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Robust Filtering, Prediction, Smoothing,
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Abstract—This paper is concerned with a class of continuous- filtering problem and involves the use of a fixed quadratic

time uncertain systems which satisfy a certain Integral Quadratic | yapunov function to establish an upper bound on the state
Constraint. The pro_blems of robust filtering, robu§t prediction, estimation error covariance.

and robust smoothing for such systems are defined, and non- Th bust timati bl . d with fi
conservative solutions are given in terms of Riccati differential _e robust estimation probiem 1S _Concerne with - es ".
equations. This paper also addresses a problem of robust observ-mating the unmeasureable state variables of an uncertain

ability for this class of uncertain systems. plant. Depending on the available measurement, the robust
Index Terms—Integral quadratic constraint, robust filtering, ~€Stimation problem may be categorized as robust filtering,
robust observability. robust prediction, or robust smoothing. This paper is aimed

at addressing these problems as well as the problem of robust
observability of uncertain systems.

In [16] Bertsekas and Rhodes gave a deterministic interpre-

N IMPORTANT area of linear systems theory has beefation of Kalman filtering. The problem considered in [16] is
the theory of Kalman filtering, prediction, and smoothingas follows. Given output measurements from a time-varying

This theory has had a significant impact on control theofinear system with noise inputs subject to.4n norm bound,
and signal processing, e.g., see [1]. In practice, to apply tfied the set of all states consistent with these measurements.
standard Kalman filter, predictor, or smoother, it is imperatiVehe solution to this problem was shown to be an ellipsoid in
to have an accurate signal model. If this is not the casstate space which is defined by the standard Kalman filter
it is known that the performance of a Kalman filter caequations. Hence, the results of [16] give a deterministic
be poor (e.g., see [2]). Indeed, usually there will be sonigterpretation of the standard Kalman filtering.
uncertain parameters present in the process model. This facThis paper is built on the results of [16] to obtain robust state
has motivated the study of robust filtering for uncertaigstimators for a class of uncertain systems. In [9] the problem
systems. of robust Kalman filtering is solved based on the results of

This problem can be regarded as an extension of t[is]. In this paper we rederive these results for a more general
standard Kalman filters to the case of uncertain systengtass of uncertain systems. Indeed, as in [17], we consider
In recent years, the increased interest in robust &d uncertain systems which have a deterministic control input.
control theory has led to the publication of a large numbeforeover, we address the problems of robust prediction and
of papers addressing the robust state estimation problem (esgnoothing in the same setting. These are extensions of robust
see [3]-[11]). In these papers, a number of approaches gegiman filtering problem.
considered to tackle the problem of robust state estimation.The underlying plant is assumed to be linear, time-varying,
In [4], [5], [7], and [8], the approach taken is to minimizeand uncertain with uncertainty satisfying a certaitegral
the worst casé., norm of the transfer function from the quadratic constraintThe integral quadratic constraint consid-
noise inputs to the estimation error output. This approachdged in this paper is assumed to hold over a finite time interval
closely related to widely studied problems%f,, control and and allows for uncertainty in the initial conditions of the
filtering (e.g., see [12], [13]). The approach taken in [3], [6lsystem. This integral quadratic constraint is a generalization
[14], [15], and [12] is concerned with constructing a statgf the IQC of [16] to allow for uncertainty outputs. Also, the
estimator which bounds the mean square estimation erréfate estimation problem considered here is a modification of
This approach is more closely related to the standard Kalmge problem considered in [16] to allow for the uncertainty in

the process model.
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There are considerable applications for the filtering resufised lag smoothing, and the robust fixed point smoothing
of this paper. In any application of the standard Kalman filteproblems. However, Section V addresses only the problem
ing where uncertainties enter the dynamics of the systems, ofirrobust fixed interval smoothing. The importance of this
results could be used if the uncertainty could be modeled in particular problem is due to the fact that it motivates us
appropriate way. One particular area which is currently under define the important problem of robust observability of
investigation is the application of robust Kalman filtering inuincertain systems.
direct torque control (DTC) of Induction motors [18]. Section VI addresses the problem of robust observability of

A fundamental concept in linear systems theory is that ahcertain systems. The problem is to find the admissible set
observability[4]. Observability is concerned with the problemof initial conditions consistent with output measurements over
of determining the state of a dynamic system from observa-finite interval of time and an integral quadratic constraint.
tions of the output and control vectors over a finite time perio@his is closely related to the problem considered in Section V.
A system without uncertainty is said to be observable if it ilecessary and sufficient conditions for robust observability are
possible to determine the initial state from the observatigiven in terms of existence of a solution to a differential matrix
of the output and control vectors over a finite time intervaRiccati equation and the set of possible initial conditions is
The concept of observability was introduced by Kalman [5hown to be an ellipsoid. Section VII contains an illustrative
and plays an important role in the design of state observeexample.

In particular, the concept is useful in solving the problem of
reconstructing unmeasureable state variables from measured [I. THE ROBUST FILTERING, PREDICTION,
outputs. AND SMOOTHING PROBLEMS

The concept of observability is well studied and understood
in the case of linear systems without uncertainty. However, mescribed by
most real world problems, the model of the process includes
some uncertain parameters. This paper is partly aimed at (%)
addressing the problem abbust observabilityfor a class 2(t)

y(t)

In this paper we consider a time-varying uncertain system

A(t)z(t) + Bi(t)w(t) + Ba(t)u(t)

f o f ’ t o - K@)z (t) + G(t)u(t) (2.1)
of uncertain continuous-time systems. Indeed, we extend the _
definition of observability to the case of uncertain systems. (8) = Ce)a(t) + v(t)
The system is allowed to be time-varying and the uncertaintyherez(t) € R" is the state w(t) € R? andv(t) € R! are
is assumed to satisfy aimtegral quadratic constraint An theuncertainty inputsu(t) € R" is aknown input z(¢) € R?
uncertain system is defined to be robustly observable if tie the uncertainty outputand y(t) € R' is the measured
set of possible initial states corresponding to a measured noggtput andA(-), B(-), K(-) and C(-) are bounded piecewise
output over a finite period of time is bounded. This problemontinuous matrix functions.
is closely related to the robust smoothing problem.
In the following sections, we will show that the staten. System Uncertainty
estimator of [16] can be considered as a special case of ou
robust state estimator. Indeed, if the uncertainty is removg
from our process model, then the linear time-varying system
of [16] will be obtained. w(t)| _ ¢ t
The results of this paper generalize the results of [9] and [v(t)} = ¢ (620, u()lo) (22)

[19] to thg_case of robus_t filtering, pre_d|ct|on, smoc_ythmg, ar\?ahere the following integral quadratic constraint is satisfied.
observability for uncertain systems with a control input. | X, = X, > 0 be a given matrixz, € R" be a given
The rest of the paper continues as follows. In Section Il\f 9

. ) : . vector,d > 0 be a given constant, an@(-) = Q(-)’ and
we define the class of uncertain systems considered in t %) = R(-) be given bounded piecewise continuous matrix

. ) . . \W/eighting functions satisfying the following condition. There
and smoothing. The uncertainty is assumed to satisfy 8Rists a constant > 0 such that

integral quadratic constraint. This is a rich class of uncertain
systems. We show that uncertain norm bounded systems Q) > 61, R(t)> 61 (2.3)

can be considered as a special case of such uncertaint¥.

