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Abstract— Sufficient conditions for stability of feedback in-
terconnections of negative imaginary systems are derived via
an integral quadratic constraint (IQC) approach. These extend
existing results in the literature by exploiting the flexibility
present at the static and infinite frequencies to reduce con-
servatism. Negative imaginary transfer functions with poles
on the imaginary axis are accommodated using a recently
generalised IQC-based robustness result. In particular, the
negative imaginary property of systems is shown to give rise to
IQCs on positive frequencies that are bounded away from zero
and infinity. Additional quadratic conditions are introduced to
take care of the IQCs near the DC and instantaneous gains of
the systems.

Index Terms— Negative imaginary systems, feedback stabil-
ity, integral quadratic constraints

I. INTRODUCTION

The notion of negative imaginary systems was introduced
in [1], [2]. The negative imaginary property commonly
arises from the dynamics of a lightly damped structure
with colocated force actuators and position sensors (such
as piezoelectric sensors) [3], [2]. Such a system exhibits
positive real dynamics [4] from the force input to the velocity
output, but negative imaginary dynamics from the force
input to the position output, whose transfer function may
be of relative degree 2, rendering the standard positive real
results inapplicable. Another area where negative imaginary
dynamics are found is that of nano-positioning systems [5].
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Fig. 1. Positive feedback of negative imaginary systems.

Due to the prevalence of negative imaginary properties in
real world applications, the robustness of feedback intercon-
nections of open-loop stable negative imaginary systems is
investigated in [1] as a parallel to the positive real stability
results [4]; see Figure 1. It is shown that if the instantaneous
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gain of Ḡ is positive semidefinite, i.e. Ḡ(∞) ≥ 0, and the
product of the instantaneous gains of Ḡ and G is 0, then the
closed-loop system [Ḡ,G] is internally stable if, and only if,
the DC gain condition λ̄(G(0)Ḡ(0)) < 1, where λ̄ denotes
the maximum eigenvalue. This result is further generalised
in [6] to the case where G may have imaginary-axis poles
that are not located at the origin. These stability conditions
are robust in the sense that they are invariant to negative-
imaginary perturbations on the systems, provided that the
aforementioned gain conditions are not destroyed. Stability
conditions for negative imaginary systems with poles at the
origin are studied in [7].

When the presuppositions of the stability theorems in [1],
[6] do not hold, such as Ḡ(∞) being sign-indefinite, then
the DC gain condition may not be necessary. This paper
derives generic sufficient conditions for feedback stability
of stable negative imaginary systems using the theory of
integral quadratic constraints (IQC) [8], [9]. In particular,
it is established that the negative imaginary properties of the
systems give rise to complementary IQCs on a compact set
of frequencies which do not include 0 and ∞ but can be
arbitrarily large. This interpretation clarifies clearly the role
of negative imaginariness in IQC analysis. Furthermore, it
leads to the observation that feedback stability follows if
there exist constant multipliers such that the corresponding
complementary IQCs hold at 0 and ∞. The robust stability
result is shown to extend to negative imaginary systems that
are only marginally stable, i.e. have poles on the imaginary
axis. To this end, a recently developed notion of IQCs
for marginally stable systems from [10] is employed to
conclude closed-loop stability. It is noteworthy that a relevant
work on mixed passivity, negative imaginary, and small gain
properties, all of which are characterisable by IQCs, can be
found in [11].

The paper evolves along the following lines. Robust stabil-
ity of feedback interconnections of stable negative imaginary
systems is considered in Section II. Section III reviews a
recent result on IQC conditions for concluding a generalised
notion of feedback stability. This is then utilised to derive
robust stability conditions for negative imaginary systems
with imaginary-axis poles in Section IV. A couple of numer-
ical examples are given in Section V to illustrate the theory.
Finally, concluding remarks are provided in Section VI.

II. STABLE NEGATIVE IMAGINARY TRANSFER
FUNCTIONS

In this section, sufficient conditions which guarantee
closed-loop stability of stable negative imaginary systems are

2015 European Control Conference (ECC)
July 15-17, 2015. Linz, Austria

978-3-9524269-3-7 ©2015 EUCA 1998



derived. The proof methods in this section will be reused
in the subsequent section where systems with imaginary-
axis poles are accommodated. It begins by introducing the
notation used in this paper.

