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Robust Filtering, Prediction, Smoothing,
and Observability of Uncertain Systems

S. O. Reza Moheimani,Member, IEEE, Andrey V. Savkin, and Ian R. Petersen,Senior Member, IEEE

Abstract—This paper is concerned with a class of continuous-
time uncertain systems which satisfy a certain Integral Quadratic
Constraint. The problems of robust filtering, robust prediction,
and robust smoothing for such systems are defined, and non-
conservative solutions are given in terms of Riccati differential
equations. This paper also addresses a problem of robust observ-
ability for this class of uncertain systems.

Index Terms—Integral quadratic constraint, robust filtering,
robust observability.

I. INTRODUCTION

A N IMPORTANT area of linear systems theory has been
the theory of Kalman filtering, prediction, and smoothing.

This theory has had a significant impact on control theory
and signal processing, e.g., see [1]. In practice, to apply the
standard Kalman filter, predictor, or smoother, it is imperative
to have an accurate signal model. If this is not the case,
it is known that the performance of a Kalman filter can
be poor (e.g., see [2]). Indeed, usually there will be some
uncertain parameters present in the process model. This fact
has motivated the study of robust filtering for uncertain
systems.

This problem can be regarded as an extension of the
standard Kalman filters to the case of uncertain systems.
In recent years, the increased interest in robust and
control theory has led to the publication of a large number
of papers addressing the robust state estimation problem (e.g.,
see [3]–[11]). In these papers, a number of approaches are
considered to tackle the problem of robust state estimation.
In [4], [5], [7], and [8], the approach taken is to minimize
the worst case norm of the transfer function from the
noise inputs to the estimation error output. This approach is
closely related to widely studied problems of control and
filtering (e.g., see [12], [13]). The approach taken in [3], [6],
[14], [15], and [12] is concerned with constructing a state
estimator which bounds the mean square estimation error.
This approach is more closely related to the standard Kalman
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filtering problem and involves the use of a fixed quadratic
Lyapunov function to establish an upper bound on the state
estimation error covariance.

The robust estimation problem is concerned with esti-
mating the unmeasureable state variables of an uncertain
plant. Depending on the available measurement, the robust
estimation problem may be categorized as robust filtering,
robust prediction, or robust smoothing. This paper is aimed
at addressing these problems as well as the problem of robust
observability of uncertain systems.

In [16] Bertsekas and Rhodes gave a deterministic interpre-
tation of Kalman filtering. The problem considered in [16] is
as follows. Given output measurements from a time-varying
linear system with noise inputs subject to an norm bound,
find the set of all states consistent with these measurements.
The solution to this problem was shown to be an ellipsoid in
state space which is defined by the standard Kalman filter
equations. Hence, the results of [16] give a deterministic
interpretation of the standard Kalman filtering.

This paper is built on the results of [16] to obtain robust state
estimators for a class of uncertain systems. In [9] the problem
of robust Kalman filtering is solved based on the results of
[16]. In this paper we rederive these results for a more general
class of uncertain systems. Indeed, as in [17], we consider
uncertain systems which have a deterministic control input.
Moreover, we address the problems of robust prediction and
smoothing in the same setting. These are extensions of robust
Kalman filtering problem.

The underlying plant is assumed to be linear, time-varying,
and uncertain with uncertainty satisfying a certainintegral
quadratic constraint. The integral quadratic constraint consid-
ered in this paper is assumed to hold over a finite time interval
and allows for uncertainty in the initial conditions of the
system. This integral quadratic constraint is a generalization
of the IQC of [16] to allow for uncertainty outputs. Also, the
state estimation problem considered here is a modification of
the problem considered in [16] to allow for the uncertainty in
the process model.

In the robust filtering problem, the output measurements for
are available and the set of possible states at time

consistent with these measurements and the integral quadratic
constraint is to be determined. In the robust prediction problem
the measurements are available up to a time and
the set of possible states at is to be sought. The robust
smoothing problem, however, is concerned with determining
the set of possible states at a time consistent with
the measurements up to a timeand the integral quadratic
constraint.
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There are considerable applications for the filtering results
of this paper. In any application of the standard Kalman filter-
ing where uncertainties enter the dynamics of the systems, our
results could be used if the uncertainty could be modeled in an
appropriate way. One particular area which is currently under
investigation is the application of robust Kalman filtering in
direct torque control (DTC) of Induction motors [18].

