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Robust Filtering for a Class of Stochastic
Uncertain Nonlinear Time-Delay Systems via

Exponential State Estimation
Zidong Wang, Member, IEEE,and Keith J. Burnham

Abstract—In this paper, we investigate the robust filter design
problem for a class of nonlinear time-delay stochastic systems.
The system under study involves stochastics, unknown state
time-delay, parameter uncertainties, and unknown nonlinear
disturbances, which are all often encountered in practice and the
sources of instability. The aim of this problem is to design a linear,
delayless, uncertainty-independent state estimator such that for
all admissible uncertainties as well as nonlinear disturbances, the
dynamics of the estimation error is stochastically exponentially
stable in the mean square, independent of the time delay. Sufficient
conditions are proposed to guarantee the existence of desired
robust exponential filters, which are derived in terms of the
solutions to algebraic Riccati inequalities. The developed theory is
illustrated by numerical simulation.

Index Terms—Algebraic Riccati inequalities, nonlinear sys-
tems, robust filtering, stochastic exponential stability, time-delay
systems.

I. INTRODUCTION

A S IS well known, for the purpose of analysis and control
design, estimating the state variables of a dynamic model

is important in heping to improve our knowledge about different
systems. Hence, state estimation has been one of the funda-
mental issues in the control area. There have been a lot of works
following those of Kalman (in the stochastic framework [1]) and
Luenberger (in the deterministic one [23]), especially in signal
processing applications.

One of the problems with Kalman filters, which has been
well recognized now, is that the system under consideration
has known dynamics described by a certain well-posed model,
and its disturbances are Gaussian noises with known statistics.
These assumptions limit the application scope of the Kalman
filtering technique when there are uncertainties in either the
exogenous input signals or the system model. It has been known
that the standard Kalman filtering algorithms will generally not
guarantee satisfactory performance when there exists uncer-
tainty in the system model; see e.g., [1] and [6]. Motivated by
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this problem, for the continuous-time case, a number of papers
have attempted to extend the classical Kalman filter to systems
involving norm-bounded uncertainties with respect to various
filtering performance criteria, such as the specification, the
minimum variance requirement, and the so-called admissible
variance constraint. For the specification [3], [7], [9], [12],
[15], [21], [28], [30], the norm of the transfer function
from the noise input to the estimation error is minimized.
By the minimum variance requirement [4], [5], [8], [10],
[24], [25], [29], we mean that a minimal upper bound to the
quadratic cost is guaranteed in spite of parameter uncertainties.
Concerning the admissible variance constraint [31]–[33], [35],
[36], the estimation error variance is required to be not more
than the individual prespecified value, and the resulting design
freedom is used to achieve other expected requirements (
performance, transient property, etc.).

On the other hand, it turns out that the delayed state is very
often the cause for instability and poor performance of systems
[18]. Increasing interests have recently been devoted to the ro-
bust and/or controller design problems of the linear uncer-
tain state delayed systems. A great many papers have appeared
on this topic; see [22] for a survey. However, the “dual” filter/ob-
server design problems of uncertain time-delay systems have re-
ceivedmuch lessattention, although they are important in con-
trol design and signal processing applications. In [34], the ro-
bust observer design problem has been studied fordeter-
ministic time-delay systems. In the stochastic framework, the
robust Kalman filter design problem has been investigated in
[13] and [17] forlinear continuous- and discrete-time cases, re-
spectively. A finite upper bound on the error covariance has been
guaranteed in [13] and [17]. It should be pointed out that in [13]
and [17], only the asymptotical stability has been considered on
the filtering process, and therefore, a possibly long convergence
time (although the steady-state covariance is bounded) may lead
to poor performance. Often, in practice, exponential stability is
highly desired for filtering processes so that fast convergence
and acceptable accuracy in terms of reasonable error covariance
can be ensured. In addition, it is well known that the nonlinear-
ities are often introduced in the form of nonlinear disturbances.
Unfortunately, the results in [13] and [17] no longer hold when
the system under consideration involves nonlinearities that are
frequently encountered in practice.

