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Abstract

We present a robust method for computing locally bijective global
parametrizations aligned with a given cross-field. The singulari-
ties of the parametrization in general agree with singularities of the
field, except in a small number of cases when several additional
cones need to be added in a controlled way. Parametric lines can be
constrained to follow an arbitrary set of feature lines on the surface.
Our method is based on constructing an initial quad patch partition
using robust cross-field integral line tracing. This process is fol-
lowed by an algorithm modifying the quad layout structure to en-
sure that consistent parametric lengths can be assigned to the edges.
For most meshes, the layout modification algorithm does not add
new singularities; a small number of singularities may be added to
resolve an explicitly described set of layouts. We demonstrate that
our algorithm succeeds on a test data set of over a hundred meshes.
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1 Introduction

The goal of this paper is to present a robust global parametrization
algorithm which produces results satisfying common requirements
for arbitrary inputs (local bijectivity, alignment across seams, fea-
ture alignment).

We build on a commonly used set of techniques for finding a
parametrization aligned to a guiding cross-field generated from sur-
face features. These methods are typically based on minimizing
a global quadratic energy measuring the deviation from the cross-
field, subject to the constraint that the topological structure of the
parametrization agrees with the structure of the field. Great strides
were made in improving this type of methods as well as the quality
and robustness of parametrization algorithms in general. Yet, even
the state-of-the-art methods fail on a substantial fraction of meshes:
for some methods the result may not be locally bijective, or, in the
cases where nonlinear formulations are constructed to guarantee bi-
jectivity, no feasible solution may be found.

In the latter case, failures may be due to one of three types of prob-
lems. The problem may be connectivity-related: connectivity of the
mesh makes it impossible to map the mesh to the plane piecewise
linearly and satisfy all requirements. It may be algorithmic: state-
of-the-art efficient methods for imposing bijectivity constraints are
based on restricting the space of solutions to a convex subspace,
and a feasible parametrization may not be in that subspace. Finally,
it may be topological: there are no global parametrizations with the
topology specified by the field in that subspace. Our method in-
cludes solutions to all three types of problems: it can be viewed as
a mesh refinement algorithm ensuring that the refined mesh is guar-
anteed to have a valid parametrization; as a consequence, the initial
parametrization we obtain provides reference frames for convex al-
gorithms that ensures that a feasible solution to the convex problem
does exist. Finally, when topological problems are present in the
field, the field is implicitly modified (including adding cones).

Our approach builds on the following well-known observa-
tion: locally for any non-singular field one can always con-
struct a parametrization simply by following field integral lines
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(parametrization by tracing). An appealing feature of this approach
is that the parametrization is guaranteed to be perfectly aligned
with the guiding fields and locally bijective, two difficult-to-achieve
goals. This approach, however, does not directly extend to the gen-
eral setting of global parametrizations with singularities. Moreover,
for most fields no perfectly aligned global parametrization exists;
furthermore, there may be no parametrization with the same field
topology as the input feature field.

Instead, we use the tracing approach to build a quad partition of the
surface. We then modify the partition to satisfy global parametriza-
tion constraints and finally parametrize quad by quad to obtain a
locally bijective parametrization At each stage we guarantee (with
limitations related to finite resolution) that for any nondegenerate
input mesh, and a field satisfying weak constraints detailed in Sec-
tion 4 a valid result is generated.

Overview. More specifically, our method proceeds as follows:

1. Build a quad patch partition of the mesh by tracing the field
(Section 4, using robust field tracing, Section 6). This ensures
feature alignment, and partitions the mesh into quads.

2. Modify this partition to be globally consistent (Section 7):
specifically:
(a) Determine a non-negative parametric edge length assign-
ment for all patch sides; some edges may be forced to have
zero length by the field structure (Section 7.1).
(b) Eliminate degenerate quads from the partition using a
partition simplification algorithm, which, except for a well-
defined set of cases, eliminates all degenerate quads (Sec-
tion 7.2).
(c) If any degenerate quads are left, add singularities to the
parametrization to eliminate the remaining degeneracies in
edge assignment.

3. Obtain an initial parametrization by mapping each quad to a
rectangle of the size determined by the edge length.

A final parametrization is computed by solving an optimization
problem with convex constraints which is always guaranteed to
have a solution.

We demonstrate the robustness of our method on a test data set
of 114 models, which includes all nontrivially different manifold
meshes from commonly used repositories (in greater detail the data
set is described in Section 8). Our method succeeds in producing
a valid initial parametrization for 100% of the models, and an op-
timized parametrization is obtained for all models except one. The
resulting global parametrization can be used either on its own if the
application does not require integer parametric cone positions (e.g.,
constructing T-spline based approximations), or requires minimal
rounding (tiling the surface with textures). Alternatively, it can be
a robust starting point for a recent method [Bommes et al. 2013].

2 Related work

A broad overview of quadrangulation and field-guided techniques
is given in [Bommes et al. 2012]; we briefly mention the most im-
portant works most closely related to ours.

Previous work on field-aligned parametrization/remeshing ad-
dressed the problem of constructing a global parametrization from
the field in several ways. In [Alliez et al. 2003] and [Ray et al. 2006]
singularities emerge as a part of the remeshing process, and their
locations and numbers cannot be controlled directly, and do not
fully agree with the field. [Bommes et al. 2009] described a stiffen-
ing method that modifies the energy used to compute parametriza-
tion to eliminate flipped triangles. More recently, [Bommes et al.
2013] proposed a method based on introducing convex constraints
ensuring bijectivity. While the method of [Lipman 2012] was not
applied to global parametrization, it easily extends to the global

parametrization setting as we show in Section 8. A number of meth-
ods starting from [Lee et al. 1998], are based on constructing coarse
parametric domains by simplification or as a Morse graph of a func-
tion [Dong et al. 2006]. While these methods do not provide formal
guarantees, they have structure that allows, in principle, a robust re-
alization. Field alignment and cone placement optimization can be
integrated with these techniques in a more limited way, compared to
more recent methods. Conformal methods [Sheffer and de Sturler
2001; Kharevych et al. 2006; Ben-Chen et al. 2008; Springborn
et al. 2008] either do not guarantee local bijectivity, or guarantee it
only if a feasible solution of a constrained nonlinear optimization
problem is found.

The algorithms described in this paper are drawing on two other
important sources: motorcycle graph constructions [Eppstein et al.
2008; Gunpinar et al. 2014] and robust field tracing using edge
maps [Jadhav et al. 2012]. On surfaces, so far, motorcycle graph
constructions were applied to quadrangulations, not cross-fields.
As we show in Section 4, some additional problems need to be han-
dled in the field case.

Our algorithm is agnostic about the origin of the fields: in par-
ticular, it works with any algorithm generating piecewise constant
fields on faces ([Bommes et al. 2009; Myles and Zorin 2012; Myles
and Zorin 2013]); vertex-based fields can also be adapted (e.g.,
[Knöppel et al. 2013]). All of these are converted to our repre-
sentation identical to the one used in concurrent work [Ray and
Sokolov 2013]. The relationship of our algorithms to those in [Ray
and Sokolov 2013] is discussed in Section 6.

There is a wealth of related work on tracing vector fields in
the plane and on surfaces; recently [Szymczak and Zhang 2012]
demonstrated how piecewise constant fields can be handled ro-
bustly; however, piecewise constant fields, due to existence of
merging and splitting integral lines, are not suitable for our pur-
poses.