R and C denote, respectively, the real and complex num-
bers. C+ denotes the open right half plane and C̄+ its clo-
sure. Let Rn×m denote the set of real-rational proper transfer
function matrices of dimensions n × m and RH∞

n×m

denote the subset of stable transfer functions in Rn×m.
Define

N̂ := {R ∈RH∞
n×n :

j[R(jω)−R(jω)∗] ≥ 0 ∀ω ∈ (0,∞)}
Ns := {R ∈RH∞

n×n :

j[R(jω)−R(jω)∗] > 0 ∀ω ∈ (0,∞)} ⊂ N̂.

N̂ denotes the set of stable negative imaginary transfer func-
tions; a more general definition accommodating marginally
stable poles will be given in the next section. Ns denotes
the set of strictly negative imaginary transfer functions. An
R ∈ N̂ satisfies R(0) = R(0)T ∈ Rn×n and R(∞) =
R(∞)T ∈ Rn×n [1, Lem. 2]. As such, it follows that
j[R(jω)−R(jω)∗] = 0 when ω = 0 or ω =∞.

Denote by σ̄(A), the largest singular value of matrix A
and by λ̄(B), the largest eigenvalue of a Hermitian matrix
B = B∗.

Theorem 2.1: Given G ∈ N̂ and Ḡ ∈ Ns, suppose there
exist Π0 = Π∗0 ∈ C2n×2n, Π∞ = Π∗∞ ∈ C2n×2n such that
for some ε > 0 and all τ ∈ [0, 1],[

Ḡ(0)
I

]∗
Π0

[
Ḡ(0)
I

]
≤ −εI;[

I
τG(0)

]∗
Π0

[
I

τG(0)

]
≥ 0

(1)

and [
Ḡ(∞)
I

]∗
Π∞

[
Ḡ(∞)
I

]
≤ −εI;[

I
τG(∞)

]∗
Π∞

[
I

τG(∞)

]
≥ 0.

(2)

Then the feedback interconnection [Ḡ,G] is internally stable.

Proof: Let Π̂0 := 2Π0 + εI and Π̂∞ := 2Π∞ + εI .
Then the inequalities above are equivalent to[
Ḡ(0)
I

]∗
Π̂0

[
Ḡ(0)
I

]
≤ −εI;

[
I

τG(0)

]∗
Π̂0

[
I

τG(0)

]
≥ εI

and [
Ḡ(∞)
I

]∗
Π̂∞

[
Ḡ(∞)
I

]
≤ −εI;[

I
τG(∞)

]∗
Π̂∞

[
I

τG(∞)

]
≥ εI

for all τ ∈ [0, 1]. By continuity of rational transfer functions,
the hypothesis implies there exist sufficiently small Ω > 0

and sufficiently large Ω̄ > 0 such that[
Ḡ(jω)
I

]∗
Π̂0

[
Ḡ(jω)
I

]
≤ − ε

2
I;[

I
τG(jω)

]∗
Π̂0

[
I

τG(jω)

]
≥ ε

2
I

(3)

for all ω ∈ [0,Ω], τ ∈ [0, 1] and[
Ḡ(jω)
I

]∗
Π̂∞

[
Ḡ(jω)
I

]
≤ − ε

2
I[

I
τG(jω)

]∗
Π̂∞

[
I

τG(jω)

]
≥ ε

2
I

(4)

for all ω ∈ [Ω̄,∞], τ ∈ [0, 1]. Now note from the definitions
of N and Ns that G ∈ N̂ and Ḡ ∈ Ns implies that there
exists η > 0 such that[

Ḡ(jω)
I

]∗
Πm

[
Ḡ(jω)
I

]
≤ −ηI;[

I
τG(jω)

]∗
Πm

[
I

τG(jω)

]
≥ 0

for all τ ∈ [0, 1] and ω ∈ [Ω, Ω̄], where

Πm :=

[
0 jI
−jI 0

]
.

Let Π̂m := 2Πm + ηI , then[
Ḡ(jω)
I

]∗
Π̂m

[
Ḡ(jω)
I

]
≤ −ηI;[

I
τG(jω)

]∗
Π̂m

[
I

τG(jω)

]
≥ ηI

(5)

for all τ ∈ [0, 1] and ω ∈ [Ω, Ω̄]. Define

γ0(jω) :=

{
1 ω ∈ [0,Ω]
0 otherwise,

γ∞(jω) :=

{
1 ω ∈ [Ω̄,∞]
0 otherwise,

and

Π(jω) := γ0(jω)Π̂0 + Π̂m + γ∞(jω)Π̂∞, ω ∈ [0,∞]. (6)

Combining (3), (4), and (5) yields that[
Ḡ(jω)
I

]∗
Π(jω)

[
Ḡ(jω)
I

]
≤ −ζI;[

I
τG(jω)

]∗
Π(jω)

[
I

τG(jω)

]
≥ 0

(7)

for all ω ∈ [0,∞], τ ∈ [0, 1] and some ζ > 0. Stability of
[Ḡ,G] then follows from the theory of IQCs [8, Thm. 1]
or [12, Thm. 7]; see also Proposition 3.1 with ε = 0 in the
next section.

