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Abstract
Purpose Fetoscopic laser photocoagulation is a minimally invasive procedure to treat twin-to-twin transfusion syndrome
during pregnancy by stopping irregular blood flow in the placenta. Building an image mosaic of the placenta and its network
of vessels could assist surgeons to navigate in the challenging fetoscopic environment during the procedure.
Methodology We propose a fetoscopic mosaicking approach by combining deep learning-based optical flow with robust
estimation for filtering inconsistent motions that occurs due to floating particles and specularities. While the current state
of the art for fetoscopic mosaicking relies on clearly visible vessels for registration, our approach overcomes this limitation
by considering the motion of all consistent pixels within consecutive frames. We also overcome the challenges in applying
off-the-shelf optical flow to fetoscopic mosaicking through the use of robust estimation and local refinement.
Results We compare our proposed method against the state-of-the-art vessel-based and optical flow-based image registration
methods, and robust estimation alternatives. We also compare our proposed pipeline using different optical flow and robust
estimation alternatives.
Conclusions Through analysis of our results, we show that our method outperforms both the vessel-based state of the art and
LK, noticeably when vessels are either poorly visible or too thin to be reliably identified. Our approach is thus able to build
consistent placental vessel mosaics in challenging cases where currently available alternatives fail.

Keywords Optical flow · Fetoscopy · Video mosaicking · Twin-to-twin transfusion syndrome

Introduction

Twin-to-twin transfusion syndrome (TTTS) is a severe com-
plication of monochorionic twin pregnancies where both
fetuses share the same placenta [6]. This condition occurs
when abnormal placental vascular anastomoses on the
chorionic plate of the placenta allow for the transfusion
of blood disproportionately from one fetus to another [6].
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TTTS occurs in about 1 in 2000 pregnancies and it can
be life-threatening for both fetuses. The standard method
for treating TTTS is a laser ablation image-guided proce-
dure, termed as fetoscopic laser photocoagulation (FLP),
that photocoagulates abnormal vascular anastomoses respon-
sible for the complication. The process involves surgeons
searching for abnormal vascular anastomoses using the feto-
scope. The field of view of a fetoscope is limited compared
to the area being operated, and this may lead to anasto-
moses beingmissed by the surgeon and incomplete treatment
[19]. Other common problems encountered include unusual
placenta position (anterior or posterior placenta), poor visi-
bility, and limited maneuverability. Expanding the surgical
field of view through automatic video frame registration and
mosaicking can provide better visualization of the in utero
scene and could support the surgeon in the identification of
abnormal anastomoses during the laser procedure.

Various image mosaicking methods have been explored
to provide an expanded view of the placenta from feto-
scopic video frames and overcome the associated visibility
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and navigation challenges. Approaches mostly differ in how
the alignment of consecutive frames is performed. Daga et
al. [9,26] utilized a classical pipeline for alignment of sparse
point landmarks, relying on detection and matching of hand-
crafted features (SIFT). However, this approach only works
reliably on synthetic phantom data and achieves a drastically
lower performancewith in vivoTTTS fetoscopic video due to
multiple factors such as lower resolution, poor illumination,
lack of texture, low contrast, specular reflections, occlusion
by particles in the amniotic fluid [24].

On the other hand, dense registrationmethods have shown
a significantly larger success in dealing with in vivo TTTS
fetoscopic data than sparse feature-based methods. Peter et
al. [24] proposed a direct pixel-wise alignment of gradient
orientations and anoptimization framework for ensuring long
range consistency using bag-of-words. However, the method
was designed and validated only on a single in vivo video
clip. Tella-Amo et al. [30] used an electromagnetic tracker
with the fetoscope on an ex-vivo setup. They proposed a
dense registration mosaicking method capable of correcting
for drift, but this hardware setup has not yet been replicated
in a real surgery scenario, which can be challenging both in
terms of reliable calibration and regulatory approval.

Deep learning techniques have also been used to estimate
motion model parameters in fetoscopy with success. DeTone
et al. [10] presented a deep learning regression approach to
calculate the geometric transformation between two images.
This method does not require local feature detection or pixel-
based alignment algorithms. Bano et al. [3,5] extended this
approach to handle sequential data in fetoscopic videos by
proposing controlled data augmentation and outlier rejec-
tion methods. The method [3,5] outperforms feature-based
mosaicking and shows reliable results on a larger set of pla-
cental videos. However, it suffers from drifting error in the
case of non-planar views and occlusions. A recent approach
based on the registration of vessel segmentation by Bano
et al. [4] has shown for the first time reliable mosaics on
multiple in vivo sequences with significantly different visual
appearances. This approach, however, is expected to fail
when vessel segmentation is inaccurate or its shape is not
discriminative enough for sequential registration. Potential
causes for segmentation failure include scarce or thin vas-
culature and specular reflections, which we experimentally
confirm in “Experimental Analysis”.

