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Abstract

Feature-based image matching relies on the assump-

tion that the features contained in the model are dis-

tinctive enough. When both model and data present a

sizeable amount of clutter, the signal-to-noise ratio falls

and the detection becomes more challenging. If such

clutter exhibits a coherent structure, as it is the case for

textured background, matching becomes even harder. In

fact, the large amount of repeatable features extracted

from the texture dims the strength of the relatively few

interesting points of the object itself. In this paper we

introduce a game-theoretic approach that allows to dis-

tinguish foreground features from background ones. In

addition the same technique can be used to deal with the

object matching itself. The whole procedure is validated

by applying it to a practical scenario and by comparing

it with a standard point-pattern matching technique.

1. Introduction

Given its central role in many computer vision tasks,

image matching and registration is a widely investigated

topic in literature. Several approaches exploit global

properties of the images, ranging from the many tech-

niques based on cross-correlation [6] to those that work

in the frequency domain [4] or adopt the mutual infor-

mation as a similarity measure [10]. While successful

in many scenarios, the global nature of those techniques

makes them little robust to changes in illumination and

to the presence of clutter. Feature-based approaches

partially solve those problems. Attributed feature points

are extracted from images using detectors [8, 9, 7] and

descriptors [5, 2] that are locally invariant to illumina-

tion, scale and rotation. Usually, the model features are

matched with those obtained from the target image by

means of some RANSAC-based approach that can ex-

ploit the prior given by the descriptors [3]. Critical to

the success of this kind of technique is of course the

distinctiveness of the extracted features. Unfortunately,

when dealing with textured clutter, this distinctiveness

comes short and the number of very repeatable but ir-

relevant features overshadows those coming from the

foreground object. To avoid false matches it is manda-

tory to recognize and ignore the background. In this

paper we cope with both the filtering of the background

features and the recognition task by tailoring the match-

ing framework introduced in [1]. Specifically we model

the filtering step as a self-matching game, where fea-

tures that show high mutual similarity in the same image

are deemed not distinctive enough and thus screened

away. By converse, the recognition step is performed as

a matching game between the model and a data image,

where a set of highly coherent pairs of corresponding

features is seeked.

2. The Matching Game

Evolutionary game theory [11] considers an ideal-

ized scenario where pairs of individuals are repeatedly

drawn at random from a large population to play a two-

player game. Each player obtains a payoff that depends

only on the strategies played by him and its opponent.

Players are not supposed to behave rationally, but rather

they act according to a pre-programmed behavior, or

mixed strategy. It is supposed that some selection pro-

cess operates over time on the distribution of behaviors

favoring players that receive larger payoffs. More for-

mally, let O = {1, · · · , n} be the set of available strate-

gies (pure strategies in the language of game theory)

and C = (cij) be a matrix specifying the payoff that

an individual playing strategy i receives against some-

one playing strategy j. A mixed strategy is a probabil-

ity distribution x = (x1, . . . , xn)
T over the available

strategies O.

Being probability distributions, mixed strategies are

constrained to lie in the n-dimensional standard simplex
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Figure 1. Examples of the two evolutionary matching games proposed

∆n = {x ∈ IRn : ∀i ∈ 1 . . . n xi ≥ 0,
∑n

i=1xi = 1} .

The support of a mixed strategy x ∈ ∆, denoted by

σ(x), is defined as the set of elements chosen with non-

zero probability: σ(x) = {i ∈ O | xi > 0}. The ex-

pected payoff received by a player choosing element i

when playing against a player adopting a mixed strat-

egy x is (Cx)i =
∑

j cijxj , hence the expected payoff

received by adopting the mixed strategy y against x is

y
TCx. The best replies against mixed strategy x is the

set of mixed strategies

β(x) = {y ∈ ∆ | yTCx = max
z

(zTCx)} .

A strategy x is said to be a Nash equilibrium if it is the

best reply to itself, i.e., ∀y ∈ ∆, x
TCx ≥ y

TCx .