A fundamental concept in linear systems theory is that of
observability[4]. Observability is concerned with the problem
of determining the state of a dynamic system from observa-
tions of the output and control vectors over a finite time period.
A system without uncertainty is said to be observable if it is
possible to determine the initial state from the observation
of the output and control vectors over a finite time interval.
The concept of observability was introduced by Kalman [5]
and plays an important role in the design of state observers.
In particular, the concept is useful in solving the problem of
reconstructing unmeasureable state variables from measured
outputs.

The concept of observability is well studied and understood
in the case of linear systems without uncertainty. However, in
most real world problems, the model of the process includes
some uncertain parameters. This paper is partly aimed at
addressing the problem ofrobust observabilityfor a class
of uncertain continuous-time systems. Indeed, we extend the
definition of observability to the case of uncertain systems.
The system is allowed to be time-varying and the uncertainty
is assumed to satisfy anintegral quadratic constraint. An
uncertain system is defined to be robustly observable if the
set of possible initial states corresponding to a measured noisy
output over a finite period of time is bounded. This problem
is closely related to the robust smoothing problem.

In the following sections, we will show that the state
estimator of [16] can be considered as a special case of our
robust state estimator. Indeed, if the uncertainty is removed
from our process model, then the linear time-varying system
of [16] will be obtained.

The results of this paper generalize the results of [9] and
[19] to the case of robust filtering, prediction, smoothing, and
observability for uncertain systems with a control input.

The rest of the paper continues as follows. In Section II<
we define the class of uncertain systems considered in this
paper and define the problems of robust filtering, prediction,
and smoothing. The uncertainty is assumed to satisfy an
integral quadratic constraint. This is a rich class of uncertain
systems. We show that uncertain norm bounded systems
can be considered as a special case of such uncertainty.
Section III contains our solution to the problem of robust
filtering. The solution is given in terms of a differential
matrix Riccati equation and the set of possible states is
shown to be an ellipsoid. The problem of robust filtering
for time-invariant uncertain systems is also addressed in the
same section. The problem of robust prediction is solved in
Section IV. This problem is solved by changing it into an
appropriate filtering problem and using the robust filtering
results. Section V addresses the problem of robust smoothing.
Robust smoothing problems can be divided into three different
categories, namely, robust fixed interval smoothing, robust

fixed lag smoothing, and the robust fixed point smoothing
problems. However, Section V addresses only the problem
of robust fixed interval smoothing. The importance of this
particular problem is due to the fact that it motivates us
to define the important problem of robust observability of
uncertain systems.

Section VI addresses the problem of robust observability of
uncertain systems. The problem is to find the admissible set
of initial conditions consistent with output measurements over
a finite interval of time and an integral quadratic constraint.
This is closely related to the problem considered in Section V.
Necessary and sufficient conditions for robust observability are
given in terms of existence of a solution to a differential matrix
Riccati equation and the set of possible initial conditions is
shown to be an ellipsoid. Section VII contains an illustrative
example.

II. THE ROBUST FILTERING, PREDICTION,

AND SMOOTHING PROBLEMS

In this paper we consider a time-varying uncertain system
described by

(2.1)

where is the state, and are
theuncertainty inputs, is aknown input,
is the uncertainty output, and is the measured
output; and and are bounded piecewise
continuous matrix functions.

A. System Uncertainty

The uncertainty in the above system is described by an
equation of the form

(2.2)

where the following integral quadratic constraint is satisfied.
Let be a given matrix, be a given
vector, be a given constant, and and

be given bounded piecewise continuous matrix
weighting functions satisfying the following condition. There
exists a constant such that

(2.3)

for all . Then for a given finite time interval , we
will consider the uncertainty inputs and and initial
conditions such that

(2.4)

Note that this description of uncertainty allows for uncertainty
in the initial conditions. This uncertainty is determined by.
Indeed, larger values of correspond to lower values of
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uncertainty in initial conditions. Hence, if the initial condition
is known, then we let to give .

The uncertain system (2.1), (2.4) is a modification of the
linear system considered in [16]. Indeed, if we let ,
that is, we remove the uncertainty output from (2.1), then the
linear system of [16] will be obtained with .

