ck(Fk(xk)), ŷk),
(1)

where Fk and Ck denote the feature extractor and the clas-
sifier of the k-th client, respectively, and lce(·) is the cross-
entropy loss function. A binary mask vector of the k-th client
mk ∈ {0, 1}nk controls whether it learns the ground truth
label or the pseudo-label. We propose a novel sampling ap-
proach to select confident samples that are used to update the
mask mk. In addition, we introduce a global-guided pseudo-
labeling method, which takes advantage of the federated set-
ting. Instead of a naive pseudo-labeling (Tanaka et al. 2018),
we obtain ŷk by exploiting the global model FG and CG.
This method improves local model performance while pre-
venting the model from overfitting to noisy data.

In parallel, each client loads global centroids from the
server and updates its model to have similar features with
the global centroids. To achieve this, we calculate local cen-
troids on each local model depending on the similarity with
global centroids, and we explicitly constrain local features
to map local centroids. Note that the server and all of the
clients store centroids in their own devices and transmit them
in each communication round. There is an additional com-
munication burden required for class-wise centroids, but the
amount is much smaller than model parameters (0.01% to
0.03% in our experiments).
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Figure 3: Our proposed local update algorithm. At the broadcast time, the server weights and global class-wise centroids
are transmitted to each client. The client utilizes the server parameters (FG and CG) for global-guided pseudo-labeling and
constrains local feature representations with the global centroids.

Local centroids. We use feature vectors extracted from Fk

to compute local class-wise centroids fk. If we calculate fk
by using all local samples with given labels, noise labels
have a negative effect on the correct formulation of cen-
troids. Therefore, we introduce loss-based local centroids,
which are motivated by (Han et al. 2018; Arpit et al. 2017).
We only use features of samples with relatively small-losses
to create accurate feature centroids. At first, we refine the
dataset Dk by selecting R(t) percentage of small-loss in-
stances on each client as follows:

D̂k = argminD′
k:|D′

k|≥R(t)|Dk|lce(D
′
k), (2)

where D′k is the optimization variable, |·| stands for the car-
dinality of a set the number of samples, and R(t) controls
how many small-loss samples should be selected in each
round. Then, the k-th local model calculates naive average
features of each class f̂ ck depending on the small-loss sam-
ples as follows:

f̂ ck =
1

ñck

∑
xi
k∈D̂k

Fk(x
i
k)1(y

i
k = c), (3)

where ñck is the number of samples corresponding to the la-
bel c in D̂k, and 1(·) is the indicator function returning 1 for
true statements and 0 otherwise.

However, these average features may differ from the other
clients’. To avoid these undesirable deviations, we derive lo-
cal centroids f ck by weighted average depending on the sim-
ilarity between global centroids f cG and the average features
f̂ ck as follows:

f ck = (1− sim(f cG, f̂
c
k)

2)f cG + sim(f cG, f̂
c
k)

2f̂ ck , (4)

where sim(·, ·) can be any similarity function, but we
choose cosine similarity for our experiments. f̂ ck is calcu-
lated by Eq. 3, and global centroids f cG are transmitted from
the server reflecting entire clients’ centroids, which is de-
scribed in the next section.

We expect that class-wise centroids are the central fea-
tures of clean samples. At the beginning of training, deep
networks tend to prioritize learning simple patterns first
(Arpit et al. 2017), and we exploit this property to form
global centroids less susceptible to noisy samples. After that,
we update local centroids to reflect similarity with these
global centroids. This similarity-based update can keep cen-
troids less corrupted by noisy data even after a large number
of training epochs.

We exploit these local centroids to reduce weight diver-
gence of clients’ models. In detail, we design a loss function
to map the features of the confident sample onto the cen-
troids corresponding to the class as follows:

Lk
cen =

nk∑
i=1

mi
k

∥∥∥Fk(x
i
k)− f

yi
k

k

∥∥∥2
2
, (5)

where mi
k denotes a binary mask of the k-th client that re-

turns 1 for confident samples and 0 otherwise.

Confident samples. We introduce a sampling approach
to select confident samples for training each client’s model
without a detrimental influence from noisy labels. To this
end, we introduce the feature similarity-based labels as fol-
lows:

ỹik = argmaxysim(fyk , Fk(x
i
k)). (6)

Note that we should not fully trust given labels because they
may not be annotated accurately. Also they should not de-
pend on feature similarity-based labels inducing the wrong
labels for the hard samples. The complementary use of fea-
ture similarity-based and ground truth labels can help to
find accurate confident samples. Therefore, we consider the
similarity-based labels with local centroids and the ground
truth labels at the same time. By adopting the ground truth
label and the similarity-based label together, mi

k for mask-
ing a confident sample is obtained as follows:

mi
k = 1(ỹik = yik). (7)



We exploit this mask forLc andLcen to reduce the impact of
noise samples. Since the number of confident samples is not
fixed for each class, this mask can choose confident samples
well regardless of different noise ratio for each class.