Optical flow is a well-established technique in com-
puter vision that attempts to match all corresponding pixels
between two consecutive frames based on local similar-
ity [13]. This is a viable alternative for fetoscopic image
registration that does not explicitly rely on vessel features
and therefore can overcome the above-mentioned challenge.
However, classic optical flow approaches such as pyramidal
Lucas–Kanade (LK) are not reliable enough on fetoscopic
data as demonstrated in [4]. Better results have been obtained

by modifying the cost function of LK to be more sensitive
to vessel structures [24], but this undermines our goal of
dealing with images where such vessels are not clearly vis-
ible. More recent state-of-the-art optical flow methods such
as DeepFlow [32], FlowNet [11], FlowNet-2 [15], PWC-Net
[28], and RAFT [29] are based on deep learning networks
and to the best of our knowledge they have not been tested
before as a backbone for fetoscopic mosaicking. While these
methods have shown impressive results in other computer
vision domains, there are particular challenges in their appli-
cation to fetoscopic data, with the most predominant being
the presence of floating particles and specular reflections
that are inconsistent with global camera motion. One poten-
tial solution would be to fine-tune the optical flow network
parameters on fetoscopic data, however, this is not possible
to achieve at the moment since there is no available camera
motion groundtruth for in vivo fetoscopic data.

This paper proposes a fetoscopic video mosaicking
approach by combining deep learning-based optical flow
with robust RANSAC [12] estimation for filtering incon-
sistent motions, thus providing a reliable pixel-alignment
solution that is able to deal with floating particles and reflec-
tionswhich are not consistentwith fetoscopic cameramotion.
The proposed fetoscopic mosaicking pipeline uses state-
of-the-art optical flow as a backbone and reliably works
regardless of whether vessels are clearly visible within the
fetoscopic field of view or not. We can summarize our con-
tributions as follows:

1. We propose a new fetoscopic mosaicking pipeline that
relies on optical flow (FlowNet-2 [15]), robust estimation
(RANSAC), and local refinement (Levenberg–Marquardt
[23]) for incremental camera motion estimation. Unlike
the current state of the art [4], the approach does not
explicitly rely on clearly visible vessels.

2. We experimentally validated our approach on 6 in vivo
TTTS video sequences, which are an extended version
of the publicly available fetoscopy placenta dataset1. The
extended dataset used in our experimentation has been
made available, under the fetoscopy placenta dataset web-
page, for reproducibility.

3. We show that FlowNet-2 pretrained on non-medical
data reliably initializes fetoscopic mosaics, provided that
inconsistent motions due to floating particles and spec-
ularities are identified and filtered with RANSAC. Note
that FlowNet-2 cannot be fine-tuned in a supervised way
on fetoscopic data due to the lack of groundtruth. While
self-supervised fine-tuning [18] could be an option, our
experimental results show that pretrained models are suf-
ficiently reliable for fetoscopic mosaicking.

1 Fetoscopy placenta dataset from [4]: https://www.ucl.ac.uk/
interventional-surgical-sciences/fetoscopy-placenta-data.
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Fig. 1 An overview of the proposed framework which is composed of a flow field generation block that provides features, a pixel correspondence
block that performs feature matching, and a registration block that generates mosaic through LM optimization

4. We experimentally justify the components of our pipeline
through direct experimental comparison against rele-
vant alternatives. The choice of FlowNet-2 is compared
against the recently proposed Recurrent All-Pairs Field
Transforms for Optical Flow (RAFT) [29] and the clas-
sic pyramidal Lucas–Kanade (LK) [20]. The choice of
RANSAC for robust optimization is compared against
direct iterative optimization using a robust metric [31].

5. We show that our approach reliably tracks the camera
motion in cases where the vessel-based state of the art
for fetoscopic mosaicking [4] fails due to unreliable ves-
sel features, while keeping a similar or better performance
when vessels are clearly visible. As a consequence, we are
able to track camera motion and produce consistent feto-
scopic mosaics in more scenarios and with longer video
sequences.

