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ROBUST FEEDBACK LINEARIZATION AND
GH∞ CONTROLLER FOR A QUADROTOR

UNMANNED AERIAL VEHICLE
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∗ ∗∗

— Abdelaziz Benallegue
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— Boubaker Daachi
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In this paper, a mixed robust feedback linearization with linear GH∞ controller is applied to a nonlinear quadrotor

unmanned aerial vehicle. An actuator saturation and constrain on state space output are introduced to analyse the worst
case of control law design.The results show that the overall system becomes robust when weighting functions are chosen
judiciously. Performance issues of the controller are illustrated in a simulation study that takes into account parameter

uncertainties and external disturbances as well as measurement noise.
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1 INTRODUCTION

The H∞ control problem with continuous-time mea-
surement output for linear systems has been studied in
the last decade by many researchers such as Kwakernaak
[1] and Grimble [2] in polynomial form and by van der
Schaft [3] and Ball [4] for nonlinear systems. For the hov-
ering control of helicopters, many control methods have
been proposed including linear approaches such as LQG
[5], H∞ design [6],[7] and the nonlinear approaches such
as sliding mode [8], backstepping technique [9], and in-
put/output linearization [10]. Even tough the design of
controllers to achieve a linear input-output response for
nonlinear systems has been well researched [11], the con-
ventional input-output linearization techniques will per-
form very poorly when it comes to output tracking as it
will render the unstable internal dynamics unobservable
[12]. Hence the nonlinear system must have stable zero
dynamics for the input-output linearized system to be in-
ternally stable [11]. Following this context, classical feed-
back linearization may have poor robustness properties
and cannot be easily combined with a H∞ control law.
So a robust nonlinear feedback is proposed to robustly
control an uncertain nonlinear system around an operat-
ing point on using an appropriate approach for stability
and robustness, W–stability [13]. Inertial Navigation Sys-
tem (INS) and GPS are used to calculate a position and
orientation of the vehicle. They are especially suitable for
guidance and navigation of an autonomous Unmanned
Aerial Vehicle (UAV) [14].

This paper proposes an attempt to apply linear H∞

outer control of helicopter quadrotor with plant uncer-
tainty combined with a robust feedback linearization in-
ner controller. The plant to be controlled is described

by six-degree-of-freedom nonlinear dynamics with plant
uncertainties due to the variation of moments of inertia
and payload operation. Successful application of the au-
tonomous quadrotor depends on its level of controllabil-
ity and flying qualities. The overall inner outer controller
should improve tracking performance and disturbance re-
jection capability. The process disturbance represents not
only the uncertainty in the operating conditions, but the
lack of precision in the system model. It degrades the
robustness and performance of control systems and the
estimation of unknown dynamics seems to be difficult.
The approach that allows for worst-case disturbances is
the H∞ controller. Uncertainty bounds step can be used
to define simple sensitivity and complementary sensitiv-
ity weights. These weights are chosen to maximize the
disturbance attenuation properties. The disturbances at-
tempt to maximize performance index, while the control
attempts to minimize. The analysis of this problem has
been primarily in the frequency domain. This analysis
can be carried out in time domain, and naturally extends
H∞ theory to finite-time and non-linear systems [15]. In
this work we mention the polynomial solution based on
Diophantine equations [16].

2 DYNAMIC QUADROTOR

Using Newton law and referring to V. Mistler et al [17]
[18], the general MIMO nonlinear system (Fig.1) can be
represented in form:

ẋ = F (x) +G1(x)w +G2(x)ū

y1 = H1(x) +K12(x)ū (1)

y2 = H2(x) +K21(x)w
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Fig. 1. The quadrotor helicopter

where x ∈ ℜn is the state vector, ū ∈ ℜm is the control
input, w ∈ ℜn is the noise and unknown perturbation
vector, y1 ∈ ℜl is the controlled output, y2 ∈ ℜp is the
available measure vector. The following hypothesis hold:

(A1) the functions F (x), G1(x), G2(x), H1(x), H2(x),
K12(x), K21(x) are piecewise continuous.