This implies that ∀i ∈ σ(x) we have (Cx)i = x
TCx;

that is, the payoff of every strategy in the support of x

is constant. A strategy x is said to be an evolutionary

stable strategy (ESS) if it is a Nash equilibrium and

∀y ∈ ∆ x
TCx = y

TCx ⇒ x
TCy > y

TCy .

This condition guarantees that any deviation from the

stable strategies does not pay. The search for a stable

state is performed by simulating the evolution of a nat-

ural selection process. Under very loose conditions, any

dynamics that respect the payoffs is guaranteed to con-

verge to Nash equilibria [11] and (hopefully) to ESS’s;

for this reason, the choice of an actual selection process

is not crucial and can be driven mostly by considera-

tions of efficiency and simplicity. We chose to use the

replicator dynamics, a well-known formalization of the

selection process governed by the following equation

xi(t+ 1) = xi(t)
(Cx(t))i

x(t)TCx(t)

where xi is the i-th element of the population and C the

payoff matrix. Once the population has reached a lo-

cal maximum, all the non-extincted pure strategies (i.e.,

σ(x)) can be considered selected by the game.

2.1. Filtering a Textured Background

When dealing with textures, we can expect a large

number of features that exhibit very similar descriptors.

This is a very unfortunate condition for matching: in

fact, this high level of conguence can easily distract

any matcher from the foreground object. Paradoxically

we use this property to screen out background features.

Following [1], we model each feature as a strategy in a

matching game where the payoff matrix is defined by:

C(i, j) = e−α|di−dj | (1)

where di and dj are the descriptor vectors associated to

features i and j, and α is a parameter that controls the

level of selectivity. Clearly, features that are similar will

get a large mutual payoff and thus are more likely to be

selected by the evolutive process. A simplified (but nu-

merically correct) example of such evolution is shown

in the first row of Fig. 1. Here, six descriptors of dimen-

sionality 2 are labeled from a to f . Vectors b,c and d

get high values in the payoff matrix since they are close

in the descriptor space. Other descriptors get lower mu-

tual payoffs, according to their respective distances. We

start the replicator dynamics (T = 0) near the barycen-

ter of ∆6, which is sligthly perturbed to help avoiding

local minima. After just one iteration (T = 1), strate-

gies b,c and d get a significant evolutionary boost over

the others, and after ten iterations (T = 10) they are the

only strategies left in the support. We can then classify

those features as background and filter them out.

2.2. Matching Model and Data

In order to match model and data points we need to

define a slightly different matching game. In this con-



Figure 2. Background filtering and feature matching (best viewed in color)

text, each strategy models a pair of features (a1, a2)
that belong respectively to the model and the data. We

define a payoff among strategies that is proportional

to the compatibility of the affine transformation esti-

mated by the descriptor used (for instance, SIFT [5] or

SURF [2]). Specifically, we are able to associate to each

strategy (a1, a2) an affine transformation, which we call

T (a1, a2).
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a2'T(b1b2)
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da
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T(b1b2)
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When this is applied to a1 it produces the point a2,

but when it is applied to the model point b1 it will give

a point b′2 that is near to b2 if T (a1, a2) is similar to

T (b1, b2). Given two strategies (a1, a2) and (b1, b2)
and their associated transformations T (a1, a2) and

T (b1, b2) we calculate their reciprocal reprojected vir-

tual points as: a′2 = T (b1, b2)a1 and b′2 = T (a1, a2)b1.

Given virtual points a′2 and b′2 we are finally able to de-

fine the payoff between (a1, a2) and (b1, b2) as:

C((a1, a2), (b1, b2)) = e−βmax(|a2−a′

2
|,|b2−b′

2
|) (2)

where β is a selectivity parameter that allows to oper-

ate a more or less selective matching game. Clearly,

large groups of point pairs that are coherent with re-

spect to an affine transformation will receive a large

payoff and thus an evolutive advantage. In the second

row of Fig. 1 we show an example of this matching

game. Here, coherent strategies exhibit high payoff val-

ues (i.e., C((a1, a2), (b1, b2)) = 1), while less compat-

ible pairs get lower scores (i.e., C((a1, a2), (c1, c2)) =
0.1). Note that strategies that share the same model or

data point get payoff 0 to avoid one-to-many match-

ing. Initially, the population is set to a slightly per-

turbed barycenter of ∆6. After one iteration, (c1, b2)
and (c1, c2) have lost a significant amount of support,

while (d1, c2) and (d1, d2) are still played by a sizeable

amount of population, despite being mutually exclusive.