Most commonly, for planar meshes, piecewise linear interpolation
of vertex-based fields is used (e.g., considered in detail [Tricoche
2002]) As demonstrated in [Zhang et al. 2006] linear interpolation
cannot be directly applied to fields on 3D meshes. We also note
that Singularities of piecewise linear fields are generically on faces
and are simple [Knöppel et al. 2013], although arbitrary high-order
singularities can be modeled at vertices [Tricoche et al. 2000].

To have a complete control of singularity placement, we use lin-
ear interpolation in the space of angles similar to [Li et al. 2006a].
However, we use a different representation as it is easier to trace it
efficiently with guarantees on integral lines.

We should also mention that quad partitions we construct are T-
meshes, and in principle can be optimized using techniques similar
to [Myles et al. 2010]. Our cone insertion procedure is related to
the one used in [Li et al. 2006b].

3 Background

Aligned seamless parametrizations. Our goal is to construct
seamless global parametrizations of the type used in [Bommes et al.
2009]. We build a quad partition first, and the initial parametriza-
tion is defined per quad. In this case, the conditions can be formu-
lated in a particularly transparent form, similar to [Tong et al. 2006;
Dong et al. 2006]: for each quad Q we define a locally bijective
map to the (u, v)-domain; on the boundary between quads Q and
Q′, parametric positions q satisfy

q2 = rq1 + t, (1)

for any two points p1 p2 on the common boundary, where r =
Rkπ/2 is a rotation by a multiple of π/2, qi are parametric positions



with respect to Q and Q′ respectively, and t is a translation between
quads in the parametric domain. (Figure 2).

We emphasize that we do not consider the details of the integer-grid
layout problem in the paper, which requires the additional condition
that t is an integer vector, although, as explained in Section 7, our
method allows to obtain fine quadrangulations, or serve as a starting
point for the mixed-integer optimization of [Bommes et al. 2013].

r = Rkπ/2

t unconstrained

quadrangulation

unconstrained

r = Rkπ/2

t integer

seamless

p1

f f

p2

q1
q2

r q + t

Figure 2: Seamless parametrization

Cross-fields. We are interested in parametrizations aligned with a
cross-field. A cross-field is an assignment, to each point of a mesh,
of a quadruple of unit vectors u, Rπ/2u,−u, Rπ/2u, which are
considered equivalent if related by a cyclic permutation. Contin-
uous vector fields on surfaces (more precisely, Lipschitz) have an
important property: for each nonsingular point there is a unique in-
tegral line passing through it. Cross-fields have a similar property,
except there are two orthogonal lines at each point. Moreover, the
field can be locally “straightened” i.e. there is always a neighbor-
hood that can be mapped to the plane so that the field integral lines
become parallel straight lines.

This property yields a direct correspondence between local non-
singular parametrizations and cross-fields: parametrization can be
constructed uniquely from the field, up to a monotonic change of
variables along axes, by “field straightening”. In this case, integral
lines of the field coincide with parametric lines.

However, globally this is in general, impossible, and the
parametrization has to minimize a deviation from the field.

Obstacles to field-aligned parametrization. There are two types
of singular features in a field that prevent us from converting a set
of local parametrizations to a global one: singular points and limit
cycles.

Singular points. Singular points of a direction (unit vector) field
or a cross-field can have an arbitrarily complex structure, for vector
fields formally discussed in, e.g., [Andronov et al. 1973]. We follow
the definitions of [Tricoche 2002], and use the characterization of
sectors introduced in [Li et al. 2006a].

If there are no integral lines passing through the singularity C, there
is a neighborhood of p in which all integral lines are closed curves
around p. In this case, the singularity is a center. Otherwise, a
small neighborhood of the singularity bounded by a closed curve
C, can be decomposed into sectors, each bounded by C and two
integral lines S(t) and S′(t) (separatrices) satisfying the equation
dS/dt = u(S(t)). The field direction defines an orientation on the
curves S. Let s be the angular parameter along C, increasing coun-
terclockwise. The vector field restricted to C can be also viewed as
a function v(s), which can be represented by an angle α(s) with
respect to the direction from C(s) to the singularity. It depends on
the choice of C, but we consider the limit values as the C shrinks
to p, and view limit α(s) as the directional variation of the field at
the singularity.

Three cases are possible (Figure 3).

1. Hyperbolic sector: any integral line passing through the sec-
tor, other than S and S′, enters and leaves the sector and does

not pass through p. For hyperbolic sectors, the rotation rate
α′(s) is negative (the direction rotates clockwise).

2. Parabolic sector: All integral lines in the sector, including S
and S′ approach p, as t → ∞ or −∞. For parabolic sectors,
the rate of rotation is zero.

3. Elliptic sector: S and S′ are parts of the same integral line
starting and ending at p, and any integral line in the sector
approaches p for both t → ∞ and −∞. For elliptic sectors,
the rate of rotation α′(s) is positive.

elliptic       parabolic       hyperbolic crossfield sectors

Figure 3: Left: Three types of sectors at singularities. Right: A
cross-field has overlapping sectors.

Sectors for cross-fields. Observe that if we introduce a single cut at
a singularity along a separatrix of a cross-field, the cross-field on the
cut neighborhood can be separated into two vector fields, yielding
two sets of overlapping sectors (Figure 3, right). Note that the rate
of rotation of a cross-field coincides with the rate of rotation of the
two vector fields into which it can be locally split, and the integral
of α′ is related to the index I(p) of the singularity by

∫
C

α′(s)ds = 2π(I(p)− 1)

As all separatrices starting at singularities become patch edges in
our construction, a crucial requirement is that the cross-field singu-
larities have a finite number of separatrices, i.e. no parabolic or
elliptic sectors are allowed. As any singularity of index 1 or higher
has to have elliptic sectors, we only accept fields with singularities
of index < 1 as input.

Limit cycles. In addition to singular points, a vector or a cross-field
can have limit cycles (Figure 4). A limit cycle C is a closed integral
line which is a limit set of a set of other field lines.

Limit cycles are a major fundamental obstacle for constructing a
global parametrization by tracing a field, as near a limit cycle the
parametrization will be singular. Isolated limit cycles are stable:
one can construct vector fields for which a significant perturba-
tion is needed to obtain a field without cycles; in other words, not
every field on the surface is close to a gradient field of a global
parametrization. Many of the zero quad chains discussed in Sec-
tion 7 appear due to limit cycles in the field.

limit cycle

Figure 4: A limit cycle attracts an infinite number of integral lines.

Finally, we should mention that limit cycles are not necessary for
a field to be not consistent with a global parametrization. For ex-
ample, while the spiral strip shape from Figure 5 does have a limit
cycle at the bottom, the first torus field does not have limit cycles,
yet, it is not consistent with any seamless global parametrization.
(See the supplementary document for a proof.)
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Figure 5: (a) Three fields not consistent with any parametrization:
a torus with π/2 rotation in the field; a spiral strip from [Myles
and Zorin 2013], with field following the strip; and a torus with
a single 3-5 singularity pair. (b) Traced T-mesh with zero-edges
highlighted. (c) Resolved T-mesh, using 2-6 pair insertion for the
first two and a singularity pair collapse for the third; (d) Optimized
bijective parametrization using the quasi-conformal constraints of
[Lipman 2012].