Remark 2.2: Theorem 2.1 is proven by fabricating a 3-
part multiplier Π in (6) in such a way that the standard
IQC result can be applied to conclude closed-loop stability.
In particular, the fact that G ∈ N̂ and Ḡ ∈ Ns implies
the complementary IQC inequalities hold for positive fre-
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quencies that are bounded from zero and infinity; see (5).
The additional matrix inequalities (1) and (2) in the theorem
imply the complementary IQC inequalities for sufficiently
small and sufficiently large frequencies, i.e. (3) and (4)
respectively.

Corollary 2.3: Given G ∈ N̂ and Ḡ ∈ Ns, suppose
σ̄(G(0)Ḡ(0)) < 1 and σ̄(G(∞)Ḡ(∞)) < 1, then the
feedback interconnection [Ḡ,G] is internally stable.

Proof: The hypothesis is equivalent to
λ̄(Ḡ(jω)∗G(jω)∗G(jω)Ḡ(jω)) < 1 for ω = 0 and
ω =∞. It follows that the matrix inequalities (1) and (2) in
Theorem 2.1 hold with respect to

Π0 :=

[
G(0)∗G(0) 0

0 −I

]
and

Π∞ :=

[
G(∞)∗G(∞) 0

0 −I

]
,

as required.

III. GENERALISED IQC CONDITIONS

In order to accommodate negative imaginary transfer func-
tions with imaginary-axis poles, a generalised version of the
IQC result is needed. This section provides an overview of
such a generalisation from [10].

Given an ε > 0 and a point jq ∈ jR, define the semi-circle
of radius ε in the right-half plane as

Sε(jq) := {s ∈ C : |s− jq| = ε,<(s) > 0}

and S0(jq) := {}. Given a finite ordered set jQ =
{jq1, jq2, . . . , jqK} ⊂ jR with q1 > q2 > . . . > qK , define
a contour parameterised by ε ≥ 0 as

Cε(jQ) := j[q1 + ε,∞) ∪ Sε(jq1) ∪ j[q2 + ε, q1 − ε]
∪ Sε(jq2) ∪ j[q3 + ε, q2 − ε]

...
∪ Sε(jqK) ∪ j(−∞, qK − ε].

(8)

that is, a straight line on the imaginary axis indented to
the right of every point in jQ by a semi-circle of radius
ε. In particular, notice that C0(jQ) = jR for any jQ ⊂ jR.
Denote by C+ε (jQ) the open half plane that lies to the right
of Cε(jQ) defined in (8), i.e.

C+ε (jQ) := {s = σ+jω ∈ C | σ̄+jω ∈ Cε(jQ) =⇒ σ > σ̄},

and C̄+ε (jQ) its closure. The following result can be estab-
lished as in [10, Thm. 4.4 and 4.5].

Proposition 3.1: Given ∆ ∈ Rn×m and G ∈ Rm×n,
where ∆ and G have no poles on C̄+ \ jQ, the closed-loop
transfer function [

I −G
−∆ I

]−1
of the feedback interconnection [∆, G] has no poles on
C̄+ \ jQ if there exists a bounded Π : jR ∪ {∞} →
C(n+m)×(n+m) such that and Π(jω) = Π(jω)∗ for all

ω ∈ [0,∞] and the following complementary IQC conditions
hold:

(i) for all ω ∈ [0,∞] \ Q,[
G(jω)
I

]∗
Π(jω)

[
G(jω)
I

]
≤ −ηI;

(ii) for all ω ∈ [0,∞] \ Q, τ ∈ [0, 1],[
I

τ∆(jω)

]∗
Π(jω)

[
I

τ∆(jω)

]
≥ 0.

IV. NEGATIVE IMAGINARY TRANSFER FUNCTIONS WITH
IMAGINARY-AXIS POLES

IQC-based conditions for feedback stability of negative
imaginary systems with imaginary-axis poles are established
in this section. The proofs rely on the arguments detailed in
Section II and the generalised IQC result in Section III.

Definition 4.1 ([6, Def. 1]): An R ∈ Rn×n is said to be
negative imaginary if

(i) R(s) has no poles in <[s] > 0 and at s = 0;
(ii) j[R(jω) − R(jω)∗] ≥ 0 for all ω ∈ (0,∞) except

values ω where jω is a pole of R(s);
(iii) if s = jω0 with ω0 ∈ (0,∞) is a pole of R(s), then

it is a simple pole and the residue matrix lim
s→jω0

(s −
jω0)jR(s) is Hermitian and positive semidefinite.