Section Il contains our solution to the problem of robus\flf;i" a”nt.idﬂr]etﬂ forna r%l\i/r?tn :‘:}mte@ﬂme r:ztervaﬂor’ldT]i’ni\t'ivel
filtering. The solution is given in terms of a differential " cons'der e uncertainty inpu () andw() a a

matrix Riccati equation and the set of possible states qgndmonSx(O) such that

shown to be an ellipsoid. The problem of robust filtering , T ,

for time-invariant uncertain systems is also addressed in the (2(0) = 20)' Xo(z(0) — o) +/0 (w(t) Q(t)w(t)

same section. The problem of robust prediction is solved in T

Section IV. This problem is solved by changing it into an + () R(t)v(t)) dt < d+/ l2()]|? dt. (2.4)
appropriate filtering problem and using the robust filtering 0

results. Section V addresses the problem of robust smoothihpte that this description of uncertainty allows for uncertainty
Robust smoothing problems can be divided into three differentthe initial conditions. This uncertainty is determined_gy.
categories, namely, robust fixed interval smoothing, robusideed, larger values of, correspond to lower values of

The uncertainty in the above system is described by an
uation of the form
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uncertainty in initial conditions. Hence, if the initial condition vin | Measurement
is known, then we lefXy — oo to give XO_1 =0. Process l‘ Noise
The uncertain system (2.1), (2.4) is a modification of the  Noise
linear system considered in [16]. Indeed, if we I{-) = 0, ———>| Process Model h9®———
that is, we remove the uncertainty output from (2.1), then the " (¥

linear system of [16] will be obtained with(-) = 0.

The uncertain system (2.1), (2.4) allows for uncertainty .
satisfying a standard norm bound constraint. In this case the x() y (1)
uncertain system would be described by the state equations = | Kalman Filter

Optimal Measured
(t) = [A(t) + B1(H) AL (H) K (8)]«(¢) State Estimation Signal
+ [B2(t) + Bi ()AL (t)G(8)]u(t) Fig. 1. A typical Kalman filtering problem.

y(8) = [O) + Do K(#)]a(t) + D2()G(H)ult)  (2.5)

where A;(¢) and A,(t) are uncertainty matrices satisfying in Fig. 1. The system is assumed to have the following
dynamics:

1

AL Q) MY R(HF] <1 forall t.
#(t) = Az(t) + Bw(t)

Also, the initial conditions would be required to satisfy the () = Calt) + v(t)

inequality
(2(0) — z0)' Xo(z(0) — zo) < d. where v(¢) and w(t) are white noise processes. A Kalman
filter is then designed to give an optimal state estimatiof).
To verify that such uncertainty is admissible for the uncertaithe procedure of designing a Kalman filter is well known
system (2.1), (2.4), let (e.g., see [1]). This procedure requires a precise model of the
w(t) = AL (O[K (8 (t) + G)u(d)] system. A further assumption is that the spectral characteristics

Aulf of the process and measurement noises are exactly known. In
v(t) = Do (D) [K () (t) + G(H)u(?t)] practice, however, these assumptions may not always be true.
where||[A1(£/Q(H)} Ao(t) R(#)2]]| < 1 for all £. Then (2.4) In fact, we may not be certain about the spectral character-

istics of the noise in our signal model. It is also possible that

Is satisfied. we may be considering a process model which is dependent

, In_thls”E)aper we are c_onc:a“rned with the p_robl:ems ?‘f robugh parameters whose values are imprecisely known due to
filtering,” “robust prediction,” “robust smoothing,” and “robust : o O
manufacturing tolerances and variations with time or our

observability” defined below. q process model may be a simplification of the true behavior

In the robust filtering problemy(¢) = yo(t) is a fixe : .
measured output of the uncertain system (2.1), defined on g{ethe process neglecting nonlinear effects and unmodeled

time interval[0, 7] andu(#) = uo(t) is a fixed measured input yhamics. Therefore, we need a theory of Kalman filtering

. . : . which allows for uncertainty in the process model and/or the
to the uncertain system defined on the same time mtervalh y P

: ) spectral characteristic of the noise.
The problem is to find the seXr[zo,uo(-)|g,%0()|¢,d] of der th : (Ei
: . ’ ’ 07 Fig. 2. H
all possible states:(T") at time 7" for the uncertain system Consider the uncertain system of Fig er@) andu/(?)

(2.1), (2.2) with uncertainty inputs and initial conditionsare noise inputs (not necessarily random white Gaussian) and
U X A represents the uncertain dynamics of the system. Whatever
satisfying the constraint (2.4) (see also [9], [19]). In the robu P Y n ¢y ! 4 v

dicti bl th out (8 | fﬁe form of the uncertainty, it is typically a quantity which
prediction probiem, the outpu measureme(l) = yo(t) is is unknown but bounded in magnitude in some way. In other
only available over[0,7 — q] where0 < ¢ < 7 and the

. . _ words, we do not know the value of the uncertainty but we
problem is to find the sef{r[xo,uo(-)|s,v0()le %, d] of Y

I bl . tor th . know how big it can be. If the uncertainty block consists of
all possibie Stateg(T) at.tlme.T or the ur)c'e.rtam sygtgm time-varying uncertain parametess(¢), then its norm could
(2.1), (2.2) with uncertainty inputs and initial condition

Se bounded, i.e]|A(#)|| < p. If A(s) is an uncertain transfer
satisfying (2.4). In the robust smoothing problem, the out " LeA@ < 1 (5) ! !