4 Quad partition construction

Overview. The input to our partition construction algorithm is a
mesh with a cross-field defined using a representation described in
Section 5. This representation can be generated from a cross-field
defined per face [Ray et al. 2008; Bommes et al. 2009], and a set of
feature edges. We impose no restrictions on the choice of feature
edges other than requiring boundaries curves to be marked as such;
but we refine the mesh so that any triangle has at most one feature
edge. We do require the field to satisfy three requirements: (1) on
a triangle with a feature edge, the field is aligned to the edge; (2)
no field singularity has index 1 or greater; and (3) the field rotation
rate α′(s) between two sequential feature curves around a vertex is
strictly negative. The first requirement insures that feature edges are
integral lines; the latter two guarantee that the field can be converted
to a field with a finite number of integral lines through each point.

The first step in our algorithm is constructing a quad partition of the
mesh. More precisely, we define the connectivity of the partition as
follows: a partition is a 2D complex, with edges formed by p.w.
linear paths on the mesh, and for which each face is a polygon with
4 or more vertices; exactly 4 of these vertices are marked as face
corners. We view all faces as quads, with non-corner vertices con-
sidered to be T-joints. The chain of edges connecting two corners
of a face is a T-edge of the face (Figure 6, left).

We describe the algorithm for constructing the partition by trac-
ing a cross-field. The algorithm requires that the discrete p.w. lin-
ear integral lines constructed from the field have a set of properties
matching the properties of integral lines of a Lipschitz field, with
singularities of index less than 1. Specifically we assume that:

• Singular points have a finite number of integral lines;

• Each regular point has exactly two orthogonal integral lines
passing through it;

• Integral lines intersect either orthogonally, or at singularities.

(We say that two integral lines of a cross-field intersect orthogo-
nally if they are tangent to orthogonal cross-field directions at their
common point.)

cone

Q

T-joint

corner

Figure 6: Left: Example of a quad partition with notation; a T-joint
vertex with respect to face Q is shown in blue, a corner of Q in red.
Right: Splitting a cylindrical face by tracing perpendicular to its
boundary (black curve).

These properties are guaranteed by the construction of Section 5,
so we assume that these hold in our algorithm.

Motorcycle graph algorithm. To build the partition, we use the
motorcycle graph algorithm [Eppstein and Erickson 1999] on sur-
faces with some modifications to ensure termination and correct-
ness of the resulting partition. The idea of the algorithm is to trace
all integral lines emanating from singularities at equal speed in par-
allel, until each line terminates either meeting either another line,
another singularity or a boundary/feature line. A detailed pseu-
docode of the algorithm is included in the supplementary document.

Termination guarantees. In this simplest form, the algorithm is
not guaranteed to terminate: for example, if the cross-field has a
limit cycle, and no integral line generated by the algorithm crosses
this cycle orthogonally, but there is a traced line that converges to
the cycle. While it is possible to set up such configurations arti-
ficially, in practice these were never observed. To ensure that the
algorithm always completes, a more complex procedure is needed;
it is described in the supplement.

The resulting graph partitions the surface into connected domains
(faces); in the interior of each domain, the field is not singular. The
boundary of each face consists of integral line segments. We say
that two segments sharing an endpoint v form a corner of a face if
they meet orthogonally; the corner is convex if there are no integral
lines in the interior of the face passing through v.
Proposition 1. All faces of a non-empty motorcycle graph are ei-
ther quads or cylinders.

The proof of this proposition can be found in the supplemental doc-
ument.

If a cylinder partition is present, normally, tracing a field line per-
pendicular to the boundary (Figure 6, right) reduces it to a quad
face; this may not be sufficient (e.g., if the cylinder contains a
limit cycle), in which case cell partition described in the supple-
ment needs to be used.

Refinement. Once the quad partition is obtained, the mesh is re-
fined by inserting all edges of traced lines and triangulating faces.
In addition, we ensure that each quad face has a 3-connected mesh,
so that bijective parametrizations of the faces over a parametric-
domain rectangles can be obtained using Tutte’s maps. To achieve
this, each edge with two vertices on the boundary is subdivided.

Once refinement is done, we can guarantee that the resulting mesh
does have a locally bijective global seamless parametrization, per-
fectly aligned with feature lines and approximately with the field, if
consistency conditions, discussed in the next section, are satisfied.

5 Traceable fields on meshes

As discussed in Section 4, the essential features of integral line trac-
ing include: (1) a finite number of integral lines starting at each
singularity; (2) exactly two orthogonal lines passing through each



regular point; and (3) distinct integral lines intersecting only at sin-
gularities or orthogonally. We need to retain these properties in the
discrete case.

Our goal in this section is to define a field representation that en-
sures these properties are retained. While in the plane this can be
easily achieved by linear interpolation of a vertex-based field, it
cannot be easily applied to tangent vectors on meshes [Zhang et al.
2006].

In addition to the considerations above, we choose a field repre-
sentation with the following properties: (4) arbitrary hyperbolic
singularities are allowed for maximal flexibility in the resulting
parametrization structure, and (5) all singularities are at vertices.
These properties ensure compatibility with well-developed tech-
niques for field generation [Bommes et al. 2009; Myles and Zorin
2012; Myles and Zorin 2013], which generate singularities at ver-
tices, and place no restrictions on the structure of the resulting
parametrization.

We define the cross-field per-vertex intrinsically as described be-
low, with a single chart-domain direction at regular vertices, and
with an initial field direction and rotation rate at singular vertices.
We show how field values in charts can be translated to field values
on 3D mesh triangles.

Vertex charts. Using a set of charts at vertices, we can define a
per-vertex tangent space intrinsically. The chart maps can be used
to map the field back to the mesh, maintaining its topological prop-
erties. However, as we will see, a single chart direction at vertices
corresponds to a varying set of directions on triangles.

We define chart maps ci for each vertex 1-neighborhood Nv . Pick
an edge e incident at the vertex v, and let fv be the isometric map
of the 1-neighborhood cut along the edge e to the plane, mapping v

to [0, 0] and e to [ℓ, 0] where ℓ = |e|. Let gv(z) = z2π/Θ, where Θ
is the total angle at v, and z is the complex coordinate in the plane.
This map “closes the gap” left by unfolding the cut 1-neighborhood.
The composition cv = (gv ◦fv)

−1 is a continuous map; we use the
inverse map from the chart to the surface, as we want to transfer
vectors from the parametric domain to the surface. We note that the
maps cv form a conformal atlas.

chartmesh in 3D

β

C B

αC

αB

A

isometric unfolding

fv gv

cv

Figure 7: Right: Chart map and its effect on a field at a vertex.
Left: Field representation notation.

Mapping fields from charts to the mesh. Suppose we have a
smooth field defined on a chart Cv = c−1

v (Nv); then, as fv is an

isometry, we can simply look at the effects of g−1
v = zΘ/2π = zq .

This map is smooth everywhere except at v.

We are interested in the behavior of the vector field near v, so with-
out the loss of generality we assume the vector field is constant and
has direction β in Cv , represented by complex number eiβ .

On a circle of radius ǫ, at a point with polar coordinates (ǫ, γ) the

image of the vector is ǫqei(q−1)γeiβ , i.e. for q 6= 1 (for a non-

flat surface) has direction ei((q−1)γ+β), independent of ǫ. In other
words,

At a regular vertex, on the mesh, the chart map cv maps a single
vector at a vertex to a directionally varying field at a vertex, rotating
at the constant rate q − 1 = Θ−2π

2π
.

