Robust Final-Round Cache-Trace Attacks
Against AES

Joseph Bonneau

Computer Science Department, Stanford University jbonneau@stanford.edu

Abstract. This paper describes an algorithm to attack AES using side-
channel information from the final round cache lookups performed by the
encryption, specifically whether each access hits or misses in the cache,
building off of previous work by Aciigmez and Kog¢ [AKO06]. It is assumed
that an attacker could gain such a trace through power consumption
analysis or electromagnetic analysis. This information has already been
shown to lead to an effective attack. This paper interprets cache trace
data available as binary constraints on pairs of key bytes then reduces
key search to a constraint-satisfaction problem. In this way, an attacker
is guaranteed to perform as little search as is possible given a set of
cache traces, leading to a natural tradeoff between online collection and
offline processing. This paper also differs from previous work in assum-
ing a partially pre-loaded cache, proving that cache trace attacks are
still effective in this scenario with the number of samples required being
inversely related to the percentage of cache which is pre-loaded.

Keywords: AES, cryptanalysis, side-channel attack, power analysis, cache.

1 Introduction

Side-channel attacks have been demonstrated experimentally against a variety
of cryptographic systems. Side-channel attacks utilize the fact that in reality, a
cipher is not a pure mathematical function Ex[P] — C, but a function Ex[P] —
(C,t), where t is any additional information produced by the actual encryption
operation. Often the additional data ¢ leaks enough useful information for an
attacker to fully recover the key. The attack presented in this paper focuses on
obtaining a “trace” of cache accesses performed by the encryption by analyzing
the power consumption of the encryption.

In 1997, Rijmen and Daemen proposed the Rijndael cipher to the National
Institute of Standards and Technology (NIST) as a candidate for the Advanced
Encryption Standard (AES). After four years of competition, Rijndael was cho-
sen by NIST in October 2000 and officially became AES in 2001 with US FIPS
197. The cipher is now widely deployed and is expected to be the world’s pre-
dominant block cipher over the next 25 years. In its final evaluation of Rijndael
[NBB*00], NIST stated that table lookup operations are “easy to defend against
power attacks” and regarded Rijndael as the easiest among the finalists to defend
against side-channel attacks in general.

In spite of this favorable review, side channel cryptanalysis has been the most
effective approach to attacking AES so far. The heavy use of lookup tables has
been widely demonstrated to be an exploitable cryptographic side-channel on
computers with cached memory [TTMMO02,TSS*03,Pag02,Per05]. Side-channel
attacks against AES have been based on direct cache observation [OSTO06], tim-
ing [Ber05,BM06], and most recently power consumption [BBMT06,AK06]. The
reliance on lookup tables is once again exploited in the attack described in this
paper.

2 Overview of the AES cipher

A full description of the Rijndael cipher is provided in [DR02], but below is a
brief description of the cipher’s properties that are utilized in this study.! AES is
an iterated cipher: Each round i takes a 16-byte block of input X and a 16-byte
block of key material K%, producing a 16-byte block of output X!, using a
temporary 16-byte state buffer 7. Each round is carried out as follows:

T := SubBytes(X"),

T := shiftRows(T),

T := MixColumns(T),
Xt =ToK"

While the three functions SubBytes, ShiftRows, and MixColumns are spec-
ified as algebraic operations, performance-oriented software implementations of
AES combine all three operations and pre-compute the values.? The values are
stored in large lookup tables, Ty, T1, 1%, T3, each mapping one byte of input to
four bytes of output. In software, these tables each require 2% - 4 = 1024 bytes
of storage. Each round is carried out by splitting up the 16 bytes of X’ into
xé, zi, ... ,x§5, and the 16 bytes of K* into ké, ki ..., k§5. The encryption round
is then carried out as:

X = {Tolay | @ Tilag | @ Tolzie) @ Talois) @ {ko k1 ks kS 3,
Tolzy 1@ Th[zh | @ Tolzl,) @ Tslay | & {ki KL kG K 3,
Tolzg | @ Th[zis) @ Tolah | © Ta[oh | @ {k§ L kg ki ki), (1)
To[xliz] EBTl[l’ll]@T2[$é]@TS[ﬂfil] ® {kizv 11‘37 11‘4, 15}}