(A2) F (0) = 0, H1(0) = 0 and H2(0) = 0 for almost
every t .

(A3) HT
1 (x)K12(x) = 0, KT

12(x)K12(x) = I ,

K21(x)G
T
1 (x) = 0, K21(x)K

T
21(x) = I. where

w =

[

wb

wp

]

,

and where wb is the noise vector of size 14. wp is com-

posed of aerodynamic forces disturbances [Ax, Ay, Az]
T

and aerodynamic moment disturbances [Ap, Aq, Ar]
T

.
They act on the UAV and are computed from the aero-
dynamic coefficients Ci as Ai = 1

2ρairCiW
2 (ρair is the

air density, W is the velocity of the UAV with respect to
the air), (Ci depend on several parameters like the angle
between airspeed and the body fixed reference system,
the aerodynamic and geometric form of the wing). The
rotor is the primary source of control and propulsion for
the UAV. The Euler angle orientation to the flow pro-
vides the forces and moments to control the altitude and
position of the system. The absolute position is described
by three coordinates (x0, y0, z0),and its attitude by Euler
angles (ψ, θ, φ), under the conditions (−π ≤ ψ < π) for
yaw, (−π

2 < θ < π
2 ) for pitch and (−π

2 < φ < π
2 ) for roll.

The state vector and other parameters are defined as:

x = (x0, y0, z0, ψ, θ, φ, ẋ0, ẏ0, ż0, ζ1, ξ, ψ̇, θ̇, φ̇)T

ζ1 and ξ are defined in (1)

F (x) = [f1(x), .., f14(x)]
T

G1(x) =







06×14 06×3 06×3

03×14 M1 03×3

02×14 02×3 02×3

03×14 03×3 P1







G2(x) =

[

010×4

P4

]

H1(x) = [0, 0, 0, 0, x0, y0, z0, ψ]
T

H2(x) = x

K12(x) =

[

I4×4

04×4

]

K21(x) = [I14×14]

The real control signals (u1, u2, u3, u4) have been re-
placed by (ū1, ū2, ū3, ū4) to avoid singularity in lie trans-
formation matrices when using feedback linearization
[17]. In that case u1 has been delayed by a double in-
tegrator. The others control signals will keep unchanged.

u1 = ζ1 +mg

ζ̇ = ξ

ξ̇ = ū1

u2 = ū2

u3 = ū3

u4 = ū4

(2)

Let the state vector be written into the form:

x = (x1, x2, ..., x14)
T (3)

so one can have:

f1(x) = x7, f2(x) = x8, f3(x) = x9

f4(x) = x12, f5(x) = x13, f6(x) = x14

f7(x) = g7
1x10, f8(x) = g8

1x10,

f9(x) = g + g9
1(x10 +mg)

f10(x) = x11, f11(x) = 0





f12(x)
f13(x)
f14(x)



 = P2





x2
12

x2
13

x2
14



 + P3





x12x13

x12x14

x13x14





with

M1 =
1

m
I3×3

P1 =
1

d





0 g12
3 g12

4 d

0 g13
3 g13

4 d

g14
2 g14

3 g14
4 d





P2 =





p211 0 0
p221 0 0
p231 p232 0





P3 =





p311 p312 p313

p321 p322 p323

p331 p332 p333




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P4 =









1 0 0 0
0 0 g12

3 g12
4

0 0 g13
3 g13

4

0 g14
2 g14

3 g14
4









g7
1 = −

1

m
(Cx6Cx4Sx5 + Sx6Sx4)

g8
1 = −

1

m
(Cx6Sx5Sx4 − Cx4Sx6)

g9
1 = −

1

m
(Cx5Cx6)