In the case of a singularity with a finite number n of integral lines
terminating there, the field at the origin in Cv is undefined, but can
be described by a rate of rotation of the direction around this vertex
and a direction for an arbitrarily chosen edge.

For a valence-n singularity with uniform field rotation around it at
the rate (1−n/4), the image of the field under gv is also a uniform-
rotation field similar to the regular case, but with a different rotation
rate.

Thus, at every vertex, we specify the field valence (4 for regular
vertices) and a direction. For singularities, the direction is treated
as the initial direction for rotation.

This approach can be easily extended to a more general type of sin-
gularities with arbitrarily chosen n parametric lines; in our code,
we use uniform-rotation rate fields at singularities with no feature
lines, and the more general formulas for points where multiple fea-
ture lines meet (see supplementary document).

Discrete field representation. The derivation above yields a way
to approximate a field directly in terms of per-triangle quantities.
The rotation of the field at vertices can be precisely represented
by specifying two angles at each vertex of the triangle and assum-
ing constant rotation speed for directions between. Thus, for each
edge, we define two unit vectors in the planes of incident trian-
gles such that if the two triangles are unfolded, the vectors coincide
(Figure 7). In each triangle, we choose a reference direction and
represent all directions encoding the field by angles with respect to
the reference direction. The per-triangle data for the field consists
of 6 angles denoted αB , αC , βA, βC , γA, γB , one for each (ver-
tex,edge) pair. Suppose the barycentric coordinates of a point p are
(u, v, w), where u+ v+w = 1. Define r, s, t ∈ [0, 1] to be angles
between one of the triangle sides at each vertex and the line con-
necting the vertex to p, divided by the triangle angle at the vertex.
Then the angle is interpolated via

θ(p) = ((1−r)αB+rαC)u+(sβA+(1−s)βC)v+((1−t)γA+tγB)w

(angle-linear interpolation at vertices, and position-linear across the
face). One may verify that θ(p) is a convex combination of the six
coefficient angles, linearly interpolates along edges, and linearly
interpolates in angle at vertices. θ(p) reduces to barycentric inter-
polation if the two per-edge vectors are equal at each vertex.

6 Resolving field topology on a triangle

The most straightforward approach to tracing the continuous field
defined in the previous section is to use a standard field integration
method, e.g. Runge-Kutta. For sufficiently small steps, the field
lines can be approximated arbitrarily well. As long as there are
no tangent integral lines, if two integral lines of a smooth field do
not intersect, their sufficiently fine piecewise linear approximations
do not intersect. However, for our purposes, this approach is not
entirely adequate: we aim to cut out quad domains on the surface
which then will be parametrized, inserting multiple edges into each
triangle. Refining the mesh may be expensive especially for large
meshes; it is desirable to minimize the number of line segments
used to approximate an integral line in a single triangle.

Overview. Our strategy is to construct an edge map [Jadhav et al.
2012]. An edge map E(p) is a map from the triangle boundary to
itself, such that if an integral line starts/respectively ends at p, it
ends/starts at E(p). p = E(p) only at tangency points. A single
step of tracing a field through a single triangle reduces to evaluating
the edge map.

The map is constructed by splitting each triangle into strips cap-
turing the field topology inside the triangle. Informally, each strip
has two opposite segments where all lines enter and exit. The other
two sides (one of which can be degenerate, i.e. a point) are field



lines. Before resolving the topology of the field on a triangle, we
preprocess the mesh, refining triangles at cones, so that at most one
integral line passing through a cone is contained in each triangle.

As there are no singularities inside the triangle, the overall struc-
ture of the vector field on the triangle is relatively simple: any inte-
gral line entering the triangle has to leave it at another point of the
boundary, and by our assumption about vertices (no more than one
integral line), no integral lines intersect inside the triangle. Lines
entering at arbitrarily close locations on the boundary may exit at
very different points (Figure 8).

iA

iA

iA

eA

eA eA eA

iA

iA

eA eA eA eAeA

Figure 8: Field topology on a triangle, showing two main patterns
of aligned and transversal divisions.

The topology resolution process constructs a partition for each tri-
angle by sequentially chopping off strips, defined precisely below,
along with the field approximation with piecewise linear field lines.

A triangle partition is a small mesh, with strips as faces. To dis-
tinguish from the triangle edges, we call the edges of the partition
divisions, indicating that most of them are divisions of the triangle
border into parts on which the field points either inside, outside or
tangentially. We add extra divisions that cut the triangle. Geometri-
cally, divisions can be points, line segments, or two or three joined
segments on two sides of a triangle, connecting (possibly coincid-
ing) points on the triangle border.

A division can be transversal (denoted T) or aligned. On a transver-
sal division, the field is not parallel to the division direction and
points either to the interior or exterior of the triangle. An aligned
division is a part of an integral line of the approximate field. It can
be a single point (vertex or non-vertex) separating in-transversal
(iT ) and out-transversal (oT ) divisions on the boundary of the tri-
angle or a triangle edge aligned with the field. All interior divisions,
inserted to split off a strip, are aligned divisions.

Each strip of a triangle partition has exactly two transversal divi-
sions, one in and one out. The field lines of the approximate field
start on the in-transversal division and exit on out; the remaining
edges of a strip are field lines or points on the triangle boundary.

Algorithm initialization. Initially, the triangle partition contains
a single face: the whole triangle. The initial set of divisions is
computed by splitting the triangle boundary at all points where the
direction of the field changes with respect to the edge: some of the
vertices, or points where the field is tangent. During the algorithm
we maintain an active face; the partition at any given time contains
a single active face and a collection of strips already split off. Note
that initially, the sequence of divisions around the active face has a
very regular structure, iT −A−oT −A− iT . . ., with aligned and
transversal alternating, and no two transversal of the same type in
order (because by construction aligned divisions are inserted only
between transversal of opposite type). The algorithm maintains this
alternating structure for the active face.

We label the aligned divisions in a face as interior (iA) or exte-
rior (eA), depending whether the field line containing the aligned
face only intersects the face over the division, or it has other points
contained in the face. The initial labeling is easily determined by
checking whether the integral line touches the border of the trian-
gle from inside or outside. We will see that all divisions we add by
inserting edges are exterior to the active face.

Splitting off strips. The algorithm is based on the following propo-
sition, proved in the supplement.
Proposition 2. (a) The sequence of divisions of the triangle border
defined as above, has exactly two more external aligned divisions
than internal; (b) The sequence of division contains a subsequence
T − eA−T − eA−T − iA, or the triangle divisions form a strip.

The algorithm consists of a repetition of a splitting step depicted in
Figure 9, left.

T"2

T'2

T"1

T'1

T2

T1

eA1

eA2

iAT3

new

 active

  face

Figure 9: Topology resolution, with the active region denoted in
gray. Left: One step of the topology resolution algorithm, yielding
a new active region highlighted in darker gray. Right: Ambiguous
configurations.

On each step, we find a subsequence T1 − eA1 −T2 − eA2 −T3 −
iA, in the sequence of active edges. It exists on initialization and
we will show that at the end of the step, the same is true for the
truncated face by construction.