. ) PHinction, we could bound its magnitude at all frequencies, i.e.,
measuremeny(t) = yo(t) is available ovef0, 7] and the set [|A(Gw)|| €  for all w > 0. This amounts to a bound on the

Xr—y[wo, u0(-)]g  40()]g ] Of all possible states(Z — ) Ho, norm of the transfer functiod(s).

at time T" — ¢ for the uncertain system (2.1), (2.2) with N5\ suppose we have a transfer function uncertainty block,
uncertainty inputs and initial conditions satisfying (2.4) is ta4 i, Fig. 3. Using Parseval's theorem, it follows that the
be determined. The problem of robust observability is Closeﬂ’equency domain bound

related to the robust smoothing problem. This problem will be

defined and solved in Section VI. |AGW)|| < p forallw>0
Note that if we remove the uncertainty output by assuming

that K(-) = 0, then the above problems reduce to those ¢ equivalent to the time-domain bound

[16]. T T
To understand the motivation behind the problem explained / () () dt < / 2(t) () dt

above, consider a standard Kalman filtering problem depicted 0 0
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Uncertainty
A
v(t)
Nominal
w() System i N w(t) w (1) vit)

uft) Nominal System A y(
- e =\

v(t)

®<—

z(1)

Uncertainty

Fig. 2. Filtering problem when the system is uncertain.

Fig. 5. Uncertain system with measurement noise and process noise.

¥(y)
WL A(s) where Q(¢) > 0 and R(t) > 0 are weighting matrices. To

encorporate uncertainty due to the initial conditions into the
IQC, the term(z(0) — x¢)’ Xo(z(0) — o) should be added to
Fig. 3. The uncertain block. the left-hand side of the inequality. Therefore the general form

of the 1QC will be as given in (2.4).
Uncertainty
A
equation:

¥y Nominal System oy - X() =X AMD)+AR) X () +X () B1(H)Q(H) ™"
> > - Bi(t) X (1) + K(t) K(t) — C(t) R(t)C(t)
X(0)=Xo; te0,7] (3.1)

oC 1)

z(1)
I1l. THE ROBUST FILTERING PROBLEM

Our solution to the robust filtering problem stated above
requires the solution of the following Riccati differential

Fig. 4. Uncertain system with noise input.
Also, we need to solve the following state equation:

for all signalsz(t). This time-domain uncertainty bound can i(t) = —[A®) + BL(H)QE) " By (t) X () n(t)
be applied equally well to the case of a time-varying real + C()Y R(t)yo(t) + [K(t)' G(t)
uncertainty matrixA(¢) or a nonlinear mapping. +X(H)Bo(D)]uo(t);  7(0) = Xozo; (3.2)

The 1QC uncertainty description can be extended to model
the noise on the system as well as the uncertainty in tf@ ¢ € [0,7].
system dynamics, as shown in Fig. 4. To model both noiseThe following theorem is the main result of this section. It

and uncertainty, we should modify the 1QC to describes the set of all possible states of the uncertain system
T T (2.1), (2.4) at timeT" given the inputw(-) and measurements
/ () W(t)dt < d+/ 2(t) 2(t) dt of the outputy(-) over the time interval0, 7).
0 0 Theorem 3.1Let X, = X > 0 be a given matrix and

whered > 0 determines the bound on the size of the noise. f8() = Q(:)" and R(-) = R(-)’ be given matrix functions
understand why the constafihad to be added to the IQC, noteSUch that (2.3) holds on the time intervl, 7]. Then for
that if 2(¢) = 0, the uncertainty block\ makes no contribution & given vectorzo € R", a constantd > 0, a fixed input
to signal\(¢). However,¥(t) can still be nonzero due to the%(t) = uo(t), and a fixed Tmeasured outpytt) = yo(?),
presence of the noise signal. Introducing a positivavoids the setXr[wo,uo(-)§,v0(-);,d] is bounded if and only if
this difficulty. At this stage, it should be pointed out that thi§he Riccati equation (3.1) has a solution oy@rT’] such that
IQC modeling of noise corresponds to an energy bound on #¥éZ") > 0. Furthermore, the seXr[zo, uo(")|F, yo(-)[3, d] is
noise rather than a stochastic white noise description. given by
If we have both process noise and measurement noise (%T [3707“0(_)%7%(_”5@]

in Fig. 5), we can split the signal into two components
g- 5) P g P ={z7 € R" : ap X (T)wg — 207pm(T) + hy < d} (3.3)

U= [15((;)) } where
Then the IQC becomes hr = zoXoxo + /OT {v0(t) R(t)yo(t)
r oY O VlE) - (£ R(£Yw T L2 — uo(t)' G(t) G(t)uo(t) — n(t) BL(£)Q(t) "  Bi(t)'n(t)
/0 [w(t) Q(t)w(t) + v(t) R(t) (t)]dt§d+/0 2] dt + 2uo(t) Balty(t)} d. (3.4)
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Proof: Suppose that the output measuremept-)|Z only if there exists av(-) € £[0, 7] such that inequality (3.7)
is given anduo(-)|f' is known. From the definition of is satisfied. Now, consider the following optimization problem
Xr[zo,uo()I§, y0()IF ], it follows that ()i%f[o . Jwg, w(-)] (3.11)
w(-)€L2|0,
T T

vy € Xr[20,u0()l5, 90 (lo , 4] where the minimum is taken over afl(-) and w(-) con-
if and only if there exist vector functions(.), w(-), and Nected by (2.1) with the boundary conditian(T’) = wr.
v(-) defined on[0, 7] such thatz(7) = z7, the following The minimization problem (3.11) can be considered as a
inequality is satisfied: linear quadratic optimal tracking problem in which the system
operates in reverse time. To convert this tracking problem into
a tracking problem of the form considered in [21] and [16],
we decompose the state int¢t) = & (¢) + x1(¢t) wherex(¢)
is the solution to the state equation

B Ly A S S Py es

and It follows from (2.1) and (3.12) thaf(¢) satisfies the state
equation

((0) = x0)' Xo(2(0) — o) +/0 [w(t) Qt)yw(?)

o) = yolt) — C(B)a(t), forallte[0,7].  (3.6)

Substituting (3.6) into (3.5) implies that: € X [zo, uo(*)|3, &(t) = A()a(t) + Bi(t)w(t) (3.13)
yo(-)|, d] if and only if there exist au(-) € £»[0, T] such that
with #(0) = «(0). Therefore, the cost function (3.8) can be