Global-guided pseudo-labeling. To fully utilize the local
data information, we exploit the well-known label correc-
tion method (Tanaka et al. 2018). Although this self-learning
strategy with pseudo-labeling is powerful for label correc-
tion in the centralized setting, it leads local models to be self-
biased (Arazo et al. 2019). Therefore, we propose global-
guided pseudo-labeling, which corrects labels of local data
by employing the server model. Our technique for the la-
bel estimation prevents local models from being self-biased.
Each client receives the global model at the broadcast time
and uses the model to generate global-guided pseudo-labels
ŷk as follows:

ŷk = CG(FG(xk)), (8)

where CG and FG are the client’s networks with global pa-
rameters. After that, each client trains its network with these
global-guided pseudo-labels by Eq. 1.

Finally, the k-th local model is trained to minimize the
sum of three losses:

Lk
total = Lk

c + λcenL
k
cen + λeL

k
e , (9)

where Lk
e is the entropy regularization of prediction re-

sults. Note that this term forces probability distribution of
each softmax output to a single class. pi indicates soft-
max outputs Ck(Fk(x

i
k)), and the loss Lk

e is calculated by
−
∑

i p
ilogpi. λcen and λe indicate trade-off parameters.

Our complete algorithm is illustrated in Fig. 3.

Global updates
After the local update in each round, the clients upload
model parameters and local centroids to the server. We ex-
ploit FedAvg (McMahan et al. 2017) for weight aggregation,
which is well known as an effective algorithm for i.i.d. data.
For centroid aggregation, the server updates global centroids
by a similarity-based aggregation of uploaded local cen-
troids. This leads the server model to explicitly deal with the
different noise ratios in clients. Moreover, since it performs
a class-wise summation of local centroids, it is less affected
by different noise ratios in classes.

Weight aggregation. We execute FedAvg (McMahan
et al. 2017) for weight aggregation, which is suitable for an
i.i.d. dataset. Since only noisy labels are added in i.i.d. data,
we expect that the FedAvg algorithm works well enough in
our experimental settings. FedAvg takes a weighted average
of local parameters θL as follows:

θG =
∑
k∈K

nk
n
θL,k, (10)

where θG is global parameters, and n and nk indicate the
total number of data and the number of the k-th client’s data,
respectively.

Global centroid aggregation. To tackle the different
noise distributions in clients explicitly, we adjust global cen-
troids to employ the similarity-based summation of local
centroids. In every round, local centroids of selected clients
update global centroids by using the similarity to previous
global centroids in the server. Let K be the set of indices of
clients selected in the current round, then global centroids
are updated as follows:

f cG =
1∑

k∈K wc
k

∑
k∈K

wc
kf

c
k , (11)

where wc
k indicates similarity between stored global cen-

troids f̂ cG and the uploaded the k-th client centroids of class
c, and it is obtained by:

wc
k = sim(f̂ cG, f

c
k). (12)

Therefore, this weight update rule allows global centroids to
reflect the similarity with local centroids, which depends on
the client and class. The complete pseudo-code is shown in
supplementary material.

Experiments
We adopt the following federated setting from FedAvg
(McMahan et al. 2017). We set the number of clients to 100,
and distribute each dataset to clients in an i.i.d. fashion. We
select local epoch and local mini-batch to 5 and 50, respec-
tively, considering communication efficiency and memory
limitations of local devices.

Datasets
CIFAR-10. CIFAR-10 (Krizhevsky and Hinton 2009) is a
benchmark dataset of 10 categories, which contains 50,000
images for training and 10,000 images for testing. We re-
place the ground truth labels of CIFAR-10 with two types
of noisy labels: symmetric flipping (Van Rooyen, Menon,
and Williamson 2015) and pair flipping (Han et al. 2018),
which are described in supplementary material. Since our
paper mainly focuses on the robustness in federated learn-
ing with various noisy ratios, the noise ratio ε is chosen
from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} for symmetric flipping and
{0.1, 0.2, 0.3, 0.4, 0.45} for pair flipping. In detail, we give
noisy labels to the entire dataset with the designated noise
ratio, and then randomly distribute it to 100 clients. This
process induces different noise distributions in clients, and
we fix the seed for a fair comparison. In ablation studies, we
experiment with extremely different noise ratios.

Clothing1M. Clothing1M (Xiao et al. 2015) is a large
real-world dataset of 14 categories, which contains 1 mil-
lion images of clothing with noisy labels since it is obtained
from several online shopping websites. In (Xiao et al. 2015),
it is reported that the overall noise ratio is approximately
38.46%. The Clothing1M dataset also contains 50k, 14k,
and 10k of clean data for training, validation, and testing, re-
spectively, but we do not use the clean training data. For fed-
erated learning, we randomly divide the clothing1M dataset
into 100 groups, which indicates the number of clients, and
we set them as local datasets.



Table 1: Test accuracy on the CIFAR-10 dataset with symmetric and pair flipping noise. We report the average accuracy over
the last 10 rounds.