Two new vertices A1 and A2 are inserted to split T1 and T2 into
two subedges T ′

i and T ′′
i , i = 1, 2, and two new divisions eAn

1

and eAn
2 are created, connecting endpoints (possibly coinciding) of

division iA to T ′′
1 and T ′

2. This splits of two strips. The new active
face is obtained by replacing the whole sequence with two divisions
T ′
1 and eAn

2 . As a result, the new active face has the number of
divisions decreased by 4, with the number of each type of aligned
divisions decreased by one, and the number of transversal divisions
decreased by 2. This means that part (a), and as a consequence,
part (b) of Proposition 2 holds for the active face. Note that the
alternation of transversal and aligned divisions is preserved for the
new active face.

By triangle convexity, we could never insert divisions intersecting
the boundary not at endpoints transversally, or intersecting each
other transversally. However, some strips generated in this way
may be bounded by several divisions connecting points on the same
edge resulting in a degenerate strip, which violates required field
properties. The algorithm resolving such strips to nondegenerate is
described below.

While the algorithm above produces a valid partition of triangle into
strips, a priori it is unclear if it has the same topology as the orig-
inal field. In the supplement, we demonstrate that the ambiguity is
small, and reduces to just two cases (Figure 9, right). For our ap-
plication, an arbitrary choice between the two does not have much
effect, other than on field line quality. If desired in these cases,
the triangle may be refined or a high-accuracy tracing may be per-
formed to distinguish between these.

Degenerate strips. The algorithm above generates correct connec-
tivity for strips, but in some cases these are degenerate, because in-
and out-divisions are on the same edge of the triangle.

We note that at each step of the algorithm, two strips are generated
(Figure 9). We observe that divisions T2 and T3 cannot be on the
same triangle side, hence the first strip cannot be degenerate. How-
ever, T1 and T2 can be on the same edge. If the second strip is
degenerate, we observe that eA1 has to be a point tangent division;
interior tangent divisions are always points, and have to be on dif-
ferent edges, so we can construct a segment connecting eA1 and iA



(Figure 10a), separating the strip into two, with the newly inserted
segment, not collinear with the T1 and T2, marked as in-transversal
for one and out-transversal for the other strip. These strips are non-
degenerate.

Once no topology resolution steps are possible, there is a single
strip remaining, with two tangential divisions, and two transversal,
in and out. If it is degenerate, then one of the tangential divisions
is a point (it has to separate two transversal divisions on the same
triangle side). Suppose at least one resolution step was done. Then
the last strip has to have at least one internal segment tangential
division, i.e it has to be of the form shown in Figure 10b, which
also shows how it is separated into two nondegenerate strips.

Finally, if no topology resolution is needed (i.e. the triangle is a
single strip from the beginning), the second tangent division can
be either a vertex (on the same edge or not), or a point on an edge
(same or not). These cases are shown in Figure 10c-f. After these
additional splits, all strips are nondegenerate.

(a) (b) (c)

(d) (e) (f)

T1

T2

eA1

iA

Figure 10: Splitting strips with tangential divisions on the same
triangle side. Split lines are shown in green, and arrows indicate
the overall direction of field lines on all resulting strips.

Refinement for bijectivity. If any integral lines intersect in a facet
while not obeying the orientation requirements (i.e. corresponding
to a non-bijective parametrization), then each such facet is added to
a list of facets to refine. The maximal angle change is identified at
each vertex and along each edge. If the maximal angle change is at
a vertex, then the triangle is refined using bisector at the vertex. If
maximal angle change is at an edge, then that edge is refined at the
midpoint.

By field continuity, we eventually refine enough so that the topol-
ogy of both orthogonal fields on the triangle is trivial (a single strip),
in which case the bijectivity condition holds.

This happens very rarely and has so far been observed only on ele-
phant and omotondo shapes.

Resolving geometry. It remains to explain how points are inserted
to split T1 and T2 at the topology-resolution step. As our primary
goal is robustness and efficiency rather than high accuracy, we use
a simple algorithm that satisfies two constraints: (a) it is exact for
a strip with a constant field; (b) the positions computed using this
algorithm are continuous with respect to field changes. If these
two conditions are satisfied, then we expect, for a sufficiently small
deviation of a field from constant on a triangle, the error of the field
approximation satisfying criteria to be of order O(h2), where h is
the triangle size. (We do not include a detailed analysis of this, as
the accuracy of tracing has little impact on our primary application.)

Our computation is based on minimizing the absolute total flux
though the boundary of each strip. We observe that for a unit-length
field, and linear angle interpolation from α to β relative to the di-
rection of line segment, the flux on a line segment d of length L can
be easily computed as

F (d) = L(sinβ − sinα)/(β − α) (2)

reducing to L cos(α) for constant field, similar to [Ray and Sokolov
2013].

For each strip, the transversal divisions may either have known end-
points (tangency points or triangle vertices), or unknown (inserted
in the refinement process). By considering different cases of strips,
any strip with unknown endpoints for a division, either has known
endpoints for the other division, or can be virtually split into two
strips (cf. Figure 10a) by a diagonal with known endpoints, re-
sulting in two strips each with at least one division with known
endpoints.

For a transversal division T , we denote the opposite division in a
strip opp(T ).

Furthermore, every initial division on the boundary has known end-
points and a corresponding flux, and any division with unknown
endpoints is a subdivision of a boundary division. If a transversal
division T has subdivisions Ti, i = 1 . . . n, with unknown end-
points pi in the interior of T , we want

∑
i F (Ti) to be equal to

F (T ), and, at the same time each F (T ) close to −F (opp(T )) =
Gi, which can be approximated using Eq. 2. All fluxes of subdi-
visions of T have the same sign, which, we assume to be positive.
Then we define each flux as w2

i , to ensure it does not change sign,

and minimize
∑

i(wi −G
1/2
i )2, subject to

∑
i w

2
i = F (T ), yield-

ing a simple solution w2
i = F (T )Gi/

∑
i Gi. Once fluxes on an

edge are known, the point positions are easily deduced from the flux
formula.

Finally, once positions of all unknown points are determined, the
map of the triangle boundary to itself is defined per strip, with one-
to-one p.w. linear map of the in transversal division of the strip to
the out-transversal division. If both transversal divisions are line
segments then the map is linear. Otherwise one of the transver-
sal divisions consists of two or three segments on different triangle
edges, and we use fluxes through each segment to split the opposite
transversal division.

For the proposed scheme, properties (a) and (b) above are satisfied:
(a) can be checked directly; (b) requires a bit more work, and an
outline of the proof is provided in the supplementary document.

Floating-point accuracy. For topological correctness, it is neces-
sary to ensure all initial tangency points are distinct, and do not co-
incide with vertices and point positions pi computed using formu-
las above are in the correct order along the triangle boundary. All
geometric operations require floating point computations, and cor-
rectness conditions may be violated in extreme cases due to limited
accuracy of calculations. The use of exact predicates would be the
most reliable approach but new ones would have to be developed in
addition to those already available. In our current implementation,
we use scaled integer barycentric coordinates in the range 0 . . . 232,
and explicitly enforce all nondegeneracy conditions. In extreme
cases, this may be impossible (e.g., in the case of a very short divi-
sion of length 2−32, with several subdivisions). Such cases are very
rare and we have encountered them only on artificial examples.