Jep,w()] < d 3.7 rewritten as
where J[a:T, (1)] is defined by Jrr, w()] = JEr, w(-)] = (@(0) = z0)' Xo((0) — o)
Sz, w(-)] = (2(0) — z0)' Xo(z(0) — o) / {w®)Q)w(t) — |K®)[2(t) +21(t)]
/ {w ) Q)w(t) — 1K)z (t) + G(thuo(t)]? + G(t)uo(t )||2 + (o(t) = COLE®) + = (B)])

x R(t)(yo(t) — CH[E(E) +z1(1)]) } dt (3.14)

wherez(T) = &7 = xr—x1(T). It can be observed that (3.13)
Now, let us assume that the s&t[zo,uo(-)|E, yo(-)|§.d] is and (3.14) define a linear quadratic tracking problem similar
bounded. Consider the functional (3.8) with= 0, uo(-) =0, to the one considered in [21] witly(-), uo(-), andz1(-), all
and yo(-) = 0. In this case,J is a homogeneous quadratidreated as reference inputs. In fact, the only difference between
functional with a terminal cost term. Also, consider the sehe standard linear quadratic optimal tracking problem and
Xr[0,0,0,1] corresponding tao = 0, up(-) =0, yo(-) =0, the tracking problem considered here is that in our case the
and d = 1. Since Xr[0,0,0,1] is bounded, there exists acost is sign indefinite. The solution to this tracking problem is
constaniy > 0 such that all vectors; € R™ with ||z7|| =«  well known; e.g., see [21, Section 3.6]. Indeed, if the matrix
do not belong to the seX7[0, 0,0, 1]. Hence, function X () is the solution to Riccati equation (3.1) then the

infimum in (3.11) will be achieved for anyy, uo(-), and any

Sz, w(-)] > 1 (3.9) yo(-). Furthermore, as in [21], we can write

for all zr € R" such that||zr| = « and for allw(-) € min _ J[Zr,w(:)] = 2 X(T)ir — 280v(T) + g(T)

£L[0,T]. Since,J is a homogeneous quadratic functional, we w()eL200.T] _ _ . _
have J[azy, aw(-)] = a2J[z,w(-)] and (3.9) implies that wherew(t) andg(t) are solutions of the following differential

+ (o(t) = C(6)z(t)) R(t)(yo(t) — C(t)x(t)) } dt. (3.8)

equations:
inf J J] >0 3.10 .
wodthon 0 G100 (1) = (4 + BUOQEO ™ B X (O vt
for all @ # 0. + C(t) R(t)yo(t) + K (t) G(t)uo(t)
The optimization problem (3.10) subject to the constraint + [K(t) K(t) — C(t) R(HC(H)]1 (D),
defined by the system (2.1) is a linear quadratic optimal v(0) = Xoxo (3.15)
control .problgm in which time is re\./ers.ed. I.n. this Imear 3(t) = [o(t) = COz1 (O] R®)[yo(t) — C(H)z1(2)]
guadratic optimal control problem, a sign indefinite quadratic P (4 9
cost function is being considered. Using a known result from —| (/) ot) + (1) wy(t /)” )
linear quadratic optimal control theory, we conclude that —u(t) B1(£)Q() " Bu(t)'v(t)  9(0) = zXowo
condition (3.10) implies that there exists a solutidi{-) to (3.16)

the Riccati equation (3.1) with initial conditio (0) = X,
for all t € [0,7] such thatX(T) > 0; e.g., see page 23 of
[20]. This proves the first part of the theorem. )

To prove the second part of the theorem note that we have 1 (t) = A@)z1() + Ba(t)uo(t), 1(0) =0
already shown thaty € Xrlzo, uo()|¥, vo()|e,d] if and for ¢ € [0,T].

for ¢ € [0,T]. Here, z.(¢) is the solution of the following
state equation:
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Now, let us define

n(t) = v(t) + X (H)z1(t)

and
h(t) = g(t) + 221 () n(t) — 21 (1) X ()z1(2).

It can be verified thag(¢) satisfies (3.2) and(t) satisfies the
following differential equation:

h(t) = yo(t) R(t)yo(t) — n(t) BL(t)Q(t) "  B(t)
— uo(t) G(t) G(t)uo(t) + 2uo(t) Bz (t)n(t

for ¢ € [0,7] and with 2(0) = x(Xoxo. Hence,
w()] = 25 X(T)xr — 2250v(T) + hy

n(t)
)

min

J
w(-)EL2[0,T7] [or,

where hy = h(T) is as in (3.4).
From this we can conclude that the sEtr[xq,uo(:)|3,
yo()|o , d] satisfies

X [0, w05 yo()I ]

I{QZTER”:

min
w(-)EL2[0,T

Tz, w()] < d}

451

In the above equations, if we séf(-) = 0 anduo(-) = 0,
then our results will reduce to those of [16]. This is because
with these assumptions, the uncertain system (2.1) and (2.4)
reduces to the linear system considered in [16].

Note that the Riccati differential equation (3.17) is similar
to the Riccati differential equation arising K., filtering
problems; e.g., see [22, Ch. 7]. However, the state estimator
proposed here is different from thé., state estimator due to
the presence of the terd®R(¢) K (t)' K (¢).

We now consider the robust filtering problem for an un-
certain time-invariant system. In this problem, we consider
the following time-invariant uncertain system defined over the
time interval [0, 77:

#(t) = Az(t) + Brw(t) + Bau(t)
z(t) = Kz(t) + Gu(t)
y(t) = Cx(t) + v(t) (3.19)

wherez(t) € R" is the state w(t) € R? andv(t) € R are
the uncertainty inputs z(¢) € R? is the uncertainty output
y(t) € R! is themeasured outputand«(t) € R* is aknown
input The uncertainty in this system is defined as follows. Let
Q=@ >»0andR = R > 0 be given matrices associated
with the system (3.19). Then, given a finite time interiéall],

which is the same as (3.3). This completes the proof of tHee uncertainty inputs and initial conditions for this uncertain

theorem. O

Remarkslf the Riccati differential equation
has a positive definite solution ovegh,T] then the set
XT[a:O,uo(-)|§,y0(-)|0T,d] can be characterized as follows:

Xy [z0,u0()[5 90 ()IF  d]
= {a:T eR": (zr — fZ(T))/P(T)_l(xT —2(T))
<d+opr}

system are required to satisfy the following integral quadratic

(3.1) constraint:

(£(0) — o) Xo((0) — o) + / (w(t) Quit)
+v(t) Ru(t)) dt < d+ /T || 2(8)||* dt. (3.20)

Theorem 3.2Consider the uncertain system (3.19), (3.20)
defined on[0, 7] with weighting matricesy = @' > 0 and

wherez(t) is the solution to the following state equation withg = R’ > 0 and suppose that the pdin, B) is stabilizable.

initial condition Z(0) = zo:
&(t) =[A(t) + POIK () K(t) = C(tY RE)CON()
+ P()C({) R(t)yo(t)
+[P(OK @) G(E) + Ba(t)uo(t)

for ¢t € [0,T]. Here, P(.) is the positive definite solution of

the Riccati differential equation
P(t) =A(t)P(t) + P(t) A(t)'
+ P(O[K () K(t) — C(t) R(H)CHIP(t)
+ B Bt

for ¢ € [0, 7], with initial condition P(0) =
pr is defined by

pr = / (K@) + Gty -
— o)) RE)(C ()i (t) -

This can be verified by defining(¢) asz(t) =
P()

(3.17)

X; . Moreover,

(C)z(t)
)} dt. (3.18)

P(t)n(t) with
X (-)~! being the solution to (3.17) ovéf, 7] and

completing the square in (3.3) and using (3.17), (3.2), and () =

(3.16).