Ourmethod

Our proposed mosaicking framework estimates the opti-
cal flow between consecutive frames using FlowNet-2 [15]
to establish pairwise point correspondences for all avail-
able pixels. Outlier pixels inconsistent with a global affine
transformation are detected with Random Sample Consen-
sus (RANSAC), and the re-projection error of inlier pixels is
then minimized with iterative Levenberg–Marquardt (LM)
optimization to obtain pairwise affine transformation esti-
mations. Finally, a mosaic is incrementally built by left-hand
matrix multiplication of pairwise affine transformations for
obtaining the relative affine transformation for the entire
video. The outline of our method is represented in Fig. 1.

Point correspondences from optical flow

Optical flow aims at generating a 2D displacement vector
field between a source and target images (i.e., a flowfield). To
perform optical flow between consecutive frames, we use the
FlowNet-2 [15] a deep learning architecture, with its param-
eters pretrained on the flying chairs synthetic dataset [1].
While the training data is very far from representative of
fetoscopic video appearance and characteristic motions, its
very large size and accurate groundtruth enable training a
network that focuses on capturing the fundamental geomet-

ric relationships between local appearance changes rather
than learning application-specific priors. This has shown a
great generalizability power in computer vision problems,
and we show (in Sec. 3.4) that it is also a reliable backbone
for fetoscopic video. While there are other potentially viable
optical flow options, we have chosen FlowNet-2 since our
experiments demonstrate it to be more reliable than alterna-
tive deep learning approaches such as RAFT [29] or classic
approaches such as LK [20].

Once a flow field between consecutive frames is obtained,
pairwise correspondences between every pixel in the first
frame and image coordinates in the second frame can be
established by adding the flow field displacement to the coor-
dinate of every pixel in the first frame. Pixels outside the
visible circular area of the fetoscopic image are masked out
(as shown in Fig. 1). Given the position of each pixel (xi , yi )
in the i th frame and the flow vector (ui , vi ) for each pixel,
the estimated pixel position (x ′

i+1, y
′
i+1) in the next frame is

given by:

(x ′
i+1, y

′
i+1) = α ∗ [(xi , yi ) + (ui , vi )], (1)

where α ∈ 0, 1 is a coefficient which is 1 when a pixel is in
the circular Boolean mask of the fetoscope and 0 when it is
outside the mask.

Sequential registration

Similarly to previous works [4,24], we formulate feto-
scopic image registration as finding an affine transformation,
A, between consecutive frames [4,24]. We choose affine
transformation instead of projective transformation because
estimations are more stable and less prone to divergent
shrinking or enlargement of the mosaic when accumulating
relative transformations from a large number of consecutive
frames. This is in line with the findings of [4,24].

An affine transformation, A, between two consecutive
frames is given by:

[
x ′
i+1
y′
i+1

]
⇐� A

⎡
⎣xi
yi
1

⎤
⎦ A =

[
a11 a12 b1
a21 a22 b2

]
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where a11, a12, a21, a22 are composed of scale, shear, and
rotation transformation components in an affine transforma-
tion, and b1, b2 specifies the translation components.

Unlike these previous approaches, however, we establish
explicit pairwise point correspondences {(xi , yi ), (x ′

i , y
′
i )}

between consecutive frames, and therefore we benefit from
the extensive literature on estimating 2-view transformations
from point matches [14,25]. In our method, this means that
a linear solution for an affine transformation can be found
from 3 or more point correspondences. Given that outliers
are present, we follow the well-established “gold standard”
pipeline in multiple view geometry where the minimal least-
squares solver [7] (3 points in our case) is used as a candidate
solution generator within the RANSAC framework, fol-
lowed by Levenberg–Marquardt algorithm for minimizing
the squared sum of inlier point re-projection error:

E =
∑
i

(xi − a11x
′
i − a12y

′
i − b1)

2

+(yi − a21x
′
i − a22y

′
i − b2)

2. (2)

While this approach has been developed mainly with sparse
point correspondences in mind, it has been shown to be
equally applicable to dense pixel-wise correspondences [27].
An alternative approach to bypass RANSACwould be to use
an iterative optimizer with a robust cost function instead of
Eq. 2. However, this would mean that initialization would
rely on a non-robust linear estimation that is more likely to
be unreliable and lead to local minima.