Comparison to [Ray and Sokolov 2013]. Concurrent work [Ray
and Sokolov 2013] uses an identical field representation. The topol-
ogy resolution algorithm is somewhat different (a single strip is
eliminated each time, inserting a transversal division, instead of in-
serting tangent divisions as we do; due to (near-) uniqueness of
decomposition the resulting edge map unavoidably is similar. The
main differences include: we analyze decomposition uniqueness,
introduce additional refinement steps to avoid degenerate strips, and
the algorithm for refinement to ensure bijectivity on a triangle. The
algorithm for computing positions of inserted points is similar.



7 Consistency and simplification

The result of the motorcycle graph construction algorithm is a par-
tition of the surface into quads, possibly with T-joints. In general,
a seamless global parametrization mapping each quad of this mesh
to a rectangle in the parametric domain does not exist. In this sec-
tion, we describe an algorithm for modifying the quad partition to
guarantee the existence of a global parametrization.

7.1 Partition consistency

If each quad Qi of the partition is mapped to a rectangle, the basic
condition required for existence of a global seamless parametriza-
tion is that the parametric edge lengths on two opposite T-edges of
Qi are equal. If the lengths of edges forming two opposite T-edges
are b0j , j = 1 . . . n0, and b1j , j = 1 . . . n1, respectively, the con-
sistency conditions simply say that the parametric lengths are equal
on two sides:

n0∑
j=1

b0j =

n1∑
j=1

b1j (3)

subject to the constraints bkj > 0. We call a set of non-negative
(but not necessarily positive) parametric lengths consistent if these
satisfy 3 for any two opposite T-edges of rectangle.

To determine a unique parametric length assignment, we compute
the length ℓk of each partition edge on the surface, and minimize
the quadratic energy

Elen =

n∑
k=1

(bk − sℓk)
2

(4)

where an auxiliary variable s allows for edge scaling. As this sys-
tem is homogeneous, it always has a solution for bk ≥ 0, but some
edge length may be forced to be zero. This situation can often be
viewed as a discrete version of a limit cycle (cf. Figure 11).

If a surface is partitioned into quad patches with no T-joints, the
constraint system is trivial, and a solution with no zero edges always
exists. For the general case, we aim to minimize the number of bk
forced to be zero. In principle, algorithms exist to find a maximal
consistent subsystem, but have exponential complexity. Instead, we
use a heuristic, which in practice yields sets of zero bk variables of
very small cardinality. The idea is to remove all positive lengths
from the energy (4), and iteratively identify additional edges that
can be nonzero. The supplemental document presents the details of
the algorithm.

The consistency condition (3) ensures that if one of the opposite
sides of a quad is zero, the other is also zero, i.e. the quad is com-
pletely degenerate (zero quads); otherwise, both sides retain non-
zero parametric length.

7.2 Topological partition simplification

A remarkable property of a partition with consistent (i.e. satisfy-
ing Eq. 3) but possibly degenerate parametric length assignments
is that if we construct a mesh by identifying the opposite sides of
quads with a zero parametric dimension, the result is still a valid
quad mesh, unless the process results in a handle on the surface
collapsing to an edge or a point.

This suggests the idea of partition simplification: quads with zero
parametric dimensions are merged with nearby quads to form a new
partition for which non-zero edge assignments are possible (Fig-
ure 15).

Zero quad chains. We start with a purely topological description
and explain how the topological operations are performed geomet-
rically at the end.

a

ab

b
c

d

dc

Figure 11: Examples of zero edges highlighted on the right. Zero
chains in the Beetle model are associated with a limit cycle at the
border: zero chains are shown in red, and nonzero edges forcing
zero edges in black. Consistency conditions require c = b + a,
and b = c + d = b + a + d. From non-negativity, it follows that
a = d = 0.

To define simplification operations more precisely, we introduce
several definitions.

simple zero chain non-simple chain

A

B

si
d
e

extent

Figure 12: Simple and non-simple quad chains and notation. Col-
lapsing a non-simple quad chain cannot be done without collapsing
quads A and B.

We say that a sequence of quads, with each quad, except first and
last, sharing opposite T-edges with the previous and next quads is
a quad chain; a maximal chain is a chain that cannot be further
extended (Figure 12). Note that we do not assume that quads in a
chain do not repeat. In a zero chain the common edges all have
zero parametric length. The extent sides of zero-chain quads are
the sides which are not a part the zero-edge sequence (note these
also can have zero lengths as a part of another chain). A chain is
simple, if its side edges have at least one endpoint that is a T-joint.
As described below, a simple chain can be removed by a collapse
process while maintaining a quad partition. The extended valence
of a vertex is its valence plus the number of quads in which it is a
T-joint; that is, the valence of a vertex after all T-joints are extended.

zero loop

a

a

a zero chain with a zero loop

Figure 13: An example of a zero loop (zero edges shown in red);
a quad chain containing a zero loop, sides marked a are identified;
collapsing this chain may result in a topology change.



A zero loop is a closed sequence of zero elements, each element
being either a zero edge or a zero quad; two sequential elements
share a vertex; if one of the elements is a quad, the shared vertex
is on an extent side, and vertices shared with the previous and next
elements are on opposite extent sides. An admissible zero chain
does not contain zero loops, and two sequential quads in a chain are
always different.

Maximal simple zero chain collapse. The basic simplification op-
eration that we use removes a single zero chain from the partition.
It iterates over quads Rj , j = 0, . . . n, of the chain.

For each quad, two operations are performed (Figure 14).

(1) T-joints on the extent sides of Rj are extended to intersect with
opposite sides, to get a sequence of new quads Qi (to simplify nota-
tion, we use a single index for these, starting from the first subquad
of Q0). Quads Qi do not have T-joints on extent sides.

(2) All resulting quads Qi are sequentially collapsed. To define the
operation more precisely, we denote the zero edge of Qi common
with Qi−1, by ei = (vi, wi); for each zero edge, we define a col-
lapse direction by choosing which of the two vertices is removed.
We label vertices so that wi is always removed. We explain the
choice of wi below (for meshes satisfying Proposition 4, the choice
is not important). Q′

i and Q′′
i are adjacent to Qi on two sides, across

its extent edges fi and gi, respectively.

A single intermediate step of the collapse operation works as fol-
lows: Initial state: Qi−1 is a triangle, with the edges ei, fi−1 con-
necting vi−1 and wi, and gi−1 connecting vi−1 and vi. All edges
ej for j < i removed, and opposite sides identified. Collapse:
Remove edge fi−1 merging Qi−1 with Q′

i−1. Collapse edge ei,
turning Qi into a triangle. Label vi as a T-joint. Final state: Con-
figuration similar to the initial one, with i− 1 replaced with i.

At the first step, there is no Qi−1 to remove, and at the last step, no
Qi becomes a triangle.
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e
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Q'i

Q''i =Q''i −1
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wi fi
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after T-joint extension

Q''i =Q''i −1

Qi

after collapse of ei zero chain eliminated

Qi

Q''i =Q''i −1

vi

ei

vivi-1

after collapse of ei-1 

Qi-1

Figure 14: Notation and steps of collapsing a zero-chain, with ex-
tent edges in orange and zero edges in red.

A more trivial operation is a collapse of a single zero edge not be-
longing to any chain (an isolated zero edge). Such an edge always
has an end point which is a T-joint v; otherwise, it would be a T-
edge, and the opposite T-edge in quad would have to be zero. It can
removed on its own, simply merging it with the edge with which it
shares v.

Partition simplification algorithm. The overall algorithm is just:

While there are zero edges find an isolated zero edge or a simple
zero chain, and apply the collapse operation to it.