If the algebraic Riccati equation

AP+ PA'4+ PI[K'K — C'RC|P+ BQ™*B' =0 (3.21)

has a solution? > 0 such that the matriA’ — [C'RC —
K’K]P] is stable andP > X!, then for any matrix
X0 > 0 such thatX;* < P, the setXy[zo,uo(-)|F,
()|O,d] is bounded and described by

Xy [x0,u0()[5, 90 ()IF , d]
= {zr € R": (wg — #(T)) P(T) " (ap — &(T))
<d+pr}.

Here, P(-) is the solution of the following Riccati differential
equation:
P(t) = AP(t) + P(H)A' + P)[K'K

— C'RC|P(t) + BQ~™' B
for ¢ € [0,7] with initial condition P(0) = X . Also #(t)
is the solution to the following state equation with initial
condition #(0) = zq:
[A+ P(t)[K'K — C'RC)J2(t)

P()C' Ryo(t) + [P)K'G + Balug(t) (3.22)



452 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 4, APRIL 1998

for t € [0,7]. Furthermore, the constamp is defined as  Theorem 4.1Let X, = X} > 0 be a given matrix, and

follows: Q) = Q(-Y and R(-) = R(-)’ be given matrix functions
- such that condition (2.3) holds on the time interyal7T].
or :/ [ K2(t) + Guo(t)||? = (Ca(t) Then, for a given vectogy € R", a constant/ > 0, a fixed
0 inputu(t) = ue(t), and a fixed measured outpyltt) = yo(?),

— yo(t))' R(CE(t) — yo(t))] dt. the setXr[zo, uo()|F, w0 (-)|& ¢, d] is bounded if and only if

the Riccati equation (4.1) has a solution oy@rZ’] such that
Moreover, P(-) is defined on[0,oc) and has the property X(7) > 0. Furthermore, the seXr [z, uo(*)|3, yvo(-)|y ~% d]

P(t) — P ast — oc. is given by
Proof: This follows directly from Theorem 3.1 and The- . -
orem 2.2 of [9]. o Xr [$07U0(')|o »y0()lo qu]

At this stage it should be pointed out that the robust filter = {z; € R" : 2, X (D)ay — 22%n(T) + hy < d} (4.4)
designed using the above procedure is nonconservative for
an uncertain system with an Integral Quadratic Contraint. Aghere
explained earlier, the IQC description of uncertainty includes T—g
other more restrictive uncertainty descriptions. If the aboyg. =z Xoxo + / yo(t) R(t)yo(t) dt
procedure is to be used to design a robust filter for such an . 0
uncertain system in which the uncertainty is more accurately p / _1 /
modeled by a more restrictive uncertainty description (for +/0 [2u0(®)' B2(£)n(®) = n(t) BL()Q(H) ™ B1()'n(t)
example a system with norm bounded uncertainty), it will — ug(t) G(t) G(t)uo(t)] dt (4.5)
result in a conservative design.

Proof: Here we only sketch a proof of the theorem.

Note that if output measuremenjy(-)|s ¢ is given and

uo(+)[§ is known, then from the definition akr[zo, uo(-)|3,
In this section, we are concerned with the problem of * robu% |27% d], it follows that

prediction” as defined in Section Il. In this problem, unlike

the robust filtering case, the output measuremgntis only zr € X [wo,uO(-)IoT,yo(-)lg_q,d]

available for0 < t < T'— ¢ and the set of possible states at

time 7" corresponding to this measurement and the uncertdfimnd only if there exist vector functions-), andw(-) defined

system (2.1), (2.4) is to be determined. on [0, 7], andw(-) defined on0, T — ¢] such thatz(7T") = zr,
To prove the main result of this section, we change the rte following inequality is satisfied:

bust prediction problem into a special robust filtering problem. -

This enables us to derive necessary and sufficient cond|t|on§$ — 20) Xo(2(0) — o) +/ w(t) Q(tyw(t) dt

similar to those of the previous section. 0

IV. THE ROBUST PREDICTION PROBLEM

Our solution to the robust prediction problem requires the T—q , T 5
solution to the following Riccati differential equation: +/0 v(t) R(t)v(t) di < d+/0 2" dt  (4.6)
—X(t) = X(H)A®) + AtY X(t) and

+g OBUAQE T Bue) X (1) + K@) K(?) o) = o) — CHz(t) forallte[0.T—q. (A7)

1
@)S@®)C(t); X(0)=Xo; te[0,7]
(4.1) Substituting (4.7) into (4.6) and using the identification (4.3)
implies thater € Xr[zo, uo(-)|%, ()2 ¢, d] if and only if

Also, we need to solve the following state equation: there exist aw(-) € £2[0,7] such that

0(t) = =[A(®) + Bi(HQE) " Bu(t) X (1)] 'n(?) ez, w()] < d 48)

+O)'S(yo(t) + [K@)'GE) + X(OB2(0]uo(®)  where J{zr, w(-)] is defined by
(4.2)
Iz, w(-)] =(2(0) — z0)' Xo(2(0) — z0)

fi - ith == 0x0- y T

or ¢t € [0,T — ¢] with »(0) = X Here +/0 [ Q)

s 2 {§0 sistoe 43) ~ K ®)at) + GEmo®) ()
’ - — C(H)a()'S () (so(t) — C(t)w () } dt.