The uncertain system (2.1), (2.4) allows for uncertainty
satisfying a standard norm bound constraint. In this case the
uncertain system would be described by the state equations

(2.5)

where and are uncertainty matrices satisfying

for all

Also, the initial conditions would be required to satisfy the
inequality

To verify that such uncertainty is admissible for the uncertain
system (2.1), (2.4), let

where for all . Then (2.4)
is satisfied.

In this paper we are concerned with the problems of “robust
filtering,” “robust prediction,” “robust smoothing,” and “robust
observability” defined below.

In the robust filtering problem, is a fixed
measured output of the uncertain system (2.1), defined on the
time interval and is a fixed measured input
to the uncertain system defined on the same time interval.
The problem is to find the set of
all possible states at time for the uncertain system
(2.1), (2.2) with uncertainty inputs and initial conditions
satisfying the constraint (2.4) (see also [9], [19]). In the robust
prediction problem, the output measurement is
only available over where and the
problem is to find the set of
all possible states at time for the uncertain system
(2.1), (2.2) with uncertainty inputs and initial conditions
satisfying (2.4). In the robust smoothing problem, the output
measurement is available over and the set

of all possible states
at time for the uncertain system (2.1), (2.2) with
uncertainty inputs and initial conditions satisfying (2.4) is to
be determined. The problem of robust observability is closely
related to the robust smoothing problem. This problem will be
defined and solved in Section VI.

Note that if we remove the uncertainty output by assuming
that , then the above problems reduce to those of
[16].

To understand the motivation behind the problem explained
above, consider a standard Kalman filtering problem depicted

Fig. 1. A typical Kalman filtering problem.

in Fig. 1. The system is assumed to have the following
dynamics:

where and are white noise processes. A Kalman
filter is then designed to give an optimal state estimation.
The procedure of designing a Kalman filter is well known
(e.g., see [1]). This procedure requires a precise model of the
system. A further assumption is that the spectral characteristics
of the process and measurement noises are exactly known. In
practice, however, these assumptions may not always be true.

In fact, we may not be certain about the spectral character-
istics of the noise in our signal model. It is also possible that
we may be considering a process model which is dependent
on parameters whose values are imprecisely known due to
manufacturing tolerances and variations with time or our
process model may be a simplification of the true behavior
of the process neglecting nonlinear effects and unmodeled
dynamics. Therefore, we need a theory of Kalman filtering
which allows for uncertainty in the process model and/or the
spectral characteristic of the noise.

Consider the uncertain system of Fig. 2. Here, and
are noise inputs (not necessarily random white Gaussian) and

represents the uncertain dynamics of the system. Whatever
the form of the uncertainty , it is typically a quantity which
is unknown but bounded in magnitude in some way. In other
words, we do not know the value of the uncertainty but we
know how big it can be. If the uncertainty block consists of
time-varying uncertain parameters , then its norm could
be bounded, i.e., . If is an uncertain transfer
function, we could bound its magnitude at all frequencies, i.e.,

for all . This amounts to a bound on the
norm of the transfer function .

Now suppose we have a transfer function uncertainty block,
as in Fig. 3. Using Parseval’s theorem, it follows that the
frequency domain bound

for all

is equivalent to the time-domain bound
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Fig. 2. Filtering problem when the system is uncertain.

Fig. 3. The uncertain block.

Fig. 4. Uncertain system with noise input.

for all signals . This time-domain uncertainty bound can
be applied equally well to the case of a time-varying real
uncertainty matrix or a nonlinear mapping.

The IQC uncertainty description can be extended to model
the noise on the system as well as the uncertainty in the
system dynamics, as shown in Fig. 4. To model both noise
and uncertainty, we should modify the IQC to

where determines the bound on the size of the noise. To
understand why the constanthad to be added to the IQC, note
that if , the uncertainty block makes no contribution
to signal . However, can still be nonzero due to the
presence of the noise signal. Introducing a positiveavoids
this difficulty. At this stage, it should be pointed out that this
IQC modeling of noise corresponds to an energy bound on the
noise rather than a stochastic white noise description.

If we have both process noise and measurement noise (as
in Fig. 5), we can split the signal into two components

Then the IQC becomes

Fig. 5. Uncertain system with measurement noise and process noise.

where and are weighting matrices. To
encorporate uncertainty due to the initial conditions into the
IQC, the term should be added to
the left-hand side of the inequality. Therefore the general form
of the IQC will be as given in (2.4).