A filter is said to be exponential if the dynamics of the
estimation error is stochastically exponentially stable. The
design of exponential fast filters for linear and nonlinear
stochastic systems is also an active research topic; see, e.g.,
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[26] and [37]–[39]. Thus far, there have been very few papers
dealing with the exponential filter design problem forgeneral
stochastictime-delay systems. Moreover, it seems more chal-
lenging to consider the case where parameter uncertainty and
nonlinear disturbance also exist in the system model, due to the
complexity of such a problem. This motivates us to investigate
the multiobjective filter design problem for stochastic uncer-
tain time-delay systems with stochastic exponential stability
constraints.

In this paper, we address the robust filter design problem for
a class of nonlinear time-delay stochastic systems. The class
of stochastic time-delay systems under study is described by
a state-space model with real time-varying norm-bounded pa-
rameter uncertainties and nonlinear disturbances meeting the
boundedness condition. Here, attention is focused on the design
of a linear, delayless, uncertainty-independent state estimator
such that for all admissible uncertainties and nonlinear distur-
bances, the dynamics of the estimation error is stochastically ex-
ponentially stable in the mean square, independent of the time
delay. Sufficient conditions are proposed to guarantee the ex-
istence of desired robust exponential filters, which are derived
in terms of the solutions to algebraic Riccati inequalities. We
demonstrate the usefulness and applicability of the developed
theory by means of a numerical simulation example.

Notation: The notations in this paper are quite standard.
and denote, respectively, the-dimensional Euclidean
space and the set of all real matrices. The superscript “”
denotes the transpose and the notation (respectively,

), where and are symmetric matrices, which means
that is positive semi-definite (respectively, positive def-
inite). is the identity matrix with compatible dimension. We
let and denote the family of contin-
uous functions from to with the norm

, where is the Euclidean norm in .
If is a matrix, denote by its operator norm, i.e.,

: , where [respec-
tively, ] means the largest (respectively, smallest) eigen-
value of . is the space of the square integrable vector.
Moreover, let be a complete probability
space with a filtration satisfying the usual conditions
(i.e., the filtration contains all -null sets and is right contin-
uous). Denote by the family of all -mea-
surable -valued random variables :

such that , where
stands for the mathematical expectation operator with re-

spect to the given probability measure. Sometimes, the ar-
guments of a function will be omitted in the analysis when no
confusion can arise.

II. PROBLEM FORMULATION AND ASSUMPTIONS

We consider a class of nonlinear uncertain continuous-time
state delayed stochastic system represented by

(2.1)

(2.2)

together with the measurement equation

(2.3)

where
state;
measurement output;
unknown nonlinear disturbance input;
unknownstate delay;
continuous vector valued initial function.

Here, is a zero mean Gaussian white noise process
with covariance . The initial state has the mean

and covariance and is uncorrelated with .
are known constant matrices with ap-

propriate dimensions. are real-valued
time-varying matrix functions representing norm-bounded
parameter uncertainties and satisfy

(2.4)

where is a real uncertain matrix with Lebesgue
measurable elements and meets

(2.5)

and are known real constant matrices of ap-
propriate dimensions that specify how the uncertain parameters
in enter the nominal matrices . The uncertainties

are said to be admissible if both (2.4)
and (2.5) are satisfied.

Remark 2.1:For brevity, we have omitted the known control
input terms in (2.1) and (2.3) since it is well known that this does
not affect the generality of the discussion on the filter design.

Remark 2.2:The parameter uncertainty structure as in (2.4)
and (2.5) has been widely used in the problems of robust con-
trol and robust filtering of uncertain systems (see, e.g., [14],
[25], [35], and the references therein). Many practical systems
possess parameter uncertainties that can be either exactly mod-
eled or overbounded by (2.5). Observe that the unknown matrix

in (2.4) can even be allowed to be state-dependent, i.e.,
, as long as (2.5) is satisfied.

Remark 2.3:Note that the system (2.1)–(2.3) can be used to
represent many important physical systems subject to inherent
state delays, parameter uncertainties, deterministic nonlinear
disturbances (which may result from linearization process
of an originally nonlinear plant or may be an actual external
nonlinear input), and stochastic exogenous noises with known
statistics.

Throughout this paper, we make the following assumptions.
Assumption 2.1:The system matrix is asymptotically

stable.
Assumption 2.2:The matrix is of full row rank.
Assumption 2.3:There exists a known real constant matrix

such that the unknown nonlinear vector function
satisfies the following boundedness condition

(2.6)

for any .
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It is noted that Assumption 2.2 does not lose any generality.
In this paper, the full-order linear filter under consideration is of
the form

(2.7)

where the constant matricesand are filter parameters to be
designed.