Method Test Accuracy (%)
Noise type Symmetric flipping Pair flipping
Noise ratio 0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.45

Cross Entropy Loss (McMahan et al. 2017) 89.5 81.8 73.1 63.1 54.8 41.9 35.4 83.2 73.7 65.4 56.5 49.5
Co-teaching (Han et al. 2018) 89.8 88.5 87.6 86.1 84.4 81.6 57.7 88.4 86.3 73.1 57.5 55.2

Joint Optimization (Tanaka et al. 2018) 88.4 86.7 85.4 82.8 80.1 76.7 71.2 86.8 86.2 86.0 85.4 83.1
Ours 91.5 91.2 90.8 89.6 88.7 86.4 83.0 90.9 90.5 89.8 89.2 88.8

Table 2: Test accuracy on the Clothing1M dataset in the cen-
tralized (C. L.) and federated settings (F. L.).

Method Test Acc. (%)
Setting C. L. F. L.

Cross Entropy Loss (McMahan et al. 2017) 69.5 70.8
Co-teaching (Han et al. 2018) 71.0 71.8

Joint Optimization (Tanaka et al. 2018) 72.2 73.5
Deep self-learning (Han, Luo, and Wang 2019) 74.5 73.6

Ours 72.5 76.4

Implementation details
We experiment with our proposed method, Cross Entropy
Loss (McMahan et al. 2017), Co-teaching (Han et al. 2018),
Joint Optimization (Tanaka et al. 2018), and Deep self-
learning (Han, Luo, and Wang 2019) in our federated set-
ting1. Note that we experiment these algorithms with Fe-
dAvg (McMahan et al. 2017) for weight aggregation. For
CIFAR-10, we implemented the 9-Layer CNN applied in
Co-teaching (Han et al. 2018). We do not report Deep
self-learning because the 9-Layer CNN is not a pre-trained
model, which does not have enough representation power
to extract valid prototypes. Training on the Clothing1M
dataset, we exploited ResNet-50 (He et al. 2016) pre-trained
on ImageNet (Deng et al. 2009) by following (Tanaka et al.
2018; Han, Luo, and Wang 2019). To prevent overfitting to a
small number of training data in each local dataset, we aug-
ment training data by resizing, normalizing, and cropping
images. The detailed experimental setup is described in sup-
plementary material.

Analysis
CIFAR-10. We report the results of CIFAR-10 with sym-
metric flipping and pair flipping in Table 1. As shown in
Table 1, our method achieves better overall test accuracy at
various noise ratios.

Co-teaching selects a fixed number of loss-based samples,
which is vulnerable to different noise distributions in clients.
It causes serious performance degradation of the server
model since each client model is affected by noisy data.
Joint Optimization follows a self-training scheme, which is
a naive pseudo-labeling method. In federated learning, this
self-training method may lead the network to be self-biased

1We use official codes for Co-teaching and Joint Optimization,
and reproduce the code for Deep self-learning according to the pa-
per.

Table 3: Test accuracy with different noise ratios in clients
(left) and classes (right) on the CIFAR-10 dataset.

η Test Acc. (%)
ε 0.4
0 88.7

0.1 88.5
0.2 88.7
0.3 88.7
0.4 89.0

ε Test Acc. (%)
0.1 91.1
0.2 90.5
0.3 89.6
0.4 88.6
0.5 86.8
0.6 83.1

due to a large number of local epochs, and the weights of
self-biased local models can be diverged severely. Notably
in extremely noisy cases, clients cannot be trained properly
due to high noise ratios, and when these local parameters are
aggregated in the server, performance is further deteriorated.
Our proposed method is also dependent on a loss-based al-
gorithm but robust to different noise distributions in clients
because of the similarity-based centroids update. Moreover,
we exploit a global-guided pseudo-labeling method, which
mitigates self-bias of each client, and we validate the effec-
tiveness of this algorithm in ablation studies.

Furthermore, neither of the two previous methods can
guarantee that all local models are trained to form similar de-
cision boundaries, which makes aggregation of local models
unsuccessful. Our proposed method constrains class repre-
sentations of all client models not to diverge from global
class representations. This induces all local models to be
trained to have similar boundaries, and we demonstrate the
efficacy of the algorithm in noisy federated learning.

Clothing1M. Different from the artificial noise in CIFAR-
10, Clothing1M is a real-world noisy label dataset, including
lots of unknown structure noise. By comparing the results
in Table 2, we can see that our proposed method outper-
forms the others by a large margin in the federated setting. In
the case of Deep self-learning (Han, Luo, and Wang 2019),
which corrects the labels of the data comparing the similarity
with the several prototypes of the features, it achieves great
performance improvement in the centralized setting. How-
ever, in the federated setting, this algorithm suffers from the
significant performance degradation since it does not con-
strain local models from having similar decision boundaries.
We get the centroids with relatively small-losses and update
them to be similar with global centroids. It can keep cen-
troids less corrupted by noise data as well as achieve local
decision boundaries similar to others. Our algorithm is ef-



Table 4: Effect of our sampling and pseudo-labeling meth-
ods.

mask pseudo-label Acc. (%)
x x 74.5
o x 77.8
x naive 74.7
o naive 86.7
o global-guided 88.7

Table 5: Noisy label detection.

Noise type Symmetric flipping
Noise ratio 0.1 0.2 0.3 0.4 0.5 0.6
Precision 0.997 0.994 0.989 0.980 0.968 0.944

Recall 0.933 0.937 0.909 0.903 0.892 0.840

fective for the real-world noisy label dataset corrupted by
unknown structure noise.