The following theorem is the main result of this section. It (4.9)

describes the set of all possible states of the uncertain system
(2.1), (2.4) at timeT” given measurements of the outpy(t) The rest of the theorem can be proved along the same lines as
over the time interval0,7" — q. Theorem 3.1. O
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V. THE ROBUST FIXED INTERVAL SMOOTHING PROBLEM given by

In this section, we present and discuss our solution to theXT_q [$07y0(.)|0T7d]
robust smoothing problem as defined in Section Il. The robust {x ER": 2y X(T - g
smoothing problem may be divided into three categories: qu T 1 , Tq
the robust fixed interval smoothing, the robust fixed lag — 2ep_ (T = @) + hr—g + 27 Y (T’ = @)
smoothing, and the robust fixed point smoothing problems. —2xp_ (T —q) +s7-¢ < d} (5.5)
In this section, we only concentrate on the robust fixed poin .
smoothing problem and comment that the other two problemtheren ) andé(t) are solutions to (5.3) and (5.4) and
may be defined and solved in the same manner. oy T=q , , ,

The reason behind our interest in the robust fixed interval’?—¢ = “oXoZo + A {wo(®) R(t)yo(t) = uo(t)'G(2)
_smoothing is that it gives us an intuition to cqr_lsider an x G(t)u () ()'Bl( )Q(t)_lBl(t)’n(t)
important problem, namely the robust observability of the 5 Bl it 56
uncertain system. This problem will be discussed in the next +2uo(t)' By } (5-6)
section and its relation to the smoothing problem consideradd
in this section will be clarified. T—q

Our solution involves the following Riccati differential  s7—q :/ {wo(t) R(t)yo(t) — uo(t) G(t) G(t)uo(t)

0

equations: L ,
_ —&(t) Bu(t )Q( )‘ By (t)4(t)

- X(t)=X@®A®) + A@)'X(¢ — 2up(t)' B1(t)&(t) } dt. (5.7)
+X(O)B1(HQE) T Bi (8 X (1) + K(#) K (#) Proof: Suppose that the output measuremgytt)|3 is
- C(tYR(H)C(t); X(0) = Xo (5.1) given and the input(-)|Z is known. From the definition of

Y () = Y()A®R) + AQR)'Y (2) X7 _glwo,1u0(-), yo()|F, d], it follows that
—Y(O)Bi(HQW) T BL()Y (1) — K()' K (1) Tr—q € Xr—g[30,u0()[§ , v0()[F » d]
+C@t)'R®)C(t); Y(T)=0. (5.2)

if and only if there exist vector functions(-), w(-), andw(-)
defined on[0,77] such that there exist a solution to (2.1)

It will also include a solution to the differential equations: satisfying (T — ¢) = xr_,, the following inequality is

i(t) = [A(t) + BOQE) ™ Bt X (1) () satisfied: y
C(t) Rityuolt) + (K (1) G(1) (@(0) = ) Xo(a(0) —20) + [ [wltY Q(t)u(t)ds
X(OBOluo(t): 1(0)=Xomo  (53) )
for t € [0.T — gl and Lot R(E)w(®)]dt < d+ /0 I12(8)||? dt (5.8)
. B , , and
~5E) = [A®) = BEHQW T BE Y (Or () u(t) = yo(t) — C()z(t) for all t € [0,7]. (5.9)

+ C)R(t)yo(t) — [Y (1) Ba(t)
— K@) GD]uo(t); &(T)=0 (5.4) Substituting (5.9) into (5.8) implies that

2r—q € Xr—qlzo,uo()|E, yo()|E, d
for t € [T — ¢, 7). T—q € X1—g[0,u0(")l5 - %0()o  d]

Note that (5.1) and (5.3) must be solved forward in tim# and only if there exist au(-) € £2[0, 7] such that

while (5.2) and (5.4) must be solved in reverse time. This is Tz g w()] + Jalwr—gyw()] < d (5.10)
due to the nature of the robust smoothing problem which will v ' o -
be clarified later. where Jl[a:T_q,w(-)] is defined by

The following theorem is the main result of this section. It; -
describes the set of all possible states for the uncertain systenL ot T—g
(2.1), (2.4) at timel’ — ¢ given measurements of the output — (2(0) — z0) Xo(x(0) — z0) +/ {w(t)’Q(t)w(t)
y(-) over the time interval0, 7. 0

Theorem 5.1Let X, = X} > 0 be a given matrix, and — 1K (®)z(t) + GE)uo(®)||> + (yo(t) — C(H)z(t)) R(t)
Q() = Q(-) and R(-) = R(-)’ be given matrix functions x (yo(t) — C(t)x(t))} dt. (5.11)
such that condition (2.3) holds on the time interyé) 7). . .
Also assume that the Riccati differential equation (5.1) has?®d J2[r7—q, w(-)] is defined by

solution over time intervad € [0,7 — ¢ such thatX(T'—¢q) > Jolzr_ (pw( I

0 and the Riccati differential equation (5.2) has a solution over

time intervalt € [T'—q, T| such thal’(T'—q) > 0. Then, for a = {w(t) — |K(®)z(t) + G(t)uo(t)|)?
given vectorzy € R"™, a constant! > 0 and a fixed measured T—q

output y(t) = wo(t), the setXy_[zo, uo(-)|L, vo()|E, d] is + (yo(t) = C()x (1)) R(t)(yo(t) — C()x(t)) } dt

bounded. Furthermore, the sﬁtp_q[azo,uo(-)|§,y0(-)|OT,d] is (5.12)
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andz(-) is the solution to (2.1) with inputs(-) and boundary in (5.14) will be achieved for anyg, uo(-) and anyyo(:).

conditionz(7" — q) = x7—q. Furthermore, as in [16] and [9], we can write
Now consider the following minimization problem: w(~)€1£ni[101T— 1‘]I[Q;T_q,w(.)] + ()Eﬁm[% 1J2[$T—qaw(')]
min - {Ji[zr—q, w()] + Sa[zr—g,w()]}  (5.13) P At
w()EL[0,T] =ap_ X(T = Qrr—q — 207 (T — q) + hr—y
where the minimum is taken over al(-) andw(-) connected + 2l Y(T = q)ar—q — 20%p_ &(T — q) + s7—q

by (2.1) with the boundary condition(T — ¢) = z7r_g.
Since for eachzy_,, Jilzr—g, w(-)] depends only on the
portion of w(-) defined over the time intervdl, T — ¢] and
Jolzr_q, w(-)] depends on the portion af(-) defined over
the time interval T — ¢, 7], (5.13) may be written as

wheren(T — ¢) and&(T — q) are defined by the solutions to
differential equations (5.3) and (5.4) ahd_, ands;_, are
defined by (5.6) and (5.7). Alsd{ (T — ¢) andY (T — q) are
defined by (5.1) and (5.2). From this, we can conclude that

the set
. [r7-qwC)+ elin P [z7—g, w()]. Xz [z0,v0()|, d]
14
o . : © ) = {xT €ER": min Jilwr—q, w(*)]
The minimization of Ji[zy_4, w(:)] is a linear quadratic w(-)€L2[0,T~q]
tracking problem in reverse time over time interf@&l7" — ¢. .
I <
The minimization ofJy[z7_4, w(-)] is another linear quadratic 'w(~)€I£r2u[¥—q,T1 Folor—qw()] < d
optimization problem, but in forward time over the timgs as given in (5.5). This completes the proof of the theorem.
interval [T — ¢,T]. To convert these tracking problems into O