Letting the error state be

(2.8)

it then follows from (2.1)–(2.3) and (2.7) that

(2.9)

Now, define

(2.10)

(2.11)

(2.12)

(2.13)

Noting

(2.14)

and combining (2.1)–(2.4) and (2.9), we obtain the following
augmented system:

(2.15)

Next, observe the augmented system (2.15), and let
denote the state trajectory from the initial data
on in . Clearly, the system
(2.15) admits a trivial solution corresponding
to the initial data . We introduce the following stability
concepts.

Definition 2.1: For the system (2.15) and every
, the trivial solution is asymptoti-

cally stable in the mean square if

(2.16)

and is exponentially stable in the mean square if there exist con-
stants and such that

(2.17)

Definition 2.2: We say that the filter (2.7) is exponential (re-
spectively, asymptotic) if, for every , the
corresponding augmented system (2.15) is exponentially stable
in mean square (respectively, asymptotically stable in the mean
square).

The objective of this paper is to design an exponential filter
for the uncertain nonlinear time-delay system (2.1)–(2.3). More
specifically, we are interested in seeking the filter parameters

and such that for all admissible parameter uncertainties
and the nonlinear disturbance input ,

the augmented system (2.15) is exponentially stable in the mean
square, independent of theunknowntime-delay .

III. M AIN RESULTS AND PROOFS

A. Filter Analysis

This subsection is devoted to the filter analysis problem.
Specifically, assuming that the filter structure is known, we
will study the conditions under which the estimation error is
stochastically exponentially stable in the mean square.

The following theorem shows that the exponential stability
of a given filter for the uncertain nonlinear time-delay system
(2.1)–(2.3) can be guaranteed if a positive definite solution to
a modified algebraic Riccati-like matrix inequality (quadratic
matrix inequality) is known to exist. This theorem plays a key
role in the design of the expected filters.

Theorem 3.1:Let the filter parameters and be given.
If there exist positive scalars and a positive
definite matrix such that the following matrix inequality

(3.1)

holds, where , , , , , , , are defined
in (2.10)–(2.13) and is defined in (2.6), then the augmented
system (2.15) is exponentially stable in the mean square for all
admissible parameter uncertainties and non-
linear disturbance input , independent of the unknown
time-delay .

Proof: For simplicity, we make the definitions

(3.2)

(3.3)

and then the augmented system (2.15) can be rewritten as

(3.4)
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Fix arbitrarily, and write
. For , we define the Lyapunov

function candidate

(3.5)

where is the positive definite solution to the matrix inequality
(3.1), and is defined by

(3.6)

By Itô’s formula (see, e.g., [20]), the stochastic derivative of
along a given trajectory is obtained as

(3.7)

Let be positive scalars. Then, the matrix in-
equality

yields

(3.8)

Moreover, noting that and
, it follows from

and

that

(3.9)

Next, it results from

that

(3.10)

Furthermore, from

and Assumption 2.3, we have

(3.11)

Noticing the inequality (3.1) and the definition (3.6), we de-
note

(3.12)

Then, substituting (3.8)–(3.11) into (3.7) results in

(3.13)

which means that the nonlinear uncertain stochastic time-delay
augmented system (2.15) is asymptotically stable (in the mean
square), provided that the inequality (3.1) is met.
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Next, to show the expected exponential stability (in the mean
square) of the augmented system, some standard manipulations
will be made on (3.13) by exploiting the technique developed in
[19] and [20].

Let be the unique root of the equation

(3.14)

where and are defined, respectively, in (3.12) and (3.6),
is the positive definite solution to (3.1), andis the unknown
time delay.

We can obtain from (3.13) that

Then, integrating both sides from 0 to and taking the
expectation result in

Note that

Then, considering the definition of in (3.14), we have

and

Notice that is arbitrary, and letting

the definition of exponential stability in (2.17) is then satisfied,
and this completes the proof of Theorem 3.1.