The round calculation can be performed very efficiently in software this way,
using just 16 table lookups and 16 word-length x-or’s. A complete encryption
in 128-bit mode consists of an x-or with the first 16 bytes of key material,
referred to as “input whitening,” followed by 9 normal encryption rounds, plus

! This paper will focus exclusively on AES with a 128 bit key. 192 and 256 bit versions
use a different key expansion algorithm and more rounds.

2 This formulation was a part of the original Rijndael proposal [DRO2]. Most public
AES implementations have made no significant changes to this original source code.

a simplified final round. The final round performs no MixColumns operation
as it might trivially be inverted by an attacker and would ostensibly slow down
hardware implementations. This omission will prove crucial, as it causes software
implementations to use a new table Ty in the last round, which is just the AES
S-Box used in SubBytes:

C = {Tulzg"] ® ko°, Tulw3’] © Ky, Tu[z1g] @ ko°, Talwis] @ (2)
Ta[2°] @ ky°, Tafz’] @ /f5 ,T4[xi9d S ka ,T4[x§°]
Ta[z3°] @ ks°, Tulzi3] @ ko°, Tulay"] ® 10, Ty[z°] @ 11,
T4[33% & 12, [33%0] 13, [xéo] 14, [x% | &

A total of 10 rounds are used in 128-bit AES, but 11 16-byte blocks of key
material are needed because of the input-whitening. These 176 bytes of key
material are generated by taking the raw 16-bytes of the key and repeatedly
carrying out a non-linear transformation which produces the next 16-byte block
based on the previous 16-byte block until all 176 bytes are created. This key
expansion structure has two important properties. First, the 16 bytes of key
material used for input whitening prior to the first encryption round are just the
raw key bytes. Second, the key expansion algorithm was explicitly chosen [DR02]
to be invertible given any 16 consecutive bytes of the expanded key. This is useful
to an attacker in that recovery of the final 16 bytes of the expanded key (or any
other 16 bytes) is equivalent to recovery of the original key.

A complete AES encryption can be viewed in terms of the table lookups it
performs: for each of the tables Ty, 11,15, T3, four lookups are made in each of
the first nine rounds for a total of 36 lookups. In the final round 16 lookups are
made into the table Ty, bringing the total number of lookups performed to 160.
We will call the entire set of lookup indices {l1,la,...l160} a lookup trace for
the encryption operation. Knowing a complete lookup trace for a single encryp-
tion operation, along with either the ciphertext or plaintext, would instantly be
enough information to recover the key 3. Such a simple attack would require the
attacker have control over the target machine’s memory bus, which is unlikely
in practice. However, there are multiple side-channels which leak enough partial
information about an encryption’s lookup trace to recover the key.

3 Cache Model and Attack Assumptions

The attacks in this paper assume the computer performing the encryption op-
eration uses cached memory which can be described using a simple model of
the cache. A cache is a small, fast storage area sitting between the CPU and
main memory. When values are looked up in main memory, they are stored in

3 In fact, it would be enough to simply know the lookup trace of the first round of one
encryption, along with the plaintext (or alternatively, the lookup trace of the final
round and the ciphertext).

the cache, usually evicting older values in the cache. Subsequent lookups to the
same memory address can then retrieve the data from the cache, which is faster
than main memory, this is called a “cache hit.” Because most software exhibits
temporal locality in memory accesses, caches greatly improve performance.

Unfortunately, because a cache miss on a modern processor requires fetching
the requested data from main memory, as well as possibly inserting a stall into
the pipeline or attempting to execute further instructions out of order, the pro-
cessor uses more electricity during a cache miss than a hit. As a result, cache
misses are easily identifiable as spikes in the power consumption graph of a pro-
cessor performing AES encryption [BBM106]. We assume that it is possible for
an attacker to recover a cache trace for the final round of an encryption by such
power analysis methods. In contrast with a lookup trace, a cache trace does not
include the exact indices looked up, only whether the lookup hit in cache or
missed in cache. We denote a cache trace for the final round by {t1,%s,...,t16},
where each t; is either “hit” or "miss” in correlation with the result of the it®
table lookup in the final round.