Denote by N the set of negative imaginary transfer func-
tions. Notice that Ns ⊂ N̂ ⊂ N.

Theorem 4.2: Given Ḡ ∈ Ns and G ∈ N, suppose that
for all τ ∈ [0, 1], [

Ḡ(0)
I

]∗
Π0

[
Ḡ(0)
I

]
< 0;[

I
τG(0)

]∗
Π0

[
I

τG(0)

]
≥ 0

and [
Ḡ(∞)
I

]∗
Π∞

[
Ḡ(∞)
I

]
< 0;[

I
τG(∞)

]∗
Π∞

[
I

τG(∞)

]
≥ 0,

and for every jω0, ω0 6= 0, that is a pole of G, the residue
matrix lim

s→jω0

(s−jω0)jG(s) is positive definite. Under these

conditions, the feedback interconnection [Ḡ,G] is internally
stable.

Proof: The same arguments in the proof for Theo-
rem 2.1 can be used to establish (7) for all τ ∈ [0, 1] and
ω ∈ [0,∞] \ Q, where jQ denotes the set of imaginary-
axis poles of G. The only additional requirement is that Ω
needs to be sufficiently small and Ω̄ sufficiently large so that
jQ∩ [0,Ω] = {} and jQ∩ [Ω̄,∞] = {}. By Proposition 3.1,
this then implies that the closed-loop transfer function

H :=

[
I −G
−Ḡ I

]−1
(9)

has no poles on C̄+ \ jQ. In what follows, we show that H
has also no poles in jQ, which then implies H ∈ RH∞,

2000



i.e. the feedback interconnection [Ḡ,G] is stable.

First note that Ḡ ∈ Ns implies det(Ḡ(jω)) 6= 0 for ω 6=
0. To see this, observe that if det(Ḡ(jω0)) = 0 for some
ω0 6= 0, then there exists v ∈ Cn such that Ḡ(jω0)v = 0.
It follows that v∗j[Ḡ(jω0)− Ḡ(jω0)∗]v = 0, which violates
the supposition that Ḡ ∈ Ns. As such,

det(Ḡ(jω)) 6= 0∀ω ∈ (0,∞). (10)

This implies that there is no closed right-half plane pole-
zero cancellation in the product G(s)Ḡ(s), since G ∈ N has
no poles at the origin. Therefore, by [13, Thm. 5.7], jω0,
ω0 ∈ R is a pole of H(s) if, and only if, jω0 is a pole of
(I −G(s)Ḡ(s))−1.

Now suppose jω0, ω0 > 0 is an imaginary-axis pole of
G ∈ N, i.e. jω0 ∈ jQ. Since N is rational, this is equivalent
to −jω0 ∈ jQ. In this case, G(s) can be factored as G(s) =
((s+α)2/(s2 +ω2

0))G1(s), where α := σ− jω0 and σ > 0
is such that α is not a pole or zero of N . Note that G1 is
proper, rational with complex coefficients. By hypothesis, it
follows that

0 < lim
s→jω0

(s− jω0)jG(s)

= lim
s→jω0

(s− jω0)j
(s+ α)2

s2 + ω2
0

G1(s)

=
α2

2ω0
G1(jω0),

whereby G1(jω0) > 0. Observe that

(I −G(s)Ḡ(s))−1

=
s2 + ω2

0

(s+ α)2

(
s2 + ω2

0

(s+ α)2
I −G1(s)Ḡ(s)

)−1
=:

s2 + ω2
0

(s+ α)2
S(s)−1.

By combining the fact that G1(jω0) > 0 and det(Ḡ(jω0)) 6=
0 as shown in (10), we get

det(S(jω0)) = det(G1(jω0)Ḡ(jω0))

= det(G1(jω0)) det(Ḡ(jω0)) 6= 0.

Invoking [13, Lem. 3.38] yields that S(s) has no pole at jω0.
This implies that (I − G(s)Ḡ(s))−1, and hence H(s), has
no pole at every jω0 ∈ jQ.

All in all, the closed-loop transfer function H(s) in (9)
has no poles on C̄+, i.e. H ∈ RH∞ and the feedback
interconnection [Ḡ,G] is stable.