Its behavior is described by two propositions. The first guarantees
that the algorithm can always proceed.
Proposition 3. If a mesh has zero edges, there is either an isolated
zero edge or a simple zero T-chain.

The second proposition describes the set of partitions that can be
made consistent by the algorithm:
Proposition 4. Suppose a partition satisfies the following condi-
tions: (1) all vertices in the partition have extended valence 3 or
greater; (2) there are no valence 3 cones connected by a zero path;
(3) zero quad chains contain no zero loops. Then any simple zero
chain can be collapsed, and the resulting mesh has the same prop-
erties.

Requirement (1) and (2) are needed because collapsing a vertex of
valence less than 3 with a vertex of valence less than 4 may result in
vertices of valence 1, i.e. quads with two edges glued to each other,
which cannot be collapsed. These conditions ensure that no vertices
of valence below 3 appear as a result of collapses. Requirement (3)
is needed to avoid topological degeneracies; it implies that if one
follows a parametric line along a zero edge of a zero chain, eventu-
ally a non-zero quad is reached. The conditions of the proposition
are sufficient but not necessary for removing all zero chains. The
proofs are in the supplemental document.

(a) (b) (c)

(d) (e) (f) (g)

Figure 15: Collapsing several zero chains. (a) Partition with zero
edges highlighted in black; (b) simultaneous T-joint extensions; (c)-
(e) sequential zero chain collapses; (f) result with no zero chains.
(g) The image of the surface in the parametric domain conceptually
remains the same throughout. The four zero-chains map to the four
line segments highlighted around the light green quad.

The constraints of the proposition are relatively weak (there were
4 cases out of 114 for which these were not satisfied, as discussed
in Section 8); we discuss below the modifications to the algorithm
that need to be made to handle the general case.

Algorithm for general meshes. The partition simplification al-
gorithm can be applied to any mesh, not just those satisfying the
conditions of Proposition 4, but with no guarantee that a zero quad
chain can be collapsed. In this case, we try to maximize the number
of collapsed chains, and resolve the rest by adding cones.

Algorithm modifications. For meshes not satisfying the conditions
of Proposition 4, a specific heuristic for choosing vertices wi affects
the outcome. Additionally, the stopping criterion for the algorithm
is not the elimination of all zero chains – rather, reaching a state
when no remaining zero chain can be collapsed.

If sharp features are present, the endpoints of the path cannot be
relocated, and the feature valence (number of feature edges at a
vertex) should not change. This requires selecting a vertex which is
not a feature endpoint as wi, if one is available. If one vertex is on
a border, the non-border vertex has to be used as wi.

A zero path is not collapsed if (1) there is a zero edge ei whose
collapse results in an extended valence 2 vertex; (2) a zero loop is
present; or (3) the endpoints of an edge are feature vertices, except
in the case when the edge is a feature edge, and one endpoint is not
a feature endpoint.

Cone insertion. In the final state, there may be a number of un-
collapsible quad chains remaining. To fully eliminate zero edges



and obtain a valid parametrization, we observe that for each chain,
removing the constraints corresponding to the side quads makes it
possible to choose nonzero edge lengths for the chain. We remove
constraints one by one, and re-solve for the parametric length each
time, until no zero parametric lengths are left. This state is always
achieved because additional constraints are removed at every step.
The detailed algorithm is included in the supplemental document.

We say that a quad is non-compatible if one of the constraints was
removed for it. If two constraints are removed for a quad, we call
it doubly non-compatible. We replace each non-compatible quad
with 4 quads, inserting a 2-6 pair, and a doubly non-compatible
quad with 7 quads, inserting 2 pairs (Figure 16). This is the simplest
way to resolve edge incompatibility for a quad. The quality of the
resulting parametrization depends on the placement of singularities.
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Figure 16: Cone insertion: a single 2-6 pair makes it possible to
have different parametric lengths a and a + b on two sides of a
quad. Only split into 4 quads marked with solid lines is needed, if
the (extended) valence 6 cone is labeled as a non-corner vertex in
2 faces. In two resulting faces corners are marked C.

7.3 Updating partition geometry

The simplification algorithm presented so far describes how parti-
tion connectivity can be changed to make it consistent. New edges
appear at two points of the algorithm: when T-joints are extended,
and when diagonal edges are introduced when a zero quad Qi is
split between two adjacent quads. We describe how the curves cor-
responding to these edges are introduced on the surface, and how
corresponding parametric lengths are assigned.

Tracing new edges. Any new edge connects points (corners, T-
vertices or vertices introduced by T-joint extension) of a quad of
the current T-mesh.

New vertices and edges created by extension also have to be placed
on the original geometry. If v2 is a new vertex on a T-edge e, added
on a non-zero T-edge by extending a T-joint v, it splits e on the
surface in the same ratio as v splits the opposite edge of the quad.
If the vertex is added on a zero T-edge, it splits the T-edge in half.
This ensures that all newly added vertices have distinct positions on
the mesh.

To trace newly added edges on the surface, we parametrize bijec-
tively each quad on a rectangle, using a positive-weights discrete
harmonic map, and trace a straight line between the end points to
be connected in the parametric domain, which we then remap to
the mesh, cutting it along the traced lines. This procedure guaran-
tees correctness of the T-mesh topology embedded in the surface
(i.e. edges intersect only at endpoints and the part of the surface
bounded by face edges is simply-connected). It is applied both for
T-joint extension and computing new edges when a zero quad is
collapsed.

Updating parametric lengths. For quad collapse, the assignment
of parametric lengths is simple: existing edges retain their para-
metric lengths, and if a diagonal new edge is introduced, it is as-
signed the parametric length of the pair of opposite edges of Qi

collapsed to it. However, T-joint extensions require splitting edges
and assigning parametric lengths to different parts. The process is
straightforward as long as T-joint positions are distinct and the ex-
tent edges do not have zero parametric lengths themselves. A spe-
cific method for resolving ambiguity extension is not that important
for the algorithm as long as T-mesh consistency is preserved, and no
T-joints are left on the sides of zero chain quads. We use the follow-
ing assignment. For each T-joint u1 on side f we extend it across
the quad to side g. The new vertex u2 has the same parametric dis-
tance from an arbitrarily chosen side of the quad as u1. Suppose
there are m vertices at the same parametric location as u1 and n
vertices at the same parametric location as u2; and u1 is preceded
by k T-joints along f . The connectivity is resolved by connecting
u1 to vertex number k at location u2 on g; if k > n, a new vertex is
inserted to the right and is assigned the same parametric location.

8 Evaluation and Discussion

Test data set. As the focus of our work is on robustness, we
have tested our algorithm on a comparatively large data set. We
have started with all manifold mesh models from the AIM@Shape
database, and added models from the Stanford shape repository and
several commonly used ones in related works. We have excluded
two categories: height fields representing terrains, as all of these
have similar behavior and can be trivially parametrized by projec-
tion, and spline surface control meshes.

While the performance of our main set of algorithms (field tracing,
partition simplification and cone insertion) is fast, the final-stage
constrained cone and quadratic optimization is slow, so all meshes
with face count above 100k were downsampled to 100k faces using
the AIM@Shape online decimation tool. We obtained a dataset of
114 meshes.