Sequential registration for mosaicking is performed by
selecting a frame (usually in the center of the mosaic) as the
reference frame, which is also referred as the mosaic plane.
All other frames are then warped forward or backward onto
the reference frame by computing relative affine transfor-
mations through left-hand matrix multiplication of pairwise
affine transformations. For generating a seam-free mosaic,
the warped frames are blended using Enblend,2 which uses
the Burt–Adelson multi-resolution spline algorithm.

Experimental analysis

Dataset description

For qualitative and quantitative analysis, we use the same
fetoscopic dataset presented in [3] but with additional frames
as shown in Table 1. The extended dataset will be released
with this publication. The dataset consists of 6 in vivo feto-
scopic video sequences taken from different TTTS laser
therapy surgeries. Each video sequence has varying condi-
tions of occlusion, texture, lighting, and floating particles.

2 Enblend: http://enblend.sourceforge.net.

Table 1 Summary of the existing fetoscopy placenta dataset [4] and
the extended version of this dataset with longer duration of videos used
in our paper

Seq. Fetoscopy dataset (frames) Extended dataset (frames)

Video 1 400 420

Video 2 200 300

Video 3 50 150

Video 4 100 200

Video 5 100 200

Video 6 100 200

The first column in Table 1 shows the number of frames in
the original dataset from [3], while the last column shows the
number of frames in the extended dataset.

Evaluationmetric

Since the groundtruth transformations are not available, we
use the quantitative metric described in [2,4] for quantifying
accumulated drift errorwithin N frame intervals. This is done
by computing the structural similarity index metric (SSIM)
between a frame i and a warped source frame i + t , with t ∈
{1, 2, . . . , N }. Since the warping is built incrementally from
consecutive frame transformations, drift error is accumulated
with increasing t . Similar to [2,4] we use N = 5. Simi-
lar to [2,4] We visualize the SSIM calculated as a standard
boxplots which contains the median, 1st Quartile(Q1),3rd
Quartile(Q3), a Minimum Value (Q1− 1.5 ∗ I QR), a maxi-
mum value (Q3+ 1.5 ∗ I QR), and outliers which lie above
the Maximum value and below the minimum value. Using
the boxplots of the SSIM, we can evaluate the performance
of various methods by comparing their distribution. We are
especially concernedwith the “outliers on theminimumside”
as it indicates failures in registration.

Comparisonmethods

We compare our method against the complete pipeline of
the current state-of-the-art vessel-based approach presented
in [4], and classic Lucas–Kanade (LK) pyramidal registra-
tion. We perform an ablation study of different components
of our own pipeline. We replace FlowNet-2 with Recurrent
All-Pairs Field Transforms (RAFT) [29] as the Optical Flow
backbone.Note thatRAFThas been recently reported as a top
performer onwidely popular optical flowbenchmarks such as
Sintel [8] and KITTI [22]. We replace LM+RANSAC with
robust nonlinear regression method for utilizing a smooth
approximation function of the absolute loss(soft l1 loss) [31]
as our robust registration (RR) method.

Additionally, we investigate the outliers detected by
RANSAC to show their correlation with the frequent floating

123

http://enblend.sourceforge.net


International Journal of Computer Assisted Radiology and Surgery (2022) 17:1125–1134 1129

proposed vessel segmentation RAFT LK

Video 1(400 frames)
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Video 2(300 frames) Video 3(150 frames)
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Fig. 2 Quantitative comparison of the proposed (red), vessel segmentation-based (blue), RAFT backbone (green) and LK-based (purple), RR (light
purple) methods using the drift analysis metric from [4]

particles visible in fetoscopic videos and identify situations
where vessel segmentation clearly fails, showcasing where
our method demonstrates clear advantage.

All experiments were done in python using NVIDIA
k80 GPUs from Google Colaboratory. FlowNet-2 [15] was
used with pretrained weights provided by the authors.3 The
datasets used to obtain the pretrained weights were fly-
ingChairs [11], flyingThings [21], and ChairsSDHoM [15].
RAFT [29] was used with pretrained weights provided by
the authors.4 The datasets used obtain the pretrained weights
were flyingChairs [11], flyingThings [21], Sintel [8], KITTI
[22] and HD1K [16] datasets. RANSAC threshold used for
all sequences was

||PD − PR ||2 ≤ 6 (3)

where PD are the destination points and PR are the re-
projected points. This was determined empirically by view-
ing removed pixels.

3 FlowNet-2 official repository can be found at https://github.com/
NVIDIA/flownet2-pytorch.
4 RAFT official repository can be found at https://github.com/
princeton-vl/RAFT.