g14
2 =

d

Ix

g12
3 =

dSx6

IyCx5
; g13

3 =
dCx6

Iy
; g14

3 =
dSx5Sx6

IyCx5

g12
4 =

Cx6

IzCx5
; g13

4 = −
Sx6

Iz
; g14

4 =
Sx5Cx6

IzCx5

p211 = Sx5Sx6Cx6 (I1 − I3)

p221 = Sx5Cx5 (Cx6)
2
(I1 − I3) − Cx5Sx6 (I1)

p231 = Sx6Cx6 (Cx5)
2
(I2 + I3 − I1) + Sx6Cx6 (I1 + I3)

p232 = −I2Sx6Cx6

p311 = T (x5) (Cx6)
2
(I1 − I3) + T (x5) (1 + I3)

p312 = Sx6Cx6 (I3 − I1)

p313 = (Cx6)
2
Se(x5) (I3 − I1) + Se(x5)(1 − I3)

p321 = Sx6Cx6Sx5 (I1 + I3)

p322 = Cx5 (Cx6)
2
(I3 − I1) − Cx5 (1 − I1)

p323 = Sx6Cx6 (I1 − I3)

p331 = Se(x5) (1 + I3) + (Cx6)
2
Se(x5) (I1 − I3)+

(Cx6)
2
(2I2 + I3 − I1) − Cx5 (I2 + I3)

p332 = Sx6Cx6Sx5 (−I1 + I3)

p333 = T (x5) (Cx6)
2
(I3 − I1) + T (x5)(1 − I3)

I1 =
Iy − Ix

Iz
; I2 =

Iy − Iz

Ix
; I3 =

Iz − Ix

Iy

• g is the gravity constant (g = 9.81ms−2 );

• d is the distance from the center of mass to the rotors;

• u1 is the resulting thrust of the four rotors defined as
u1 = (F1 + F2 + F3 + F4)

• u2 is the difference of thrust between the left rotor
and the right rotor defined as u2 = d (F4 − F2)

• u3 is the difference of thrust between the front rotor
and the back rotor defined as u3 = d(F3 − F1)

• u4 is the difference of torque between the two clock-
wise turning rotors and the two counter-clockwise
turning rotors defined as u4 = C(F1 − F2 + F3 − F4)

• C is the force to moment scaling factor

• Ix , Iy , Iz represent the diagonal coefficient of inertia
matrix of the system.

• S(.) = sin(.), C(.) = cos(.), T (.) = tan(.), Se(.) =
sec(.).

3 ROBUST FEEDBACK LINEARIZATION
(INNER CONTROLLER)

The robust feedback linearization method used in this
context is based on Sobolev norm defined as

‖h‖W =

[
∫

∞

0

hT (t)h(t)dt+

∫

∞

0

ḣT (t)ḣ(t)dt

]
1

2

. (4)

It transforms a nonlinear system into its tangent lin-
earized system around an operating point. Then, under
state feedback

ū(x, v) = α(x) + β(x)v

and change of coordinates

z = φ(x)

defined by

α(x) = αc(x) + βc(x)LTφc(x)

β(x) = βc(x)R
−1 (5)

φ(x) = T−1φc(x)

where L=−∆.∂αc
∂x

|x=0, T = ∂φc
∂x

|x=0, R= ∆−1, αc(x) =

−∆−1(x)b(x), βc(x) = ∆−1(x) then the nonlinear sys-
tem is transformed into a following one

ż = Az +B2v +

[

∂φ

∂x
G1(x)

]

x=φ−1(z)