Modern caches do not store individual bytes, but groups of bytes from con-
secutive “lines” of main memory. Line size varies, but two common values are
32 bytes for a Pentium IIT and 64 bytes on more recent Pentium IV processors.
Since the usual size of AES table entries is 4 bytes, groups of 8 consecutive table
entries share a line in the cache on a Pentium III, this value is defined as § in
[OSTO06]. In general it will hold that § = é where [is the processor’s . line size
and b is the block size of table entries.

The value of ¢ is critically important to cache-based attacks because for any
addresses a, b which are equal ignoring the lower log, bits (notated as (a) = (b)
in [OSTO06]), looking up address a will cause an ensuing access to b to hit in cache
instead of main memory. This has been noticed to be a significant problem for
attacks on the first round of AES in that it makes recovery of the low-order key
bits impossible [AK06,0ST06,BM06]. In particular, this effect requires the attack
of Aciigmez and Kog to consider the second round and become significantly more
complex.

Unlike the cache trace attacks described by Aciigmez and Kog¢[AK06], we will
not assume the cache is completely clean prior to encryption. For instance, if t;
is “hit” for some encryption’s cache trace, we do not conclude that (I;) = (l2).
This could certainly be the case, but it could also be the case that the cache
line needed by the lookup [happened to be in cache prior to the start of the
encryption. This would represent a false hit in that it did not hit in cache due to
the lines loaded by the encryption itself, but due to the line being pre-loaded?.

We do assume that any cache line loaded during encryption will remain
there for the duration of the encryption. This is a safe assumption because the
T, table, with a size of 1024 kB, should fit easily into the L1 cache of any modern
processor. Since the table entries are the only values loaded during encryption,
the encryption routine will not evict any of the table lines out of cache once

4 If the assumption is made that the cache is clean prior to encryption, the attack
presented in this paper can be significantly improved, as discussed in Section 8

they are loaded. It would be possible for lines to be evicted in the middle of an
encryption if the process were context switched out, but this would be evident
in the power usage of the encryption, and the sample could then be discarded.
This assumption is critical because it allows to conclude, if ¢; is “miss” for some
encryption, that (l;) # (l;) for any j <.

4 Related Work

Side-channel attacks have been demonstrated against implementations of many
cryptosystems, utilizing timing [Ber05, TSS*03,K0c96,BB05,KQ99,BM06], power
consumption [ABDMO00,KJJ99], electromagnetic radiation [GMOO1], etc. Side
channel attacks have been most effective against public-key cryptographic im-
plementations, particularly smart cards. Public key algorithms are vulnerable
because they typically perform lengthy mathematical operations, whose time
and power consumption are data-dependent. In the AES selection process, Rijn-
dael was considered “favorable” to defend against side-channel attacks because
it did not utilize conditional statements or data-dependent rotations, which were
commonly the basis of the side-channel attacks on public key systems [DR99].
In the final evaluation, NIST agreed that Rijndael appeared safe against side-
channel attacks, considering table-lookups a “safe” operation [NBB*00].

To the surprise of its designers and NIST, AES has proved vulnerable to
side-channel attacks on machines with cached memory due to its use of table
lookups. Direct observation attacks, as demonstrated by Osvik, Shamir, and
Tromer [OSTO06], discover specific information as to what values are present
in an encryption’s lookup trace by running code on the target machine before
and after encryption. For example, if the attacker can determine that, whenever
po = z, the data in Ty[2'] is accessed during encryption, then it must be the case
that 2§ = z’. Since it holds that py & ko = x, the attacker can conclude that
ko = z ® 2’. This principle is used to construct sophisticated, effective attacks
which are successful with as few as 800 encryption samples.