Remark 3.1:Theorem 3.1 offers the analysis results for the
exponential stability (in the mean square) of a class of non-
linear uncertain time-delay stochastic systems. The results may
be conservative due to the use of the inequalities (3.8)–(3.11).
However, such conservativeness can be significantly reduced by
appropriate choices of the parameters in a matrix
norm sense. The relevant discussion and corresponding numer-
ical algorithm can be found in [36] and references therein.

Remark 3.2:The result of Theorem 3.1 can be readily
extended to the multiple state delayed case. Consider the
following nonlinear uncertain continuous-time multidelay
stochastic system:

(3.15)

(3.16)

where the uncertainties satisfy

for . We may obtain an augmented system that is
similar to (2.15). Then, instead of (3.5), we define the Lyapunov
function

Following the same line of the proof of Theorem 3.1, a par-
allel result can be easily obtained for the multidelay case. The
reason why we discuss the single delay case is to make our
theory more understandable and to avoid unnecessarily compli-
cated notations.

The following corollary, which results easily from [20], re-
veals that for the linear delay stochastic system (2.15), the ex-
ponential stability in the mean square implies the almost surely
exponential stability.

Corollary: Under the conditions of Theorem 3.1, the un-
certain time-delay system (2.15) is almost surely exponentially
stable in mean square for all admissible parameter uncertainties

and nonlinear disturbance input , inde-
pendent of the unknown time-delay, i.e.,

almost surely holds for all , where
is the unique root of (3.14).

B. Filter Design

This subsection is devoted to the design of filter parameters
and by using the result in Theorem 3.1. We derive theexplicit
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expressions of the expected filter parameters in terms of the pos-
itive definite solutions of two Riccati-like matrix inequalities.

The following lemma is easily accessible and will be used in
the proofs of our main results in this paper.

Lemma 3.1:For a given negative definite matrix
, there always exists a matrix such that

.
Prior to stating the main results of this paper, we give the

following definitions for the sake of simplicity:

(3.17)

(3.18)

(3.19)

(3.20)

The following theorem shows that the desired filter parame-
ters can be obtained in terms of the positive definite solutions to
two quadratic matrix inequalities(QMIs).

Theorem 3.2:If there exist positive scalars
such that the following two QMIs

(3.21)

(3.22)

respectively, have positive definite solutions and
, where the matrices are defined, respectively,

in (3.17)–(3.19), then the filter (2.7) with parameters

(3.23)

(3.24)

where is defined in (3.20), is arbitrary orthogonal
(i.e., ), is an arbitrary matrix meeting

, and is defined in (3.22), will be such that the aug-
mented system (2.15) is exponentially stable in the mean square
for all admissible parameter uncertainties and
the nonlinear disturbance input , independent of the un-
known time-delay .

Proof: First of all, it follows from Assumption 2.2 that
exists. Defining

(3.25)

and setting

(3.26)

we have

(3.27)

(3.28)

(3.29)

It follows directly from (3.21) that . By resorting to
and the definitions of and , we have

(3.30)

In the light of (3.23) and the orthogonality of, it is easy to
see that

(3.31)
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Considering the definition of in (3.20), it follows from
(3.30) and (3.31) that

(3.32)

where is defined in (3.22). Recall that is an ar-
bitrary matrix meeting . Then, (3.22) leads to

.
Moreover, substituting (3.24) into (3.28) immediately yields

, and therefore, . Finally, it follows from
Theorem 3.1 that the augmented system (2.15) is exponen-
tially stable in the mean square for all admissible parameter
uncertainties and nonlinear disturbance input

, independent of theunknowntime-delay . This proves
Theorem 3.2.

Remark 3.3:Theorem 3.2 provides a quadratic matrix in-
equality (QMI) approach to the design of robust filters for a class
of nonlinear uncertain time-delay systems. When we cope with
the QMIs (3.21) and (3.22), the local numerical searching al-
gorithms suggested in [2] and [11] are effective for a relatively
low-order model. With respect to thegeneralexistence condi-
tions of the positive definite solutions to the QMIs and rele-
vant algorithms, see [27]. It is seen that the existence of a pos-
itive definite solution to (3.21) means that the system matrix
must be asymptotically stable, i.e., Assumption 2.1 holds. More
specifically, since the QMIs (3.21) and (3.22) have the similar
form, we now briefly discuss the conditions for the existence of
the positive definite solutions to the QMI (3.21). It is easily ac-
cessible from [14] that there exists a positive definite solution
to QMI (3.21) if and only if