Ablation studies
We conduct ablation studies to show that each proposed al-
gorithm is effective in federated learning with noisy labels.

Different noise ratios in clients. In the federated setting,
clients may have different amounts of noise because of the
discrepancy between clients’ labeling systems. In detail, we
split clients into five groups and assign different noise ratios.
We set noise variance η, then divide noise range [ε−η, ε+η]
equally into five noise ratios and assign the noise ratio to
each group. For example, if we set the noise ratio ε and
noise variance η to 0.4 and 0.2, respectively, the noise ra-
tio in each group is assigned one of {0.2, 0.3, 0.4, 0.5, 0.6}.
In Table 3, we experiment by fixing the noise ratio to 0.4
and changing noise variance. Our approach achieves consis-
tent performance regardless of the different noise ratios in
clients.

Different noise ratios in classes. Due to background
knowledge of the client user, the local data can have differ-
ent noise ratios in classes. We assume an extreme situation
where each client has totally erroneous samples for a single
class. In detail, we force clients to have wrong labels for a
single random class entirely and replace the labels of other
classes with noisy labels of the designated noise ratio ε. We
show that the proposed algorithm is robust to different noise
ratios in classes in Table 3.

Confident samples. We evaluate the effectiveness of our
sampling approach in Table 4. Note that we set the noise ra-
tio to 0.4 by using symmetric flipping. As shown in Table
4, the mask for confident samples and the pseudo-labeling
method complement each other. The network trained only
with the selected samples by removing unconfident samples
has better performance than the one trained with all sam-
ples, and the performance increases considerably when the
unconfident samples’ labels are replaced by pseudo-labels.

(a) Ours w/o global centroids (b) Ours w/ global centroids

Figure 4: Feature visualization of selected clients with t-
SNE. We plot features of clients and global centroids. (a)
Data are well clustered by their categories, however vary-
ing from clients, which hinders weight aggregation in the
server. (b) Most clients have similar features around global
class-wise centroids marked by stars. Best viewed in color.

Moreover, we show the precision and recall of noisy label
detection of our sampling approach in Table 5. The precision
means the number of correctly detected noisy labels over the
entire number of detected noisy labels and the recall means
the number of correctly detected noisy labels over the en-
tire number of noisy labels in data. Our sampling approach
selects confident samples by the complementary use of fea-
ture similarity-based and ground truth labels. It leads to high
accuracy for the precision of noise labels.

Global-guided pseudo-labeling. We have conducted the
experiments by removing global-guided pseudo-labeling or
replacing the proposed method with naive pseudo-labeling
in Table 4. Although the self-learning strategy with pseudo-
labeling is powerful for label correction in centralized learn-
ing, it leads local models to be self-biased to their own
datasets. Our global-guided pseudo-labeling outperforms a
naive approach to prevent local models from being self-
biased.

Interchanging class-wise centroids. To show the effec-
tiveness of interchanging centroids, we experiment our algo-
rithm while local models are updated without using global
centroids. In detail, we use the loss function Eq. 5 by cal-
culating local centroids without using Eq. 4, which can-
not explicitly constrain local models to have similar bound-
aries. Figure 4 shows that global centroids help all clients to
have similar feature representations, which leads to reducing
weight divergence.

Conclusion
In this paper, we have considered that each local dataset may
consist of noisy labels in the practical federated learning sce-
nario. Our proposed approach is to interchange additional
information, which is global and local feature centroids of
classes. We demonstrate that our approach is clearly effec-
tive in the noisy federated setting by reducing weight di-



vergence. Moreover, we propose a novel algorithm for local
updates including similarity-based confident example sam-
pling and global-guided pseudo-labeling. In extensive exper-
iments, we have shown that our approach outperforms exist-
ing state-of-the-art methods on CIFAR-10 and Clothing1M.

Ethics statement
Our study suggests a practical learning scenario, especially
learning with noisy labels. Based on our proposed federated
learning with noisy labels, contributors in various fields such
as healthcare, fairness, and recommendation system can in-
directly benefit from our global guided update scheme. In
the case of healthcare, medical data with wrong annotations
can be a potential threat to the smart healthcare system. Our
scheme can help prevent a medical accident due to erroneous
data from occurring in federated learning, and it would play
a crucial role in the development of smart healthcare. Our
approach promotes social trends shifting a learning environ-
ment from the central server to various edge devices by al-
lowing the models to learn without precise data. It enables
client-side learning without precise data, which does not re-
quire an expert for annotating specialized data for each de-
vice. In our setting, we only focus on dealing with noisy
labels on i.i.d. data. More work is needed for noisy labels in
federated learning with non-i.i.d. data.
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Arpit, D.; Jastrzębski, S.; Ballas, N.; Krueger, D.; Bengio, E.; Kan-
wal, M. S.; Maharaj, T.; Fischer, A.; Courville, A.; Bengio, Y.; et al.
2017. A closer look at memorization in deep networks. In Proceed-
ings of the 34th International Conference on Machine Learning.

Bernstein, J.; Zhao, J.; Azizzadenesheli, K.; and Anandkumar, A.
2018. signSGD with majority vote is communication efficient and
fault tolerant. arXiv preprint arXiv:1810.05291 .