(6)

with A = ∂F (x)
∂x

|x=0, B2 = G2(0). Note that equation

(4) satisfies ∂α
∂x

|x=0= 0, ∂φ
∂x

|x=0= I14×14, β(0) = I4×4 .
For the quadrotor helicopter the input-output decoupling
problem is solvable for the nonlinear system by means of
static feedback. The vector relative degree {r1, r2, r3, r4}
is given by

r1 = r2 = r3 = 4; r4 = 2

and we have

b(x) =
[

Lr1

f h1(x) Lr2

f h2(x) Lr3

f h3(x) Lr4

f h4(x)
]T

φc(x) = [φc1(x), φc2(x), φc3(x), φc4(x) ]
T

φc1(x) =









h1(x) = x0

Lfh1(x) = x7 = ẋ0

L2
fh1(x) = Ax

m
+ g7

1x10 = ẍ0

L3
fh1(x) =

...
x 0








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φc2(x) =









h2(x) = y0
Lfh2(x) = x8 = ẏ0

L2
fh2(x) =

Ay
m

+ g8
1(x4, x5, x6)x10 = ÿ0

L3
fh2(x) =

...
y 0









φc3(x) =









h3(x) = z0
Lfh3(x) = x9 = ż0

L2
fh3(x) = Az

m
+ g + g9

1x10 = z̈0

L3
fh3(x) =

...
z 0









φc4(x) =

[

h4(x) = x4

Lfh4(x) = ẋ4

]

∆(x) =







∆11 ∆12 ∆13 ∆14

∆21 ∆22 ∆23 ∆24

∆31 ∆32 ∆33 ∆34

∆41 ∆42 ∆43 ∆44







with

∆11 = Lg1L
r1−1
f h1(x)

= −
1

m
(Cx6Cx4Sx5 + Sx6Sx4)

∆12 = Lg2L
r1−1
f h1(x)

=
d

mIx
(x10Sx6Cx4Sx5 − x10Cx6Sx4)

∆13 = Lg3L
r1−1
f h1(x) =

d

mIy
(−x10Cx4Cx5)

∆14 = 0

∆21 = Lg1L
r2−1
f h2(x)

= −
1

m
(Cx6Sx5Sx4 − Cx4Sx6)

∆22 = Lg2L
r2−1
f h2(x)

=
d

mIx
(x10Sx6Sx4Sx5 + x10Cx6Cx4)

∆23 = Lg3L
r2−1
f h2(x) =

d

mIy
(−x10Sx4Cx5)

∆24 = Lg4L
r2−1
f h2(x) = 0

∆31 = Lg1L
r3−1
f h3(x) = −

1

m
(Cx5Cx6)

∆32 = Lg2L
r3−1
f h3(x) =

d

mIx
(x10Sx6Cx5)

∆33 = Lg3L
r3−1
f h3(x) =

d

mIy
(x10Sx5)

∆34 = Lg4L
r3−1
f h3(x) = 0

∆41 = Lg1L
r4−1
f h4(x) = 0

∆42 = Lg2L
r4−1
f h4(x) = 0

∆43 = Lg3L
r4−1
f h4(x) =

d

Iy
(Sx6Sex5)

∆44 = Lg4L
r4−1
f h4(x) =

1

Iz
(Cx6Sex5)

In fact the system in equation (5) is still nonlinear be-
cause of w vector. One seeks a controller which ensures
the compensated system to be internally asymptotically
stable and its output to tend asymptotically toward a
desired trajectory even in the presence of external distur-
bance. In this context the linear GH∞ is proposed.

4 H∞ OPTIMAL CONTROL

(OUTER CONTROLLER)

H∞ synthesis methods take into account in an explicit
manner some specification of robustness. The issue here
is to take maximum guaranty for a synthesized control
law on a chosen model to work effectively on the physical
system. For that a transfer function family is considered

where the nominal model Wnom = A−1
0 B0 constitutes the

”center”. We assume that it is possible to choose these
sets of transfer function contain the real system. Hence if
the stability and performance of the closed loop system
are obtained and demonstrated for all Wi elements then
it will be also for the real system [19].