III. T HE ROBUST FILTERING PROBLEM

Our solution to the robust filtering problem stated above
requires the solution of the following Riccati differential
equation:

(3.1)

Also, we need to solve the following state equation:

(3.2)

for .
The following theorem is the main result of this section. It

describes the set of all possible states of the uncertain system
(2.1), (2.4) at time given the input and measurements
of the output over the time interval .

Theorem 3.1Let be a given matrix and
and be given matrix functions

such that (2.3) holds on the time interval . Then for
a given vector , a constant , a fixed input

, and a fixed measured output ,
the set is bounded if and only if
the Riccati equation (3.1) has a solution over such that

. Furthermore, the set is
given by

(3.3)

where

(3.4)
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Proof: Suppose that the output measurement
is given and is known. From the definition of

, it follows that

if and only if there exist vector functions and
defined on such that , the following

inequality is satisfied:

(3.5)

and

for all (3.6)

Substituting (3.6) into (3.5) implies that
if and only if there exist a such that

(3.7)

where is defined by

(3.8)

Now, let us assume that the set is
bounded. Consider the functional (3.8) with
and . In this case, is a homogeneous quadratic
functional with a terminal cost term. Also, consider the set

corresponding to
and . Since is bounded, there exists a
constant such that all vectors with
do not belong to the set . Hence,

(3.9)

for all such that and for all
. Since, is a homogeneous quadratic functional, we

have and (3.9) implies that

(3.10)

for all .
The optimization problem (3.10) subject to the constraint

defined by the system (2.1) is a linear quadratic optimal
control problem in which time is reversed. In this linear
quadratic optimal control problem, a sign indefinite quadratic
cost function is being considered. Using a known result from
linear quadratic optimal control theory, we conclude that
condition (3.10) implies that there exists a solution to
the Riccati equation (3.1) with initial condition
for all such that ; e.g., see page 23 of
[20]. This proves the first part of the theorem.

To prove the second part of the theorem note that we have
already shown that if and

only if there exists a such that inequality (3.7)
is satisfied. Now, consider the following optimization problem

(3.11)

where the minimum is taken over all and con-
nected by (2.1) with the boundary condition .
The minimization problem (3.11) can be considered as a
linear quadratic optimal tracking problem in which the system
operates in reverse time. To convert this tracking problem into
a tracking problem of the form considered in [21] and [16],
we decompose the state into where
is the solution to the state equation

(3.12)

It follows from (2.1) and (3.12) that satisfies the state
equation

(3.13)

with . Therefore, the cost function (3.8) can be
rewritten as

(3.14)

where . It can be observed that (3.13)
and (3.14) define a linear quadratic tracking problem similar
to the one considered in [21] with and , all
treated as reference inputs. In fact, the only difference between
the standard linear quadratic optimal tracking problem and
the tracking problem considered here is that in our case the
cost is sign indefinite. The solution to this tracking problem is
well known; e.g., see [21, Section 3.6]. Indeed, if the matrix
function is the solution to Riccati equation (3.1) then the
infimum in (3.11) will be achieved for any and any

. Furthermore, as in [21], we can write

where and are solutions of the following differential
equations:

(3.15)

(3.16)

for . Here, is the solution of the following
state equation:

for .
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Now, let us define

and

It can be verified that satisfies (3.2) and satisfies the
following differential equation:

for and with . Hence,

where is as in (3.4).
From this we can conclude that the set

satisfies

which is the same as (3.3). This completes the proof of the
theorem.

Remarks If the Riccati differential equation (3.1)
has a positive definite solution over then the set

can be characterized as follows:

where is the solution to the following state equation with
initial condition :

for . Here, is the positive definite solution of
the Riccati differential equation

(3.17)

for , with initial condition . Moreover,
is defined by

(3.18)

This can be verified by defining as with
being the solution to (3.17) over and

completing the square in (3.3) and using (3.17), (3.2), and
(3.16).

In the above equations, if we set and ,
then our results will reduce to those of [16]. This is because
with these assumptions, the uncertain system (2.1) and (2.4)
reduces to the linear system considered in [16].

Note that the Riccati differential equation (3.17) is similar
to the Riccati differential equation arising in filtering
problems; e.g., see [22, Ch. 7]. However, the state estimator
proposed here is different from the state estimator due to
the presence of the term .