Chen, W.; Bhardwaj, K.; and Marculescu, R. 2020. FedMAX: Mit-
igating Activation Divergence for Accurate and Communication-
Efficient Federated Learning. arXiv preprint arXiv:2004.03657 .

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei, L.
2009. Imagenet: A large-scale hierarchical image database. In
Proceedings of IEEE conference on computer vision and pattern
recognition. Ieee.

Guo, S.; Huang, W.; Zhang, H.; Zhuang, C.; Dong, D.; Scott, M. R.;
and Huang, D. 2018. Curriculumnet: Weakly supervised learning
from large-scale web images. In Proceedings of the European Con-
ference on Computer Vision.

Han, B.; Yao, Q.; Yu, X.; Niu, G.; Xu, M.; Hu, W.; Tsang, I.; and
Sugiyama, M. 2018. Co-teaching: Robust training of deep neu-
ral networks with extremely noisy labels. In Advances in neural
information processing systems.

Han, J.; Luo, P.; and Wang, X. 2019. Deep self-learning from noisy
labels. In Proceedings of the IEEE International Conference on
Computer Vision.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition.

Huang, J.; Qu, L.; Jia, R.; and Zhao, B. 2019. O2U-Net: A Simple
Noisy Label Detection Approach for Deep Neural Networks. In
Proceedings of the IEEE International Conference on Computer
Vision.

Krizhevsky, A.; and Hinton, G. 2009. Learning multiple layers of
features from tiny images. Technical report .

Kuznetsova, A.; Rom, H.; Alldrin, N.; Uijlings, J.; Krasin, I.; Pont-
Tuset, J.; Kamali, S.; Popov, S.; Malloci, M.; Duerig, T.; et al. 2018.
The open images dataset v4: Unified image classification, object
detection, and visual relationship detection at scale. arXiv preprint
arXiv:1811.00982 .

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-
based learning applied to document recognition. Proceedings of
the IEEE .

Lee, K.-H.; He, X.; Zhang, L.; and Yang, L. 2018. Cleannet: Trans-
fer learning for scalable image classifier training with label noise.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition.

Li, J.; Wong, Y.; Zhao, Q.; and Kankanhalli, M. S. 2019. Learn-
ing to Learn From Noisy Labeled Data. In Proceedings of IEEE
conference on computer vision and pattern recognition.

Li, T.; Sahu, A. K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; and
Smith, V. 2018. Federated optimization in heterogeneous networks.
In Proceedings of the 3rd MLSys Conference.

Li, T.; Sanjabi, M.; Beirami, A.; and Smith, V. 2020a. Fair Re-
source Allocation in Federated Learning. In International Con-
ference on Learning Representations. URL https://openreview.net/
forum?id=ByexElSYDr.

Li, X.; Huang, K.; Yang, W.; Wang, S.; and Zhang, Z. 2020b. On
the Convergence of FedAvg on Non-IID Data. In International
Conference on Learning Representations. URL https://openreview.
net/forum?id=HJxNAnVtDS.

Lim, W. Y. B.; Luong, N. C.; Hoang, D. T.; Jiao, Y.; Liang, Y.-C.;
Yang, Q.; Niyato, D.; and Miao, C. 2020. Federated learning in
mobile edge networks: A comprehensive survey. IEEE Communi-
cations Surveys & Tutorials .

Lin, Y.; Han, S.; Mao, H.; Wang, Y.; and Dally, B. 2018.
Deep Gradient Compression: Reducing the Communication Band-
width for Distributed Training. In International Conference on
Learning Representations. URL https://openreview.net/forum?id=
SkhQHMW0W.

Lyu, Y.; and Tsang, I. W. 2019. Curriculum loss: Robust learn-
ing and generalization against label corruption. arXiv preprint
arXiv:1905.10045 .

McMahan, H. B.; Moore, E.; Ramage, D.; Hampson, S.; and Ar-
cas Aguera y, B. 2017. Communication-efficient learning of deep
networks from decentralized data. In Proceedings of the 20th In-
ternational Conference on Artificial Intelligence and Statistics.

Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito,
Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer, A. 2017. Auto-
matic differentiation in PyTorch .

Patrini, G.; Rozza, A.; Krishna Menon, A.; Nock, R.; and Qu, L.
2017. Making deep neural networks robust to label noise: A loss
correction approach. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 1944–1952.

https://openreview.net/forum?id=ByexElSYDr
https://openreview.net/forum?id=ByexElSYDr
https://openreview.net/forum?id=HJxNAnVtDS
https://openreview.net/forum?id=HJxNAnVtDS
https://openreview.net/forum?id=SkhQHMW0W
https://openreview.net/forum?id=SkhQHMW0W