The cross-fields on the meshes were generated using [Bommes et al.
2009], with its default parameter choices for feature detection. Ad-
ditionally, cones separated by one edge were collapsed to reduce the
number of cones on noisy meshes. While the resulting field quality
was not suitable for high-quality parametrization, no further field
modifications were done since our goal is to test the robustness of
the method to field behavior, Detailed information on the data set
and test results is included in the electronic supplement.
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Figure 17: Histograms of cone numbers (top) and genus (bottom)
in our data set.

Basic statistics on the data set are shown in Figure 17. As we ob-
serve, both mesh genus and cone counts vary in a broad range. In
addition, the triangle aspect ratio was as high as 106.

Comparisons. We compare to two state-of-the art methods, both
based on minimizing a quadratic energy with constraints: the trisec-
tor constraints of [Bommes et al. 2013] (IGM) and the quasiconfor-
mal cone constraints of [Lipman 2012] (BD) using the cross-field



as the initial frame field. In all figures, our method is referred to
as RGP. We also compare to the stiffening technique of [Bommes
et al. 2009] (MIQ). Although less reliable and predictable than
constrained-based methods, it has the advantage that it does not
fail completely, as convex solvers often do, if no bijective solution
is found.

As discussed in Section 7, the final parametrization is obtained
in the same way, but the frame is extracted from the initial
parametrization. In both cases, the quasiconformal constraint
bound was set to 0.99 to minimize failures of the method of [Lip-
man 2012] on the original mesh.

Bijectivity. Our key result is that, for all 114 models our method
has produced locally bijective initial parametrizations. In compari-
son, IGM fails for 29 models, and BD fails for 20 models. Figure 25
shows some examples of problems.

Furthermore, using our bijective parametrization as a starting point,
the final BD-constrained parametrization was successfully com-
puted for all but one model, for which there was a single non-
bijective triangle (vhskin). This is apparently due to the poor
conditioning of the resulting system, preventing the cone solver
(MOSEK) from solving the problem with sufficient accuracy.

Examples comparing initial and final parametrizations are shown in
Figure 18.

We were unable to identify precisely the reasons why BD and IGM
do not find a feasible solution for certain meshes. There appears
to be no particular correlation with mesh quality (either nearly-
degenerate triangles, or very high Gaussian curvature values), but
higher correlation with field smoothness and complexity. Some ex-
amples are shown in Figure 19, and the supplementary material in-
cludes detailed statistics of mesh edge lengths and vertex total angle
distributions, as well as additional images of meshes with problem-
atic parametrizations.

Distortion comparison. We compare the distortion of the
parametrizations produced by the three methods only on meshes
for which IGM and BD do not fail.

Overall, we observe that the parametrizations we compute have as
good or lower distortion than previous work. The small improve-
ment in distortion in many cases can be explained by the added
degrees of freedom, especially near cones where the distortion is
typically highest.

Effects of collapsing zero chains. As discussed in Section 7, zero
chain collapse can be thought of as a local topology-preserving field
modification. While this collapse affects field quality (the opera-
tion is purely topological with no attempt to preserve field direc-
tions), the last stage uses the original field for the BD-constrained
parametrization fit, and the field quality is recovered. This can be
seen in Figure 21.

Cone insertion. While T-collapse is needed relatively commonly
(39 meshes), only four meshes required cone insertion (raptor50k,
dancer2, twirl, brain).

As an additional demonstration of robustness, we include an ar-
tificial example: the random mesh example from [Bommes et al.
2013] (Figure 23). Interestingly, compared to some of the “real”
meshes from our dataset, the random mesh example proved to be
easy: on such random meshes, collapses are rarely required, and no
cone insertion was needed. We observe that random triangles sam-
pled from a sphere generally have a good aspect ratio, and cones
do not have very high valence. Another extreme example is the
parametrization of a 2-torus with a single singular point.

Dependence on field quality. All tests were done on fields gener-
ated automatically, without taking isometry into account and with
no manual improvement. Our observation is that for fields with
penalty for high curl (we used the method of [Myles and Zorin

Figure 18: Comparison of the initial parametrizations computed
from the consistent partitions (left) and the final parametrizations
(right).

2012]), the need for zero-chain collapses drastically decreases.
For example, four cases that originally required cone insertion, no
longer require it after penalizing high curl (see Figure 22). Fur-
thermore, only 6 out of 39 models originally requiring zero-chain
collapse still needed it. In many cases, this comes at the expense of
feature alignment.

Timings. Most of the algorithm is sublinear, as it does not need to
visit every triangle. As each quad patch needs to be parametrized,
the performance is mostly determined by the speed of the linear



(a) (b) (c) (d)

Figure 19: (a)–(b) A mesh with a “spike” and a mesh with nearly-
degenerate triangles for which both BD and IGM produce good
results. (c) A mesh with neither bad triangles or spikes for which
BD and IGM fail. (d) On this mesh, the “spikes” are located in
places far from inverted triangles.
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Figure 20: Distortion comparison: the histograms show the dis-
tribution of mean-square average distortion difference, RGP minus
BD, RGP minus IGM, and RGP minus MIQ with stiffening.

solver. Figure 24 shows how total time is distributed. Overall, the
cost is negligible compared to the cost of the constrained solve. The
timing outliers are relatively noisy meshes with a large number of
cones.

Limitations. In one case (twirl), our method does have to eliminate
one zero chain by cone insertion, necessitated by a zero loop. Using
[Lipman 2012] constraints, on the other hand, produces a locally
bijective parametrization with no foldovers. This confirms that the
class of inconsistent T-meshes that can be made consistent without
adding cones is broader than the one given by Proposition 4.

9 Conclusion

The presented set of algorithms provides a way to compute feature-
aligned parametrizations robustly as demonstrated on a set of
shapes an order of magnitude larger than most previous work. The

(a) (b)

(c) (d)

Figure 21: Effects of zero-chain collapse on the field. Zero edges
are highlighted in (a). (b) shows the result of collapse (note the
pentagonal-shaped face, which is actually a logical quad). In (c)
observe distortion of the initial parametrization in this area which
disappears after optimization in (d).

MIQ IF

MIQ IF

Figure 22: Three out of four models requiring cone insertion. The
original result is on the left of each. On the right, the results for
more isometric (but less aligned) fields generated using [Myles and
Zorin 2012], for which no cone insertion was needed.

Figure 23: Left: A random mesh sampled from a sphere. Right:
Partition for a torus with a single singularity.
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Figure 24: Total time of tracing, collapse and cone insertion.

algorithm for computing the initial parametrization is efficient, and
does not have a significant impact on overall running time.
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Figure 25: Examples of non-bijective parametrizations (inverted triangles shown in red) produced by MIQ with stiffening, IGM and BD
methods, compared to the same areas parametrized using RGP. For the femur model, the folded triangles for the BD method are inside a
tunnel and not visible. The lower row shows additional examples of inverted triangles for different methods.

There are many directions for improvement that are easy to explore:
first, the motorcycle graph algorithm is the simplest but not the best
way to construct a quad partition; methods similar to [Myles et al.
2010] can be used for further improvement. Second, while the par-
tition simplification by quad chain collapse handles most cases re-
quiring field modification, this is not the only possible operation
for eliminating zero edges. We conjecture that as long as the holon-
omy type of the field is compatible with a quadrangulation, one can
construct a nondegenerate quad partition. Last, but not least, com-
bining our method with a rounding technique like [Bommes et al.
2013] is essential for quadrangulation.
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