An encryption’s lookup trace also affects the overall time of the encryp-
tion. This effect was first used to construct attacks against DES by Tsunoo et
al. [TSST03,TTMMO02], who also described possible attacks against AES. A suc-
cessful statistical timing attack against AES was presented by Bernstein [Ber05].
More efficient timing attacks against AES directly using cache effects were pre-
sented by Bonneau and Mironov [BM06]. These timing attacks are made possible
because a pair of table lookups to the same index will be faster than a pair of
lookups to two different indices, thus, the presence of collisions in an encryp-
tion’s lookup trace will usually speed up the encryptions. The latter attacks
found increased success by studying timing due to cache-collisions in the final
round of AES encryption, similar to the approach in this paper. Timing attacks
are attractive in that, theoretically, the can be carried out by a remote attacker,
although so far this has not been possible against AES due to the precise timing
information required.

Finally, information is leaked about the lookup-trace through power analysis.
This possibility was mentioned by Page [Pag02] and by Kelsey et al [KSWHO00].
Power analysis and electromagnetic analysis has previously been used as a side-
channel to attack cryptographic smartcards [KJJ99,GMOO01]. For AES, the crit-
ical point is that cache misses require the functioning of a large amount of
circuitry to fetch the desired data from main memory. As a result, cache misses
should show up as huge spikes in a graph of power usage. As demonstrated by
Bertoni et al [BBM™06], given a power usage trace of an AES encryption, it
is easy to tell which table lookups resulted in cache misses and which resulted
in cache hits. They used this information to construct an attack by specifically
evicting a small part of the AES tables prior to encryption, then observing if a
miss occurred to indicate that the evicted data was needed during the encryp-
tion.

More powerful attacks were recently described by Aciigmez and Kog [AKO06].
Ine one attack, they use the entire first and second round traces, along with
known plaintext, to recover an AES key. For example, suppose the second access
to Ty in the first round results in a cache hit. Then it can be deduced that the
first two lookups in T must be the same. We can see from Equation 1 that these
lookups are just Py® Ky and P,;&® K4, so we have learned that Ko® Ky = Py® Py.
Due to the use of cache-lines on modern processors (see Section 3), the attack
must also examine the second round, which ultimately narrows the number of
possible keys to around 232 given sufficient cache traces. They also develop a
similar final round attack, which is simpler and also effective.

These attacks are significant in that they can recover the full key after ob-
serving between 5 to 50 encryptions, with a varying amount of exhaustive search
required. Aciigmez and Kog correctly stress that the exhaustive search can be
carried out “offline” after the encryption traces are obtained so it is often desir-
able to do more offline work if it means fewer traces are needed. The final round
attack presented in this paper is very similar to the work of Aciigmez and Kog,
but views the attack in a different manner as a constraint satisfaction problem.

Finally, Aciigmez and Kog assume a completely “clean” cache prior to encryp-
tion, that is, no AES table entries are already loaded into cache. If an attacker
can run code on the target machine between encryptions, this can be achieved
by reading enough garbage data from memory. However, if the attacker cannot
run code, there may be no way to ensure all AES tables are out of cache. A single
table entry left in cache is enough to foil the attack if it assumes hits are gener-
ated only from the encryption itself, this is a significant limitation. This paper
does not make a clean cache assumption and explores the effects of a partially
pre-loaded cache. In particular, this means ignoring hits in the cache trace, since
it is unknown whether or not they are “false hits” due to a pre-loaded cache.

5 The Attack

5.1 Constraint inference

The goal of the attack is to use a series of final-round cache traces, as well as
known ciphertexts, to recover the key. To do this, we wish to gather as many
constraints as possible on the key bytes from each cache trace. We consider
only binary constraints, that is, for each pair of key bytes (k}°,k19), we wish

i Vg
to rule out as many possible values (z,y) for that pair. Given a cache trace
{t1,1t2,...,t16} for the final round of some encryption, we consider Equation 2.