Peng, X.; Huang, Z.; Zhu, Y.; and Saenko, K. 2020. Federated
Adversarial Domain Adaptation. In International Conference on
Learning Representations. URL https://openreview.net/forum?id=
HJezF3VYPB.
Reed, S.; Lee, H.; Anguelov, D.; Szegedy, C.; Erhan, D.; and Ra-
binovich, A. 2014. Training deep neural networks on noisy labels
with bootstrapping. arXiv preprint arXiv:1412.6596 .
Ren, M.; Zeng, W.; Yang, B.; and Urtasun, R. 2018. Learning
to reweight examples for robust deep learning. arXiv preprint
arXiv:1803.09050 .
Sattler, F.; Wiedemann, S.; Müller, K.-R.; and Samek, W. 2019. Ro-
bust and communication-efficient federated learning from non-iid
data. IEEE transactions on neural networks and learning systems .
Shoham, N.; Avidor, T.; Keren, A.; Israel, N.; Benditkis, D.; Mor-
Yosef, L.; and Zeitak, I. 2019. Overcoming Forgetting in Federated
Learning on Non-IID Data. arXiv preprint arXiv:1910.07796 .
Shu, J.; Xie, Q.; Yi, L.; Zhao, Q.; Zhou, S.; Xu, Z.; and Meng, D.
2019. Meta-weight-net: Learning an explicit mapping for sample
weighting. In Advances in Neural Information Processing Systems.
Tanaka, D.; Ikami, D.; Yamasaki, T.; and Aizawa, K. 2018. Joint
optimization framework for learning with noisy labels. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition.
Van Rooyen, B.; Menon, A.; and Williamson, R. C. 2015. Learning
with symmetric label noise: The importance of being unhinged. In
Advances in Neural Information Processing Systems.
Wang, H.; Yurochkin, M.; Sun, Y.; Papailiopoulos, D.; and Khaz-
aeni, Y. 2020. Federated Learning with Matched Averaging. In
International Conference on Learning Representations.
Wang, L.; and Wong, A. 2020. COVID-Net: A Tailored Deep
Convolutional Neural Network Design for Detection of COVID-19
Cases from Chest X-Ray Images. arXiv preprint arXiv:2003.09871
.
Wang, Y.; Ma, X.; Chen, Z.; Luo, Y.; Yi, J.; and Bailey, J. 2019.
Symmetric cross entropy for robust learning with noisy labels. In
Proceedings of the IEEE International Conference on Computer
Vision.
Wei, H.; Feng, L.; Chen, X.; and An, B. 2020. Combating noisy la-
bels by agreement: A joint training method with co-regularization.
arXiv preprint arXiv:2003.02752 .
Xiao, T.; Xia, T.; Yang, Y.; Huang, C.; and Wang, X. 2015. Learn-
ing from massive noisy labeled data for image classification. In
Proceedings of the IEEE conference on computer vision and pat-
tern recognition.
Yi, K.; and Wu, J. 2019. Probabilistic end-to-end noise correction
for learning with noisy labels. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition.
Yoon, J.; Jeong, W.; Lee, G.; Yang, E.; and Hwang, S. J. 2020.
Federated Continual Learning with Adaptive Parameter Communi-
cation. arXiv preprint arXiv:2003.03196 .
Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; and Vinyals, O. 2016.
Understanding deep learning requires rethinking generalization.
arXiv preprint arXiv:1611.03530 .
Zhang, Z.; and Sabuncu, M. 2018. Generalized cross entropy loss
for training deep neural networks with noisy labels. In Advances
in neural information processing systems.
Zhao, Y.; Li, M.; Lai, L.; Suda, N.; Civin, D.; and Chandra,
V. 2018. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582 .

https://openreview.net/forum?id=HJezF3VYPB
https://openreview.net/forum?id=HJezF3VYPB


Supplementary Material: Robust Federated Learning with Noisy Labels

Algorithm details
Initialization of global centroids. Since we update local
centroids using similarities with global centroids, randomly initial-
ized global centroids hinder local models from deriving accurate
local centroids. For this reason, average features f̂k are used instead
of global centroids in the first round. After that, global centroids are
computed by aggregating clients’ local centroids.

Loss-based centroids. At the beginning of training, deep net-
works tend to prioritize learning simple patterns first (Arpit et al.
2017). We utilize this property to keep more instances at the start,
i.e., R(t) is large in Eq. 2. As the training proceeds, we gradually
reduce R(t) to prevent local models from fitting to noise samples
following (Han et al. 2018). We set T and τ to 10 and ε in our
experiments, and we show that our approach is robust to these pa-
rameters in the experimental section.

Pseudo-labels. In Eq. 1, we train the network with unconfi-
dent samples by using pseudo-labels. At the early stage, the net-
work cannot generate accurate pseudo-labels ŷ due to insufficient
training time. Therefore, at first, we replace pseudo-labels ŷ with
ground truth labels y. After the number of rounds reaches prede-
fined number (Tpl), we exploit pseudo-labels, then we train the net-
work jointly by y and ŷ.

Scheduling for λcen. To avoid the noisy mask at the early
stage of the training procedure, we initialize λcen to 0 and grad-
ually increase it to a predefined number.

Mini-batch algorithm. We modify Eq. 4 for mini-batch SGD
as follows:
fk,j = (1− sim(fk,j−1, f̂k,j)

2)fk,j−1 + sim(fk,j−1, f̂k,j)
2 f̂k,j ,

(13)
where fk,j indicates local centroids at j-th iteration. The full algo-
rithm for our local and global updates is given in Algorithm 1. Note
that fk,0 indicates global centroids fG in the first local epoch.