We now consider the robust filtering problem for an un-
certain time-invariant system. In this problem, we consider
the following time-invariant uncertain system defined over the
time interval :

(3.19)

where is thestate, and are
the uncertainty inputs, is the uncertainty output,

is themeasured output, and is a known
input. The uncertainty in this system is defined as follows. Let

and be given matrices associated
with the system (3.19). Then, given a finite time interval ,
the uncertainty inputs and initial conditions for this uncertain
system are required to satisfy the following integral quadratic
constraint:

(3.20)

Theorem 3.2Consider the uncertain system (3.19), (3.20)
defined on with weighting matrices and

and suppose that the pair is stabilizable.
If the algebraic Riccati equation

(3.21)

has a solution such that the matrix
is stable and , then for any matrix

such that , the set
is bounded and described by

Here, is the solution of the following Riccati differential
equation:

for with initial condition . Also
is the solution to the following state equation with initial
condition :

(3.22)
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for . Furthermore, the constant is defined as
follows:

Moreover, is defined on and has the property
as .

Proof: This follows directly from Theorem 3.1 and The-
orem 2.2 of [9].

At this stage it should be pointed out that the robust filter
designed using the above procedure is nonconservative for
an uncertain system with an Integral Quadratic Contraint. As
explained earlier, the IQC description of uncertainty includes
other more restrictive uncertainty descriptions. If the above
procedure is to be used to design a robust filter for such an
uncertain system in which the uncertainty is more accurately
modeled by a more restrictive uncertainty description (for
example a system with norm bounded uncertainty), it will
result in a conservative design.

IV. THE ROBUST PREDICTION PROBLEM

In this section, we are concerned with the problem of “robust
prediction” as defined in Section II. In this problem, unlike
the robust filtering case, the output measurement is only
available for and the set of possible states at
time corresponding to this measurement and the uncertain
system (2.1), (2.4) is to be determined.

To prove the main result of this section, we change the ro-
bust prediction problem into a special robust filtering problem.
This enables us to derive necessary and sufficient conditions
similar to those of the previous section.

Our solution to the robust prediction problem requires the
solution to the following Riccati differential equation:

(4.1)

Also, we need to solve the following state equation:

(4.2)

for with . Here,

(4.3)

The following theorem is the main result of this section. It
describes the set of all possible states of the uncertain system
(2.1), (2.4) at time given measurements of the output
over the time interval .

Theorem 4.1Let be a given matrix, and
and be given matrix functions

such that condition (2.3) holds on the time interval .
Then, for a given vector , a constant , a fixed
input , and a fixed measured output ,
the set is bounded if and only if
the Riccati equation (4.1) has a solution over such that

. Furthermore, the set
is given by

(4.4)

where

(4.5)

Proof: Here we only sketch a proof of the theorem.
Note that if output measurement is given and

is known, then from the definition of
, it follows that

if and only if there exist vector functions , and defined
on , and defined on such that ,
the following inequality is satisfied:

(4.6)

and

for all (4.7)

Substituting (4.7) into (4.6) and using the identification (4.3)
implies that if and only if
there exist a such that

(4.8)

where is defined by

(4.9)

The rest of the theorem can be proved along the same lines as
Theorem 3.1.
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V. THE ROBUST FIXED INTERVAL SMOOTHING PROBLEM

In this section, we present and discuss our solution to the
robust smoothing problem as defined in Section II. The robust
smoothing problem may be divided into three categories:
the robust fixed interval smoothing, the robust fixed lag
smoothing, and the robust fixed point smoothing problems.
In this section, we only concentrate on the robust fixed point
smoothing problem and comment that the other two problems
may be defined and solved in the same manner.

The reason behind our interest in the robust fixed interval
smoothing is that it gives us an intuition to consider an
important problem, namely the robust observability of the
uncertain system. This problem will be discussed in the next
section and its relation to the smoothing problem considered
in this section will be clarified.

Our solution involves the following Riccati differential
equations:

(5.1)

(5.2)

It will also include a solution to the differential equations:

(5.3)

for and

(5.4)

for .
Note that (5.1) and (5.3) must be solved forward in time

while (5.2) and (5.4) must be solved in reverse time. This is
due to the nature of the robust smoothing problem which will
be clarified later.