Let the transfer function of the uncertain system be

W̃ = (A0 +Dp∆2Pp)
−1

(B0 +Dp∆1Fp) (7)

where Dp∆2Pp and Dp∆1Fp are modelling errors on A0

and B0 . Dp , Pp and Fp are characterized by low and
pass filter respectively and ∆1,∆2 are the non structured
uncertainty. It is assumed that disturbances are bounded
and there exists a function V which verifies

∥

∥V −1∆1

∥

∥

2

∞
+

∥

∥V −1∆2

∥

∥

2

∞
< 1 (8)

Hence the minimization criterion is written as:

J∞ =
∥

∥(PpS + FpM)
∗

Φff (PpS + FpM)
∥

∥

∞
(9)

The cost function of GH∞ lead to eigenvalues problem
which lead to the minimization of

∥

∥(PpS+FpM)A−1Df

∥

∥

where Φff = A−1DfD
∗

fA
∗−1 . The weighting functions

can be represented as

Pp(z
−1) = P−1

d Pn, Fp(z
−1) = P−1

d Fn (10)

where Pd is strictly schur and Pn(0) 6= 0. The polynomi-
als Pn and Fn are chosen to assure that the polynomial

Lc = PnB − FnA (11)

verifies LcL
∗

c > 0 on |z| = 1. If we can write Lc = L1L2

with L1 strictly minimal phase, L2 a non-minimal phase
and L2s is Schur polynomial satisfying L2s = L∗

2z
−n2

where n2 = deg(L2), then the control law procedure is
summarized as follow:
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• compute (G2,H2, F2) through Diophantine equations

F2APd + L2G2 = L2sPnDf (12)

F2BPd − L2H2 = L2sFnDf (13)

• compute the eigenvalue/eigenvector equation (N1, F1,

F1s, λ) with F1s is schur polynomial satisfying F1s =

F ∗

1 z
−n1 where n1 = deg(F1).

L2N1 + F1λL2s = −F1sF2 (14)

• compute the control law

C0 = (H2 +KB)
−1

(G2 −KA) , K = F−1
1s N1Pd

(15)
The main difference between H∞ and GH∞ is that the
first one uses iteration algorithm to compute control
law whereas the second one uses eigenvalue/eigenvector
problem to get solution which is easier to compute.

The error sensibility S,the control sensibility M and
the complementary sensibilityT are defined as follow:

S =
A (H2 +KB)

L1L2sDf

,M =
A (G2 −KA)

L1L2sDf

T =
B (G2 −KA)

L1L2sDf

Finally, the GH∞ controller has been computed with
the following constrain:

• Forces must be greater than or equal to zero and less
than 10 (0 ≤ Fi ≤ 10N) which systematically lead to
(u1 ≥ 0). This is due to actuator output limits.

• The altitude z0 must be less than or equal zero (z0 ≤
0) since the reference frame is upside down.

5 APPLICATION TO QUADROTOR

The nominal transfer matrix is computed for Iy0 =
1.2416; Iz0 = 1.2416; Ix0 = 1.2416;m0 = 2; d = 0.1 with
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Fig. 11. Tracking errors

inputs v1 , v2 , v3 , v4 and outputs x0 , y0 , z0 , ψ.
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
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The reference trajectory is chosen as:

x0d = y0d = z0d = 0.5a(t− 2)2Γ(t− 2)+0.75a(t−T −

2)2Γ(t−T −2)−0.75a(t−2T −2)2Γ(t−2T −2)−0.5a(t−

3T − 2)2Γ(t− 3T − 2)− 0.5a(t− 4T − 2)2Γ(t− 4T − 2)−

0.75a(t−5T−2)2Γ(t−5T−2)+0.75a(t−6T−2)2Γ(t−

6T − 2) + 0.5a(t− 7T − 2)2Γ(t− 7T − 2)
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ψ0d = 0.5b(t−2)2Γ(t−2)+0.75b(t−T −2)2Γ(t−T −

2)−0.75b(t−2T−2)2Γ(t−2T−2)−0.5b(t−3T−2)2Γ(t−

3T − 2)− 0.5b(t− 4T − 2)2Γ(t− 4T − 2)− 0.75b(t− 5T −

2)2Γ(t− 5T − 2)+

0.75(t−6T −2)2Γ(t−6T −2)+0.5b(t−7T −2)2Γ(t−
7T − 2)

With Γ(t − αT ) = 0 for t ≤ αT and Γ(t − αT ) =

1 for t > αT ; T = 5 s , a = 2.222.10−3m/s2 and b =

2.222.10−3rad/s2 so the steady state of the trajectories
will be x0d = 1 m y0d = 1 m; z0d = 1 m ψd = 1 rad.