tracking problems considered in [16] and [21], we use the Note that the solution to the robust smoothing problem is
same technique as in the proof of Theorem 3.1. That is, Wenerated by two filters, one operating in forward time and the
decompose the state inteft) = &(t) + x1(t) wherez(-) is other operating in reverse time. The filter operating forward
the solution of the state equation (3.12) o{@&r1]. Hence, we in time corresponds to the tracking problem in reverse time

may rewrite (3.12) and (5.12) as while the other filter corresponds to the tracking problem
J NEWAL in forward time. A similar situation occurs in the stochastic
Ler—g, w()] 1[wT o w()] . : . .
optimal smoothing of linear systems, e.g., see [23, Section 3.8].
= (z( —370) Xo(z(0) — z0)
/ {w Qtw(t) — || K(t)[z(t) VI. THE ROBUST OBSERVABILITY PROBLEM
2 This section is concerned with a problem of robust observ-
+ o]+ GEuo®)” + (vo(t) ability for uncertain systems of the form (2.1) which satisfy
— C)[E(t) + 21 ()]) R(t)(yo(t) the following integral quadratic constraint:
— C)[E(t) + z1()]) } di (5.15)
and / e QUew(t) + v(t) B(t)o(t)} di
Ja[wr—g, w(-)] :j2[5;T g w()] ,
< d+/ BOIR (6.1)
= {w(®) Q(tyw(t) — I K®)[#(t) 0
T=q 2 for a given I'. Note that the integral quadratic constraint
+z1(B)] + G(uo(B)” + (wo(?) (6.1) is different from (2.4). Indeed, in (6.1) the matd
— O)[E(t) + 1 (¢ )]) R(t)(yo(?) is assumed to be zero. Recall th&} is a measure of our

— C)[E(t) + 1))} dt. (5.16) knowledge of the initial conditions(0). The smaller theXo,

the more uncertain the initial conditions are. In other words,
With this transformation, the minimization of (5.13) has beelj_?1

e assumptionXy = 0 is equivalent to assuming that no
converted into

B a priori information exists about the initial condition(0).

{Si[zr—g,w()] + Jalzr—g,w()]}.  (5.17) Hence, the set of possible initial conditions given a measured
output could be unbounded. This motivates our definition of

The minimization of Jl[a:T_q,w(-)] is a linear quadratic robust observability.
tracking problem in reverse time over time interyél 7" — Definition 6.1 The uncertain system (2.1), (6.1) is said to be
g] while minimization of Jx[zr_4,w(-)] is another linear robustly observable on the time interjal 77 if for any given
quadratic optimization problem in forward time over the timeg,(.) and »(-) and any constant/ > 0 the corresponding
interval [T"— ¢, T']. In these tracking problemsy(-), yo(-) and  set Xo[uo(-)|Z, %0(-)|3, d] of all possible states at = 0 is
z1(-) are all treated as reference inputs. Solvability of thegmunded.
tracking problems is guaranteed by the assumptions made iThis definition of robust observability extends the standard
the theorem. That is, the Riccati differential equations (5.1) adéfinition of observability for time-varying linear systems to
(5.2) have solutions such th&t(7'—¢) > 0 andY (T'—q) > 0. the case of systems with uncertainty. The robust observability
Indeed, using a well-known result on the linear quadratfroblem can be considered as a special case of the robust
tracking problem, (e.g., see [21]), it follows that a minimunsmoothing problem. Indeed, in Section V, if we I&) — 0,

w(- )Eﬁz [0,T7]
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and ¢ — T, then the robust smoothing problem will beandz(-) is the solution to (2.1) with inputs(-) and boundary
equivalent to the robust observability problem consideremndition z(0) = xo.
here. Hence, we should be able to use Theorem 5.1 directlyNow consider the functional (6.7) witly(-) = 0 and
However, in the sequel, we will show that a stronger resuly(-) = 0. In this case,J is a homogeneous quadratic
can be obtained by considering robust observability as &mctional. Let us consider the s&[0, 0, 1] corresponding to
independent problem. yo() =0, uo(-) = 0 andd = 1. SinceX;[0,0, 1] is assumed
Theorem 6.1 is the main result of this section. It describés be bounded, a constant > 0 can be found such that all
our solution to the robust observability problem. This solutiomectorszo € R™ with ||zo|| = « do not belong to the set
involves the Riccati differential equation Xo[0,0, 1]. Therefore,J[zg,w(-)] > 1 for all zp € R™ such
. that ||zo|| = « and for allw(:) € L£2[0,7]. This along with
=Y (1) = Y()A®) + A®)'Y (#) the f!lcthhaU is a homogen(e)ous qu[adra]tic functional implies
—Y(#®)Bi()Q®) T Bi(t) Y (t) — K(t)K(t) that J[azo, aw(-)] = a2J[zo, w(-)] and hence
!
+CH)R(HCE); Y(T)=0 (6.2) o, w(-)] > 0 6.8)

inf
and the following differential equation: w(IeLa 0Tl

for all t € [0,7] and allzy # 0.

—9(t) = [A(t) - BL(H)Q(?) Bi(1)Y (t)] ¢(t) The optimization problem (6.8) subject to the constraint
+ C(t) R(t)yo(t) — [Y (¢) B2(2) defined by (2.1) is a linear quadratic optimal control problem.
- K@Y G®)uo(t); ¢(T)=0 (6.3) Using a result from linear quadratic optimal control theory
(see [20]), we conclude that (6.8) implies that the Riccati
for ¢ € [0, 7. differential equation (5.2) with terminal conditiori(T) = 0

Theorem 6.1Let Q(-) = Q(-)’ and R(-) = R(-)' be given has a defined solution ové®, 7] such thaty (0) > 0. This
matrix functions such that (2.2) holds on the time interv@lompletes the proof of the first part of the theorem.
[0, 7). Consider the uncertain system (2.1), (6.1). Then the i) = (i) We have shown that, € Xo[uo()|Z, yo()|E, d]

following statements are equivalent. if and only if there exists an inpub(-) € £[0,77] such that
(i) For a given constand > 0, the uncertain system (2.1),J < d, with J defined by (6.7). Now consider the following
(6.1) is robustly observable. minimization problem:
(i) The Riccati equation (5.2) with terminal condition ]
Y(T) = 0 has a solution over time intervale [0, 7] w28 7 Jwo, w(-)] (6.9)
such thatY’(0) > 0
Moreover, if condition (ii) holds, then where the minimum is t.a.ken over all(-) aan(-) connec;ted
by (2.1) with the conditionz(0) = z¢. This problem is a
Xo[uoIE, w0()5, d] = 20Y (0)zo — 224¢(0) + s < d  linear quadratic optimal tracking problem in forward time. To