The following theorem is the main result of this section. It
describes the set of all possible states for the uncertain system
(2.1), (2.4) at time given measurements of the output

over the time interval .
Theorem 5.1Let be a given matrix, and

and be given matrix functions
such that condition (2.3) holds on the time interval .
Also assume that the Riccati differential equation (5.1) has a
solution over time interval such that

and the Riccati differential equation (5.2) has a solution over
time interval such that . Then, for a
given vector , a constant and a fixed measured
output , the set is
bounded. Furthermore, the set is

given by

(5.5)

where and are solutions to (5.3) and (5.4) and

(5.6)

and

(5.7)

Proof: Suppose that the output measurement is
given and the input is known. From the definition of

, it follows that

if and only if there exist vector functions , and
defined on such that there exist a solution to (2.1)
satisfying , the following inequality is
satisfied:

(5.8)

and

for all (5.9)

Substituting (5.9) into (5.8) implies that

if and only if there exist a such that

(5.10)

where is defined by

(5.11)

and is defined by

(5.12)
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and is the solution to (2.1) with input and boundary
condition .

Now consider the following minimization problem:

(5.13)

where the minimum is taken over all and connected
by (2.1) with the boundary condition .
Since for each depends only on the
portion of defined over the time interval and

depends on the portion of defined over
the time interval , (5.13) may be written as

(5.14)

The minimization of is a linear quadratic
tracking problem in reverse time over time interval .
The minimization of is another linear quadratic
optimization problem, but in forward time over the time
interval . To convert these tracking problems into
tracking problems considered in [16] and [21], we use the
same technique as in the proof of Theorem 3.1. That is, we
decompose the state into where is
the solution of the state equation (3.12) over . Hence, we
may rewrite (3.12) and (5.12) as

(5.15)

and

(5.16)

With this transformation, the minimization of (5.13) has been
converted into

(5.17)

The minimization of is a linear quadratic
tracking problem in reverse time over time interval

while minimization of is another linear
quadratic optimization problem in forward time over the time
interval . In these tracking problems and

are all treated as reference inputs. Solvability of these
tracking problems is guaranteed by the assumptions made in
the theorem. That is, the Riccati differential equations (5.1) and
(5.2) have solutions such that and .
Indeed, using a well-known result on the linear quadratic
tracking problem, (e.g., see [21]), it follows that a minimum

in (5.14) will be achieved for any and any .
Furthermore, as in [16] and [9], we can write

where and are defined by the solutions to
differential equations (5.3) and (5.4) and and are
defined by (5.6) and (5.7). Also, and are
defined by (5.1) and (5.2). From this, we can conclude that
the set

is as given in (5.5). This completes the proof of the theorem.

Note that the solution to the robust smoothing problem is
generated by two filters, one operating in forward time and the
other operating in reverse time. The filter operating forward
in time corresponds to the tracking problem in reverse time
while the other filter corresponds to the tracking problem
in forward time. A similar situation occurs in the stochastic
optimal smoothing of linear systems, e.g., see [23, Section 3.8].

VI. THE ROBUST OBSERVABILITY PROBLEM

This section is concerned with a problem of robust observ-
ability for uncertain systems of the form (2.1) which satisfy
the following integral quadratic constraint:

(6.1)

for a given . Note that the integral quadratic constraint
(6.1) is different from (2.4). Indeed, in (6.1) the matrix
is assumed to be zero. Recall that is a measure of our
knowledge of the initial conditions . The smaller the ,
the more uncertain the initial conditions are. In other words,
the assumption is equivalent to assuming that no
a priori information exists about the initial condition .
Hence, the set of possible initial conditions given a measured
output could be unbounded. This motivates our definition of
robust observability.

Definition 6.1 The uncertain system (2.1), (6.1) is said to be
robustly observable on the time interval if for any given

and and any constant the corresponding
set of all possible states at is
bounded.

This definition of robust observability extends the standard
definition of observability for time-varying linear systems to
the case of systems with uncertainty. The robust observability
problem can be considered as a special case of the robust
smoothing problem. Indeed, in Section V, if we let ,
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and , then the robust smoothing problem will be
equivalent to the robust observability problem considered
here. Hence, we should be able to use Theorem 5.1 directly.
However, in the sequel, we will show that a stronger result
can be obtained by considering robust observability as an
independent problem.

Theorem 6.1 is the main result of this section. It describes
our solution to the robust observability problem. This solution
involves the Riccati differential equation

(6.2)

and the following differential equation:

(6.3)

for .
Theorem 6.1Let and be given

matrix functions such that (2.2) holds on the time interval
. Consider the uncertain system (2.1), (6.1). Then the

following statements are equivalent.