Two types of noisy labels
Since CIFAR-10 (Krizhevsky and Hinton 2009) and MNIST (Le-
Cun et al. 1998) are clean, following (Reed et al. 2014; Patrini et al.
2017), we manually corrupt these datasets by the label transition
matrix Q, where Qij = Pr(ỹ = j|y = i) given that noisy ỹ is
flipped from clean y. For symmetric flipping, we inject the sym-
metric label noise as follows:

Q =


1− ε ε

n−1
· · · ε

n−1
ε

n−1
ε

n−1
1− ε ε

n−1

...
. . .

...
ε

n−1
1− ε ε

n−1
ε

n−1
ε

n−1
· · · ε

n−1
1− ε

 , (14)

where n is the number of classes and ε indicates the noise ratio. Pair
flipping is a well-known noise generation method that focuses on
fine-grained classification with noisy labels, and its noise transition
matrix Q is obtained as follows:

Q =


1− ε ε 0 · · · 0
0 1− ε ε 0
...

. . .
...

0 1− ε ε
ε 0 · · · 0 1− ε

 . (15)

Implementation details
We used the Pytorch framework (Paszke et al. 2017) to implement
the model, and training was done on a GTX 1080Ti and Intel i7-
6700k@4.00GHz. We utilized the official code provided by authors
for Co-teaching (Han et al. 2018). We modified the official code to
Pytorch version of Joint Optimization (Tanaka et al. 2018) and re-
produced the model in Deep self-learning (Han, Luo, and Wang
2019) according to the paper. In our federated setting, we set the
number of clients to 100, and 10 clients are selected at every round.
Batch size and local epoch are 50 and 5, and we trained the net-
work during 100, 1000, and 40 rounds for MNIST, CIFAR-10, and
Clothing1M, respectively. We used SGD optimizer with a momen-
tum of 0.5, a weight decay of 10−4 for all algorithms. Next, we
describe the parameters for each algorithm.

Ours. We determined balance parameters (λcen and λe) and Tpl
based on ablation studies and the previous work (Tanaka et al.
2018). We set λcen and λe to 1.0 and 0.8 for all datasets, and Tpl
to 30 for MNIST, 100 for CIFAR-10, and 5 for Clothing1M. The
initial learning rate is 0.25 for MNIST and CIFAR-10, and 0.01
for Clothing1M. For the Clothing1M dataset, the learning rate was
decreased by 10 every 10 rounds. In addition, to obtain loss-based
centroids, we set T = 10 and τ = ε by following (Han et al.
2018). We show that our approach is robust to all these parameters
in ablation studies. For the centralized setting, we modified our
algorithm by replacing global-guided pseudo-labeling with naive
pseudo-labeling and calculating global centroids to use all data.

Co-teaching. We took two networks with the same architecture
but different initializations as two classifiers. Different from (Han
et al. 2018), we used SGD optimizer with an initial learning rate
of 0.15 for federated learning (McMahan et al. 2017). We found
that this setting has similar test accuracy to the original setting in
the centralized setting through experiments. We set R(t) = 1 −
τmin(t/T, 1) with T = 10 for MNIST and CIFAR-10 and T = 5
for Clothing1M, and τ = ε by following (Han et al. 2018; Wei
et al. 2020). We initialized the learning rate to 0.15 for MNIST
and CIFAR-10, and 0.001 for Clothing1M. For Clothing1M, the
learning rate was decreased by 10 every 10 rounds.

Joint Optimization. We determined balance parameters (λα
and λβ), start epoch, and learning rate based on (Tanaka et al.
2018). For the MNIST and CIFAR-10 datasets, we used the dif-
ferent learning rates suitable for each noise ratio following (Tanaka
et al. 2018). We set α, β, and start epoch to 1.2, 0.8, and 100 re-
spectively in MNIST and CIFAR-10. For Clothing1M, we used a
learning rate of 8× 10−4, and used 2.4 for α and 0.8 for β.

Deep self-learning. The initial learning rate was 0.002 and de-
creased by 10 every 5 epochs. We followed the paper (Han, Luo,
and Wang 2019) to choose hyper-parameters except the number
of selected samples and prototypes. In the federated setting, each
client only has a small portion of the original dataset. For this rea-
son, in the label correction phase, we randomly sample 128 images
for each class and 3 class prototypes are picked out for each class.

More experimental results
Experimental results on MNIST. MNIST (LeCun et al.
1998) is a benchmark dataset of 10 categories, which contains



Algorithm 1: Robust Federated Learning with Noisy Labels
Input: global weights θG, global centroids fG, learning rate η, start round that uses pseudo-labels Tpl, fixed τ ,
round T and Tmax;
Server executes:

initialize θG;
for each round t = 1, ..., Tmax do

St← (random set of m clients);
for each client k ∈ St in parallel do

Load θk, fk ← LocalUpdate(k, t, θG, fG, R(t));
Update global weights θG by Eq. 10;
Update global centroids fG by Eq. 11;
Update R(t) = 1−min{ t

T τ, τ};

function LocalUpdate(k, t, θG, fG, R(t)): // Run on client k
Load θk ← θG;
if t = 1 then // Initialization of global centroids