Results and discussion

We perform both quantitative and qualitative comparison of
our proposed method with the existing alternatives. Quan-
titative drift error results are presented in Fig. 2 which
displays the error bar for up to 5 frame SSIM metric (as dis-
cussed in Sec. 3.2) for the proposed method (red), its RAFT
variant (green), its robust regression variant - RR (light pur-
ple), LK-based (purple) and current state-of-the-art vessel
segmentation-based (blue) methods. In Video 1, since ves-
sels are clearly visible throughout the entire sequence, and
therefore all methods perform relatively well, with a slight
disadvantage to the classic LK approach. In the remaining
videos, our approach (red) is consistently better than the
vessel-based state of the art. We highlight that in Fig. 2 the
individually plotted dots (outliers) on the lower bottom of
the plots indicate cases of clear failure in registration. It is
noteworthy that our proposed method, its RAFT variant, and
the RR variant are the only ones where these clear failures
do not occur in any of the sequences. We also note that to
perform evaluation using RAFT and RR, we use the same
pipeline described in Section 2, but we replace FlowNet-
2 with RAFT and LK+RANSAC with a RR method. Such
failures, even if they happen on a single frame window, can
invalidate the addition of all subsequent frames to a mosaic
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Our method Baseline ([4]) SSIM time plot
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Fig. 3 Visualization of the mosaics produced by our proposed method.
The first column shows final mosaics on various sequences from the
extended dataset using our method while the second column show final
mosaics on the same sequences using the state-of-the-art approach from
[4]. The third column shows SSIM time plotswhich plot the SSIMof the

registration of consecutive images. The red colored plot is our method
while the blue is the baseline (Table 2). Notice that the tracking fails in
Videos 3, 4, 6 in the case of [4] after frame number 113, 106, 140.While
our proposed method resulted in consistent mosaics for the complete
duration of all extended videos
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Table 2 Mean of the structural similarity index metric (SSIM) between frame i and the warped source frame i + t , with t ∈ {1, 2, . . . , N }. The
bold values represent the method with a higher SSIM score

Video 1 Video 2 Video 3 Video 4 Video 5 Video 6

Ours [4] Ours [4] Ours [4] Ours [4] Ours [4] Ours [4]

Mean t=1 0.8659 0.8543 0.8954 0.8569 0.9594 0.9552 0.9699 0.9386 0.9719 0.9182 0.9642 0.9465

Mean t=2 0.8435 0.8355 0.8841 0.8494 0.9473 0.9389 0.9375 0.9094 0.9676 0.912 0.9563 0.9295

Mean t=3 0.8232 0.8217 0.8722 0.8431 0.9318 0.9152 0.8866 0.8665 0.9629 0.9078 0.9456 0.9129

Mean t=4 0.8045 0.8094 0.8566 0.8358 0.912 0.8888 0.8269 0.8167 0.9563 0.9021 0.9276 0.8959

Mean t=5 0.7868 0.7978 0.8387 0.8267 0.8894 0.8615 0.7657 0.7606 0.948 0.8955 0.9042 0.8795

Fig. 4 Vessel-basedmethod qualitative analysis usingVideo 4. Top row
shows when vessel segmentation method fails in registration (at frame
106). Bottom row shows vessel segmentation with good registration(at
frame 99 highest SSIM). From left to right : destination image, desti-

nation image vessels segmentation, source image, source image vessels
segmentation, registration using vessel segmentation, registration using
our method

due to loss of camera motion tracking. LK performance is
comparatively poor in most of the videos with lower sim-
ilarity scores, larger variation, and more failure cases. The
median similarity score of the vessel-based method is overall
just slightly lower or comparable with our proposed method,
but very low similarities (outliers) in just a few frames (seen
inVideos 3, 4, 5, 6) result in severely distorted or inconsistent
mosaic reconstructions, as evident from Fig. 3.

In addition, we compare the results of the baseline method
(vessel based) and our method.We computed themean of the
structural similarity index metric (SSIM) between a frame i
and a warped source frame i + t , with t ∈ {1, 2, . . . , N }, as
a measure of central tendency. We clearly see that the values
for our method are better than the baseline.