After ten iterations, (d1, d2) has finally prevailed over

(d1, c2) and the final support has emerged.

3. Experimental Evaluation

We tested our game-theoretic approach by applying

it to the detection of hand-written markers placed on

textured fabric. This is a typical scenario for batch

tracking in the textile industry, where barcodes or RFID

tags are not viable solutions due to the harsh cloth pro-

cessing conditions that would destroy them. The first

three frames of Fig. 2 show the background filtering

performance of our method. The first frame contains

all the original SIFT features extracted, the second one

shows those survived after applying our filter with se-

lectivity parameter α = 10−4. By using α = 10−3

all the background is screened in the third frame. We

observed that a larger value of α does not affect much

the result, as foreground features are quite disjointed.

The matcher performance has been evaluated by com-

paring its precision-recall curve with those obtained by

using an optimized RANSAC-based technique. Specif-

ically, we implemented a PROSAC [3] variant by using

descriptor vectors as hints for the selection of transfor-

mation candidates in an affine point-pattern matching.

In order to assess the effect of the background elimi-

nation step, we applied this RANSAC schema to both

filtered and unfiltered frames.
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Figure 3. Comparison with RANSAC

The trade-off between precision and recall was ad-

justed respectively by means of parameter β and by us-

ing different thresholds for the consensus. Tests were

performed with 20 markers and 15 different fabric pat-

terns. The markers were present in 59 frames of a



30.000 frames long video sequence. Given the constant

presence of a textured background, the poor results ob-

tained with RANSAC and the unfiltered video were ex-

pected. Indeed, we were unable to reach a full recall

without a complete loss of precision, and even when

accepting a low recall most of the detected frames were

false positives due to background matching. RANSAC

performance increases dramatically after application of

the filter. Nevertheless, it is not possible to obtain a

high level of recall without losing precision. This is

due to the presence of features that do not belong to

the foreground marker and neither are part of a texture.

This happens, for instance, with sewings, seams or dirt

present in the fabric. In the right half of Fig. 2 we show

an instance where our method obtains the correct match,

while RANSAC is distracted by a junction in the fab-

ric. The game-theoretic matcher (applied over filtered

frames) obtains by far the best results. In fact, a per-

fect recall is obtained with a precision value above 0.8

(β = 10−3) and, by using a more selective parameter

(β = 10−2) all the false positives are avoided while still

obtaining a recall just slightly below 0.7. In some prac-

tical applications it is more important to guarantee a re-

call of 1 since a moderate number of false positives can

be tolerated (and filtered bottomward in the pipeline),

while a miss in the detection is not allowed. To measure

the loss in precision with respect to noise, we corrupted

both data and model with additive Gaussian noise. At

each noise level (expressed with the standard deviation

in Fig. 4) we tuned β to maintain a recall of 1 and mea-

sured the precision. While it was always possible to ob-

tain a complete recall, we observed a linear decay of the

precision. This is not a failure of the matcher itself, but

an impaired effectiveness of the background filter due to

the reduced similarity among the extracted descriptors.

It should be noted, however, that in this experimental

setup a precision of 0.3 with a recall of 1 corresponds to

a fall-out of 0.006 (about 180 false positives over 30.000

tests).
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Figure 4. Effect of image noise

4. Conclusions

We presented a game-theoretic approach that allows

to perform a robust feature-based matching even when

the foreground is absorbed in a highly textured back-

ground. This is done by playing two different non-

cooperative games: a filter game, that separates fore-

ground from background, and a matching game, that

performs the actual point-pattern matching. An exper-

imental validation shows that both the steps concur to

the improvement of the whole matching task and the

obtained results outperform in terms of precision and

recall an optimized RANSAC-based approach.
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