Obtain naive average features f̂k by Eq. 3 from Dk;
Load fk,0 ← f̂k;

else
Load fk,0 ← fG

Obtain global-guided pseudo labels ŷ by Eq. 8 from Dk;
for each local epoch i = 1, ..., E do

Shuffle training set Dk;
for j = 1, ..., Nmax do

Fetch mini batch Dk,j from Dk;
Obtain small-loss sets D̂k,j by Eq. 2 from Dk,j ;
Obtain confident mask vector mk,j by Eq. 7;
if t < Tpl then

Load ŷ← y; // Replacing pseudo-labels with ground truth labels
Update local weights θk by minimizing Eq. 9;
Obtain loss-based average features f̂k,j by Eq. 3 from D̂k,j ;
Update local centroids fk,j by Eq. 13;

Load fk,0← fk,Nmax ;
Output: θk and fk,0.

Table 6: Test accuracy on the MNIST dataset with symmetric and pair flipping noise. We report the average accuracy over the
last 10 rounds.

Method Test Accuracy (%)
Noise type Symmetric flipping Pair flipping
Noise ratio 0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.45

Cross Entropy Loss (McMahan et al. 2017) 99.6 98.7 97.4 94.2 88.1 79.2 62.5 98.7 95.6 86.8 69.4 61.6
Co-teaching (Han et al. 2018) 99.4 99.4 99.2 99.1 98.9 98.1 96.7 99.3 99.2 99.1 96.6 92.3

Joint Optimization (Tanaka et al. 2018) 98.1 97.9 97.9 97.3 97.0 97.1 94.1 98.0 97.3 97.3 97.3 97.2
Ours 99.5 99.4 99.3 99.3 99.2 99.1 98.8 99.4 99.4 99.3 99.2 99.1

Figure 5: Image variances in intensity. Table 7: Test accuracy on the various
number of participating clients in each
round.

# of clients 1 2 5
Acc. (%) 78.6 85.9 88.2

# of clients 20 50 100
Acc. (%) 89.6 90.1 89.9

Table 8: Computational time. GTX
1080Ti and Intel i7-6700k@4.00GHz.

Method time (s)
Co-teaching 45.8

Joint Optimization 24.9
Ours 27.8
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Figure 6: Performance dependency of hyper-parameters.

60,000 images for training and 10,000 images for testing. We re-
place the ground truth labels of MNIST with two types of noisy
label: symmetric and pair flipping. We implemented the 9-Layer
CNN applied in Co-teaching (Han et al. 2018). In Table 6, our pro-
posed approach maintain high performance at various noise ratios.

Image variances in different domains. In the real world,
the data would differ from client to client not only in terms of noise
in the labels but also the features themselves. We investigate this
situation in federated learning. We assume that clients are in dif-
ferent environments, especially light intensity, e.g., a photo of a
car in one client would be different from that in others in terms of
light intensity, as illustrated in Fig. 5. In detail, we use the noisy
CIFAR-10 dataset with noise ratio 0.4, and change the light inten-
sity of each client dataset at a rate of specific value within 0.5 to 1.5
times by using the ImageEnhance module in the PIL package. Our
algorithm achieves 88.4%, although the noise exists in both labels
and features (88.7% in the original setting).

Real federated learning scenario. For centralized learning,
transmitting medical data from each medical center to the central
server causes privacy issues. In consideration of these issues, we
experiment our algorithm under the assumption that the medical
dataset is in each medical center. We choose the COVIDx Dataset
(Wang and Wong 2020), which consists of 15,282 chest x-ray im-
ages, and distribute the dataset to 100 medical centers (clients). Our
approach achieves 93.5%, which is comparable to the centralized
setting (93.6%).

Number of participating clients. In real-world federated
learning scenarios, the population base can be significantly larger

and a considerably smaller portion can be selected every round. We
provide experimental results on the noisy CIFAR-10 dataset with
noise ratio 0.4 by changing the number of participating clients per
round in Table 7. Note that the client population is 100. Even if
only two clients participate in communication, it shows compara-
ble performance by reducing weight divergence of clients’ models.

Computational cost. Since our proposed algorithm increases
computation-cost not only for local updates but also for global up-
dates, we measure the time from the start of the round to the next
round. As shown in Table 8, the speed of our algorithm is similar
to that of Joint Optimization (Tanaka et al. 2018). Due to the use of
similarity-based updates and confident samples, our algorithm has
a marginal increase in computational cost. Since Co-teaching (Han
et al. 2018) exploits two networks, its computational time is longer
than others that use only one network.

Performance dependency of hyper-parameters. We use
the noisy CIFAR-10 dataset and set the noise ratio ε to 0.4 by us-
ing symmetric flipping. We set Tpl, λe, λcen, τ , T to 100, 0.8,
1.0, 0.4, 10, respectively. Then, we have conducted various exper-
iments changing hyper-parameters, i. e., Tpl, λe, λcen, τ , and T .
As shown in Fig. 6, the prediction accuracy is robust to the hyper-
parameters except Tpl that is related to replacing ground truth la-
bels with pseudo labels. Since the network cannot generate accu-
rate pseudo-labels ŷ at the early stage, it achieves lower perfor-
mance compared to networks trained with high Tpl.
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