(i) For a given constant , the uncertain system (2.1),
(6.1) is robustly observable.

(ii) The Riccati equation (5.2) with terminal condition
has a solution over time interval

such that .

Moreover, if condition (ii) holds, then

(6.4)

where is defined by (6.3) and

(6.5)

Proof: (i) (ii) Given a measured output
and an input , we have by the definition that

if and only if there exist vector
functions and satisfying (2.1) such that

, the constraint (6.1) holds, and

for all (6.6)

Substitution of (6.6) into (6.1) implies that
if and only if there exists an input

such that where

(6.7)

and is the solution to (2.1) with input and boundary
condition .

Now consider the functional (6.7) with and
. In this case, is a homogeneous quadratic

functional. Let us consider the set corresponding to
and . Since is assumed

to be bounded, a constant can be found such that all
vectors with do not belong to the set

. Therefore, for all such
that and for all . This along with
the fact that is a homogeneous quadratic functional implies
that and hence

(6.8)

for all and all .
The optimization problem (6.8) subject to the constraint

defined by (2.1) is a linear quadratic optimal control problem.
Using a result from linear quadratic optimal control theory
(see [20]), we conclude that (6.8) implies that the Riccati
differential equation (5.2) with terminal condition
has a defined solution over such that . This
completes the proof of the first part of the theorem.

(ii) (i) We have shown that
if and only if there exists an input such that

, with defined by (6.7). Now consider the following
minimization problem:

(6.9)

where the minimum is taken over all and connected
by (2.1) with the condition . This problem is a
linear quadratic optimal tracking problem in forward time. To
convert this tracking problem into a standard tracking problem,
we decompose the state vector into
where is the solution to the state equation (3.12), and
hence, satisfies the state equation (3.13). Therefore, the
cost function (6.7) can be written as

(6.10)

It can be observed that (3.13) and (6.10) define a standard
linear quadratic tracking problem with and
all treated as reference inputs. Indeed, the only difference
between the standard linear quadratic optimal tracking problem
considered in [21, Section 3.6] and the one considered here is
that in our case the cost function (6.10) is sign indefinite.
However, if the matrix is the solution of the Riccati
equation (6.2), then the infimum in (6.9) will be achieved for
any and . Indeed, as in the proof of Theorem
5.1, we can write

(6.11)
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where and are solutions of the differential equations

(6.12)

(6.13)

for . Now, let us define

and

It is straightforward, but tedious to show that satisfies
(6.3) and satisfies

for and with . Moreover, it can be verified
that

Hence, we can conclude that the set

is as given in (6.4). This completes the proof of the theorem.

VII. I LLUSTRATIVE EXAMPLE

In this section, we present an example to illustrate our
main results. The example consists of an oscillator with
uncertainty in the frequency of oscillation and uncertainty in
the measurement equation. The uncertain system is described
as follows:

(7.1)

The uncertainty in this system is assumed to satisfy the integral
quadratic constraint (2.4) with
and

In the first part of the example we consider a robust prediction
problem. We also assume that the integral quadratic constraint
holds for . To illustrate the performance of our
predictor applied to this uncertain system, we consider the
uncertainties to be such that , and

and . It is straightforward
to verify that this uncertainty satisfies the integral quadratic

Fig. 6. Estimated value ofx2 as a function of time.

Fig. 7. Ellipsoidal bound forx(7:5).

constraint. Corresponding to this uncertainty realization is the
linear system

(7.2)

Note that system (7.1) is of the form (2.1) with .
Now, we assume that 7.5 and 0.5 s. Therefore,

the measurements up to 7 s are available. Fig. 6
shows the resulting estimate of the state variable, upper
and lower bounds on the value of , and the true value of

as a function of time over the interval . Also, in
Fig. 7, we show the ellipsoidal bounding set of the form (4.4)
bounding the true value of the system at time 7.5.

The second part of the example is concerned with robust
observability of the uncertain system (7.1). We assume that the
integral quadratic constraint (6.1) is satisfied with the above
values of and and with 10. Hence, the system
(7.2) can be used to generate the measure output . The
objective is to determine the set of possible initial conditions

for the above uncertain system based on the
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Fig. 8. Ellipsoidal bound forx(0).

output measurements . This set can be calucated using
the result of Theorem 6.1. Indeed, in Fig. 8, we show the
ellipsoidal bounding set of the form (6.4) bounding the true
value of the initial condition .
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