The qualitative results5 visually comparing the mosaics
generated from the proposed and vessel-based methods are

5 Video of qualitative results can be found: https://www.youtube.com/
watch?v=c0Xm7A_TiMQ.

presented in Fig. 3. Video 1 and Video 2 are examples where
no clear failures happen and both our method and the vessel-
based approach produce reasonably consistent mosaics. On
the other hand, Video 3 and Video 4 represent cases where
our method performs better, but the vessel-based approach
stopped working after the first clear registration failure hap-
pens at frame number 113 and 106, respectively. Video 4 is
themost challenging sequence for allmethods and even if our
approach is able to produce a coherent mosaic for the entire
sequence, it still has some noticeable drift after a consider-
able amount of frames. In Video 5, our proposedmethod also
works better as it has less drift compared to the vessel-based
method. The drift in the vessel-based method is noticeable
in Video 5 from frame 116, as there is a rapid shrinking
between consecutive frames and again at frame 160 where
there is a rapid enlargement in consecutive frames. This is
because of the failures in registration in vessel-basedmethod.
Our method did not experience rapid shrinking or enlarge-
ments at these frames. In Video 6, the vessel segmentation
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Fig. 5 Examples of outlier
regions (in red) detected by
RANSAC. Outliers generally
correspond to floating particles
and bright specular
reflections(white and bright
spots on the Image) inconsistent
with fetoscope motion. Images
obtained from Video 1
(top-left), Video 2 (top-right),
Video 5 (bottom-left), Video 6
(bottom-right)

Image Outliers

Image

Image Outliers

Image Outliers Outliers

method looses tracking after frame 145, while our proposed
method does not lose tracking for the entire duration of the
sequence.

Investigating further the failure cases in vessel-based
method, we visualize in the top row of Fig. 4 registration
failure for video 4 which is at frame 106. This can be seen
from the SSIM time plots in Fig. 3. In addition, we visualize
a successful registration (highest SSIM) at frame 99 from
Video 4 on the bottom row of Fig. 4. This figure shows that
vessel segmentation is unreliable in cases where vessels are
extremely thin, sparse, or blurry. It can be noticed in the top
row of Fig. 4 that there is a vessel which is not detected com-
pletely in the destination image, but detected correctly in the
source image. The registration using vessel segmentation for
this pair of source and destination images is 0.00048, approx-
imately 0, as the registration failed for this pair. While in the
bottom row of Fig. 4, registration 99 is at a similar position
as registration 106, and we notice that the vessel was well
detected in frame 99, hence the SSIM was 0.967643 which
is very good. During the failure case in the top row of Fig. 4,
we show that our method accurately registers this frame, and
our method as works well in the bottom row.

Finally, we take a closer look at the effects of RANSACon
our pipeline in Fig. 5, where we plot the flow vectors which
are filtered out as outliers. We observe that this generally
corresponds to motions that are in a different direction to the
global camera motion, as in the case of floating particles and
bright specular reflections. Utilizing pixels from these float-
ing particles and specular reflections would lead to poorer
affine transformation estimation. This further validates the
results obtained by our proposed method and its robustness
against outliers, which contributes toward minimizing fail-
ures.

Conclusion

We propose a framework for generating mosaics from feto-
scopic videos. We generate dense flow fields produced using
pretrainedFlowNet-2. The denseflowfields are used to estab-
lish pairwise point correspondence. This is combined with
robust outlier filtering with RANSAC and iterative refine-
ment with the Levenberg–Marquardt. Our final mosaic is
built using all the pairwise affine transformations obtained.
To the best of our knowledge, this is the first solution that does
not rely on explicit vessel alignment to demonstrate consis-
tent mosaics in several in vivo fetoscopic sequences with
varying appearance. While previous attempts at utilizing a
non-vessel approach either fail (sparse feature matching) or
perform poorly (standard optical flow), we show that com-
bining modern deep learning optical flow with classic robust
estimation produces reliable fetoscopic mosaics.When com-
pared against the vessel-based state of the art, our approach
demonstrates its main advantage in reliably dealing with
videos that contain sequences where vessels are either sparse
or not clearly visible and thus vessel detection fails. Our
method thus is able to build consistent seam-free mosaics
in a larger set of scenarios, and from larger uninterrupted
sequences of fetoscopic video. As future work, we plan to
design a hybrid solution that switches between a vessel-based
approach and optical flow depending on the most appropri-
ate context and to develop reliable selection mechanisms. In
addition, we plan to utilize methods for global optimization
and reduction of error drift such as [17], to provide long-term
consistency in large-scale fetoscopic mosaicking.
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Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-022-02623-
1.
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