With a chosen weighting function Fn , Pn and Pd ,
the controller C0 is given. The sensitivity S , the control
sensitivity M , the complementary sensitivity T and the
cost function are represented:
• Output: x0, y0, z0

Poles of C0 Zeros of C0

−27.2518 ± 4.2603i 613.34
−27.1501 ± 4.2764i −186.0725 ± 394.6909i

−20.6711 −353.7157
−9.6508 ± 4.1499i −27.2518 ± 4.2603i
−2.5778 ± 4.2796i −3.5256

−3.5256 −2.2263
−2.2262 −0.1676 ± 0.1779i

−0.1676 ± .1779i −0.1301 ± 0.1325i
−0.0388

|λx0| = |λy0| = |λz0| = 0.89617

γx0
= γy0 = γz0 = 1.1159

• Outputψ

Poles of C0ψ Zeros of C0ψ

−27.6616 ± 2.2323i −24.6533
−20.0710 −24.3742 ± 0.4382i
−17.4163 −23.7707
−6.6884 −3.6203
−3.6203 −1.8308
−1.8308 −0.8156
−0.8160 −0.3817

|λψ| = 2.0135;

γψ = 1

|λψ|
= 0.49665

Case of Aerodynamic force disturbances:

An aerodynamic force disturbances has been taken for
Ax = 0.5 N,Ay = 0.5 N and Az = 1.5 N occurring at
20 s, 40 s and 60 s respectively, the results of (x0, y0, z0, ψ)
and (θ, φ) are shown in Fig. 5 and Fig. 6. The behavior of
the applied forces and aerodynamic force disturbances is
shown in Fig. 7. The tracking errors are shown in Fig. 8.

Case of Aerodynamic moment disturbances:

For the aerodynamic moments Ap = 0.08 Nm, Aq =
0.08 Nm and Ar = 0.5 Nm occurring at 20 s, 40 s and
60 s respectively the results of the applied forces are
represented in Fig. 9. Tracking errors are represented in
Fig. 10.

• It is noted from Fig. 5 to Fig. 8 that the system
when subjected to aerodynamic force disturbance
[Ax, Ay, Az] and 20% uncertainties on mass and iner-
tia,the mixed inner-outer controller satisfying results
even without block disturbances estimation. This can
be shown from tracking error trajectories which van-
ished after a finite time with a perfect convergency.
This is due not only to the robustness of the H∞ con-
troller but also to robust feedback linearization which
preserve the good robustness properties. This is shown
at the time 20 s on x0 , 40 s on y0 , and at the time
60 s on z0 trajectory when the disturbances occurs.
The robustness of the system can be confirmed by
tracking errors trajectories (Fig. 8). The magnitude
disturbances are limited by actuator saturation be-
tween 0 and 10 N. However despite the overshoots on
forces in figure(Fig. 7) which lead to saturation the
system remain stable.

• However, when subjected to aerodynamic moments
disturbances [AP , Aq, Ar] and 20% uncertainties on
mass and inertia, the results are shown in Fig. 9,
Fig. 10. It is seen that the inner-outer controller shows
efficiency to overcome easily disturbances on z and
ψ, better than on x and y . The forces in Fig. 9
reflect perfectly the relation between control input
( ū1, ū2, ū3, ū4) and (F1, F2, F3, F4). The computed
sensitivity S in Fig. 1 and Fig. 3 show a low gain
at low frequency and a gain oscillating near 0 dB at
high frequency, however the complementary sensitiv-
ity T shows a gain of 0 dB at low frequency and a low
gain at high frequency.

This confirms that the resulting design is appropriate.
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