(6.4) convertthis tracking problem into a standard tracking problem,
we decompose the state vectgit) into x(t) = #(¢) + z1(¢)

where ¢(-) is defined by (6.3) and where z,(t) is the solution to the state equation (3.12), and
hence,i(t) satisfies the state equation (3.13). Therefore, the
S0 _/ {yo — uo(t) G(t)' G(t)uo(t) cost function (6.7) can be written as
<t>cz< > LBi(t) (1) Lo, ()] = JlFo, w(-)] = / {w(t) Q)w(t)
bt 211,0( ) Bl }dt (65) )
Proof: (i) = (i) Given a measured outpuy(-) ~ IEOIEE) + 0] + Gl
. o’ !
and an inputug(-), we have by the definition that, € * (wolt) = COLEE) + a1 (O] R\ (wo(t)
Xo[uo(HIE, wo()|E,d] if and only if there exist vector — C(B)[E(t) + 21 (B)]) } dt. (6.10)

functions z(-), w(-) and v(-) satisfying (2.1) such that

| h A A fi
#(0) = o, the constraint (6.1) holds, and t can be observed that (3.13) and (6.10) define a standard

linear quadratic tracking problem withy(-), uo(-) andz1(-)
o(t) = yo(t) — C(H)z(t) forall ¢ € [0,T]. (6.6) all treated as reference inputs. Indeed, the only difference
between the standard linear quadratic optimal tracking problem
Substitution of (6.6) into (6.1) implies thatry € considered in [21, Section 3.6] and the one considered here is
Xo[uo()I§,wo()I3d] if and only if there exists an inputthat in our case the cost function (6.10) is sign indefinite.
w(-) € /32[07 T] such that/[zo, w(-)] < d where However, if the matrixy'(-) is the solution of the Riccati
equation (6.2), then the infimum in (6.9) will be achieved for

Ilzo,w any o, uo(-) andyo(-). Indeed, as in the proof of Theorem
/ {w — | K®)z(t) + Gt)uo(d)|)? 5.1, we can write
o(t) — C(t)x(t))/R(t)(yO(t) — C(t)z(t) } dt ’w(~)I€n£i£1[0,T1 J[Zo, w(-)] = ZoY (0)Zo — 22o1(0) + m(0)

(6.7) (6.11)
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wherer(-) andm(-) are solutions of the differential equations 5 : ; ; ; ,: ; i

—i(t) = [A(t) = BiHQE®) T Bu(t)'Y (1)) v(t) |
+C() R(t)yo(t) — [C(1) R(H)C()

— K@Y K@) (1) + K@) Gt)uo(t); »(T) =0

(6.12)

—i(t) = [yo(t) — C()x1 (1)) R()[yo(t) — C(t)z1(t)]

— [|G(tuo(t) + K@)z (1)]]?

—v(t)Bi()Q) T Bi(t) v(t); m(T)=0 5

(6.13) ! e - estimated value of x2
for ¢ € [0,7]. Now, let us define e —""‘ """"" e U
) = () + Y (s (8) Ap R ,\_‘_‘,,,,

and o 1 2 s 4 s e 7 s

Time {Seconds)
s(t) = m(t) + 2z, (t) ¢(t) — x1 ()Y (t)x1 ().
It is straightforward, but tedious to show that.) satisfies
(6.3) ands(-) satisfies

$(t) = —yo(H)R(t)yo(t) + uo(t) G(t) G(t)uo(?)

Fig. 6. Estimated value of; as a function of time.

+ ¢(t) BL()Q) L BL(t) (1) + 2uo(t) Ba(t)(t) ok o .............. ............. ,,,,,,,,,,,, i
for ¢ € [0, 7] and withs(T) = 0. Moreover, it can be verified : : : é é
that b R e N 4
in  Jzo, w(-)] = #4Y (0)zo — 22)6(0 . ' ' : :
w200 7y TH0r 0] = oY (D)0 = 206(0) + 0 N R O I A R
Hence, we can conclude that the set ) : : : : :
Xo[uo()[6» vo()lo ] W N T ] ) )
= " : 1 . < d : : :
{meres i, Tl 0}
is as given in (6.4). This completes the proof of the theom. b e NG i
VII. | LLUSTRATIVE EXAMPLE = 0 3 2 3 2 5

In this section, we present an example to illustrate ogr
main results. The example consists of an oscillator with®
uncertainty in the frequency of oscillation and uncertainty in
the measurement equation. The uncertain system is descripeastraint. Corresponding to this uncertainty realization is the

7. Ellipsoidal bound for:(7.5).

as follows: linear system
Jo1 0 . 0 1
= |5 e+ 3wt w0=]9 3]s -
ot) = { 1 0 }x(t) (7.2) y(t) =[0.9 —1.1)z(t).
0.1 0.1 Note that system (7.1) is of the form (2.1) witl{-) =0
y(t) =[1 —1]z(t) +v(t). Now, we assume thaf = 7.5 andg = 0.5 s. Therefore,

The uncertainty in this system is assumed to satisfy the integiia¢ measurements up 6 — ¢ = 7 s are available. Fig. 6
guadratic constraint (2.4) witR =1, Q =1, d=1, zo =0, shows the resulting estimate of the state variable upper

and and lower bounds on the value 06, and the true value of
0 0 xz2 as a function of time over the intervf0, 7.5]. Also, in
Xy = [0 0 04} Fig. 7, we show the ellipsoidal bounding set of the form (4.4)

bounding the true value of the system at time 7.5.

In the first part of the example we consider a robust prediction The second part of the example is concerned with robust
problem. We also assume that the integral quadratic constraihservability of the uncertain system (7.1). We assume that the
holds for T = 7.5. To illustrate the performance of ourintegral quadratic constraint (6.1) is satisfied with the above
predictor applied to this uncertain system, we consider thalues of@}, R, andd and with7” = 10. Hence, the system
uncertainties to be such that(t) = [1 0]z(#), andv(t) = (7.2) can be used to generate the measure oytguty". The
—[0.1 0.1)z(t) and 2(0) = [0 1J'. It is straightforward objective is to determine the set of possible initial conditions
to verify that this uncertainty satisfies the integral quadrati&[yo(-)|3", 1] for the above uncertain system based on the
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Fig. 8. Ellipsoidal bound forc(0).

output measurementg(-)|$°. This set can be calucated using

the

ellipsoidal bounding set of the form (6.4) bounding the trugnginee;ring

-15 -1 -0.5 0 0.5
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