where

Remark 3.4:Note that there exist manyfreedesign parame-
ters in the expression of expected filters. For example, we can
choose free parametersmeeting and orthog-
onal matrix in (3.23). Therefore, the set of the desired filter
parameters, when it is not empty, must be very large, and much
explicit freedom is subsequently offered. This gives the possi-
bility for directly achieving further performance requirements
on the filtering process such as the transient property,-norm
constraint, and reliability behavior, which requires further inves-
tigations. It is remarkable that in [16], a similar freedom on an
arbitrary orthogonal matrix in the parameterization of the set of
filters was successfully employed to minimize the norm of

the filtering error transfer function by solving an unconstrained
parametric optimization problem over the set of filters.

IV. NUMERICAL SIMULATION

In this section, for the purpose of illustrating the usefulness
and flexibility of the theory developed in this paper, we present
a simulation example, focus on the steady-state exponentially
filtering and proceed to determine the filter parameters.

Consider the nonlinear uncertain stochastic state-delayed
system (2.1) and (2.2) with parameters as follows:

In this example, we are interested in designing a linear, delay-
less, uncertainty-independent state estimator (2.7) such that for
all admissible uncertainties as well as the nonlinear disturbance
input, the dynamics of the estimation error is stochastically ex-
ponentially stable in the mean square, independent of the time
delay.

To show the flexibility of the proposed design method, we
will discuss two cases by using the design freedom in choosing
parameters , and , as discussed in Remark
3.4.

Case 1: We set , , , and
. Then, we can obtain a positive definite solution to the
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quadratic matrix inequality (3.21) and, subsequently, the ma-
trices , , and , as follows:

Furthermore, a positive definite solution to the quadratic ma-
trix inequality (3.22) and the matrix are calculated as

Next, we choose the matrix meeting and an
orthogonal matrix as

and therefore, we obtain the expected filter parameters from
(3.23) and (3.24) as the following:

Denote the error states . The
responses of error dynamics to initial conditions are shown in
Fig. 1, and the real state (respectively, , ) and its estimate

(respectively, , ) are displayed in Fig. 2 (respectively,
Figs. 3 and 4). The simulation results imply that the desired
goal is well achieved.

Case 2: In this case, we select , , ,
and , and then get

Fig. 1. e (solid),e (point),e (dashed).

Fig. 2. x (dashed),̂x (solid).

Fig. 3. x (dashed),̂x (solid).
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Fig. 4. x (dashed),̂x (solid).

Fig. 5. e (solid),e (point),e (dashed).

For this case, the matrix meeting and an
orthogonal matrix are chosen as

and it follows from (3.23) and (3.24) that

For the error states , the responses
of error dynamics to initial conditions are shown in Fig. 5, and
the real state (respectively, , ) and its estimate (re-
spectively, , ) are displayed in Fig. 6 (respectively, Figs. 7
and 8). The simulation results demonstrate that the estimation
error is exponentially stable in the mean square, and thus, the
prescribed performance requirements on the filtering process
are guaranteed by the developed theory.

Fig. 6. x (dashed),̂x (solid).

Fig. 7. x (dashed),̂x (solid).

Fig. 8. x (dashed),̂x (solid).

V. CONCLUSIONS

The problem of robust filtering for a class of nonlinear un-
certain stochastic time-delay systems has been addressed in this
paper. A linear filter has been designed to achieve the prescribed
robust exponential stability constraints (in the mean square), re-
gardless of the admissible parameter uncertainties, the bounded
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nonlinear disturbance input, and the unknown state delay. Both
the filter analysis and design issues have been discussed in detail
by means of quadratic matrix inequalities. The existence condi-
tions as well as the analytical expression of desired filters have
been parameterized. We have demonstrated that the desired ro-
bust exponential filters for this class of nonlinear time-delay sys-
tems, when they exist, are usually a large set, and the remaining
freedom can be used to meet other expected performance re-
quirements.

One of the future research topics is the development of ef-
ficient algorithms with guaranteed convergence. Finally, in our
opinion, the idea introduced in this paper can also be applied
to design robust filters for more complex systems such as sam-
pled-data systems and stochastic parameter systems.
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