Corollary 4.3: Given Ḡ ∈ Ns and G ∈ N, suppose
σ̄(G(0)Ḡ(0)) < 1, σ̄(G(∞)Ḡ(∞)) < 1, and for every jω0,
ω0 6= 0, that is a pole of G, the residue matrix lim

s→jω0

(s −
jω0)jG(s) is positive definite. Under these conditions, the
feedback interconnection [Ḡ,G] is internally stable.

Proof: The same arguments in the proof for Corol-
lary 2.3 can be applied to show that the conditions in
Theorem 4.2 hold, which implies the claim.

τθ

x

y

x1

x2
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Fig. 2. Schematic diagram of a slewing beam equivalent to a robotic arm.

V. NUMERICAL EXAMPLES

Consider a robotic arm pinned to a motor at one end
and an equivalent slewing beam model shown in Figure 2;
see [14]. Two piezoelectric patches are attached to the arm
on either side of the beam. They act as an actuator and a
sensor, respectively. The system has input voltage Va applied
to the piezoelectric actuator and input torque τ applied by
the motor. On the other hand, the outputs of the system are
the voltage Vs produced by the piezoelectric sensor and the
motor hub angle θ. A distributed-parameter transfer function
matrix for the robotic arm is provided in [14]:[

Nτ,θ(s)
D(s)

NVa,θ(s)
D(s)

Nτ,Vs (s)
D(s)

NVa,Vs (s)
D(s)

]
,

where Nτ,θ, NVa,θ, Nτ,Vs , NVa,Vs , and D are given in
equations (26)-(28) in [14].

By approximating the distributed-parameter model as
in [7] with a first-resonant mode and ignoring the free body
dynamics, one obtains

G(s) :=
1

6.6667× 10−8

[
3.0907
s2+3.42 + 0.3 3.557×10−4

s2+3.42

3.557×10−4

s2+3.42
2.35

s2+3.42 + 0.3

]
.

Note that G is negative imaginary since j[G(jω) −
G(jω)∗] = 0 for all ω ∈ (0,∞) \ 3.4. This follows from
the fact that G(jω) is real and symmetric for all ω > 0 such
that jω is not a pole of G. Furthermore, the residue matrix

lim
s→j3.4

(s− j3.4)jG(s)

=
1

6.6667× 10−8

[
3.0907
6.8 + 0.3 3.557×10−4

6.8
3.557×10−4

6.8
2.35
6.8 + 0.3

]
> 0.

To stabilise the plant G ∈ N, an integral resonant
controller (IRC) [2] is employed. An IRC is a first-order
controller taking the form

Ḡ(s) = (sI + ΓΦ)−1Γ−∆,

which is strictly negative imaginary if Γ > 0, Φ > 0 and ∆
is symmetric [2, Thm. 8]. Let

Γ :=

[
35 15
15 20

]
Φ :=

[
745 521
521 1.021

]
∆ :=

[
2.0871 −1.0650
−1.0650 1.5229

]
.

Note that since Ḡ(∞) < 0 and G(∞)Ḡ(∞) 6= 0, [6, Thm. 1]
cannot be applied here to analyse the stability of the feedback
interconnection [Ḡ,G]. However, it can be easily verified
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that σ̄(G(0)Ḡ(0)) = 0 and σ̄(G(∞)Ḡ(∞)) = 0.8720 < 1,
whereby Corollary 4.3 holds and [Ḡ,G] is stable.

Suppose now ∆ := [ 10 0
0 10 ]. In this case, σ̄(G(0)Ḡ(0)) =

3.3574 × 107 and σ̄(G(∞)Ḡ(∞)) = 3. As such, the
conditions of Corollary 4.3 fail to hold and hence it cannot
be used to conclude stability of [Ḡ,G]. However, by defining

Π0 = Π∞ :=

[
0 I
I 0

]
,

it is straightforward to verify that the conditions in The-
orem 4.2 hold. As such, [Ḡ,G] is stable. Note that the
multipliers Π0 and Π∞ employed in this example correspond
to an IQC characterising passivity [8]. Intuitively, stability of
[Ḡ,G] is established in this example by exploiting the fact
that Ḡ and G exhibit negative imaginary property at positive
frequencies that are bounded away from zero and infinity, and
positive real property when the frequencies are sufficiently
small or sufficiently large.

VI. CONCLUSIONS

This paper establishes sufficient conditions for robust
stability of feedback interconnections of negative imaginary
systems using an integral quadratic constraint (IQC) ap-
proach. Of future interest are generalisations to accommodate
free body dynamics corresponding to poles at the origin [7].
Nonlinear systems exhibiting counterclockwise input-output
dynamics [15] may also be considered within the framework
of IQCs as extensions of negative imaginary systems to
nonlinear settings.
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