Suppose that some value t; = “miss”, that is, we know the 5t lookup resulted
in a cache miss. We know that it is then not equal to any of the previous cache
lookups indices, for all t;, with ¢ < j, we know that (I;) # (I;). Consider the
corresponding ciphertext bytes ¢; and c;. We know that ¢; = kX & Ty[l;] and
¢j = kj° ®Ty[l;]. Note the key bytes k/° and k° are taken from the final round
of the expanded key schedule. If we guess some value z for the value of k%, we
can compute® the conditional lookup index 7 = T *[c; @ 2], this is the value of
[; which would have been accessed if z is correct. We know that the lookup index
(I;) # (l;), so we wish to compute all values of [; which would be impossible if I?
is the correct lookup index, these are just any values for which (I7) = (I;). There
will be d such values, which can easily be enumerated by computing I5(n) = 7 ®&n
forall0 <n <34.

Finally, for each I%(n), we compute z'(n) = Ty[l?(n)] © c;, this corresponds
to the value for the key byte k;° which would be required to be consistent with
the known ciphertext bytes ¢;, ¢; and the value z for k}°. We can thus conclude
that it is impossible to have k{® = z and k;° = 2'(n), because this would have
meant (l;) = (I;) and [; would have hit in the cache. So all pairs (z,z'(n)) for
0 < n < § are ruled out as possible values for (k}°, kjl-o).

We can repeat this process for every value of 0 < z < 255, producing a
total of 256 - § constraints on (k;°, k}o). Also, we can produce constraints for all
pairs 4, j with ¢ < 7, so in total j - 256 - § constraints are produced. Notice that
the presence of the S-box between the known ciphertext values and the lookup
indices actually improves the attack. Because the S-box is non-linear, the values
2'|n] will appear to be randomly distributed throughout the range [0, 255] given
any one z. Although the ruled-out lookup values I7,1% (n) only differ in their
low-order bits, this small differential is destroyed by the S-box, leading to a
good distribution of constraints on (k;°, k") and avoiding the problems of the
first round attacks in [AKO06]. This effect was also useful in the timing attacks
described in [BMO06].

5.2 Constraint propagation

With ample cache traces, it would easy be to produce enough constraints to
uniquely identify each key byte by the analysis above, eventually, the only un-

® Since Ty is the AES S-box, a permutation, we know that T; ' is a well-defined
function and trivial to compute

constrained possibility for (%, k;°) would be the correct pair of values. However,
well before this occurs there will be enough constraints that only one possible as-
signment to k1%, k3%, - -+ kiQ will satisfy all constraints, although each individual
byte will appear to have multiple possible values. This is just the classic con-
straint satisfaction problem in artificial intelligence, and good search algorithms
exist to find keys which solve the constraint sets produced in this attack. With
enough constraints, a small enough number of keys will identified as possible,
which can presumably be checked against a known plaintext/ciphertext pair.

To illustrate the problem, suppose after analyzing all of our cache traces we
are left with (k1°, £19) € {(0x01, 0x02), (0x04, 0x05)}, (k19 ki%) € {(0x01,
0x03), (0x06, 0x07)}, (k3°, k3%) € {(0x02, 0x03), (0x08, 0x09)}. In this
example it is obvious that the only possibility is (k1°, k4%, k%) = (0x01, 0x02,
0x03), even though by constraints alone it appears that ki° could be any of
(0x01, 0x04, 0x06). The value 0x04 is clearly impossible for k1° though, since
there is no possible value for k1% which could then satisfy the constraints.

To check for consistency and eliminate all values, we can use the AC-3 al-
gorithm [Mac77], which checks for consistency between possible values and the
constraints, and then propagates constraints. The algorithm works as follows:
First, the domain for every byte k19 is set to {0,...,255}. Next all pairs (i, j)
are placed in a queue. As each (¢, j) is de-queued, each value x remaining in the
domain of k}° is checked for consistency. If for any other byte kjl-othere does not
exist a possible value (k{°, k%) = (z,y) for some y remaining in the domain of
k;°, then x is eliminated from the domain of k;°. If any values are eliminated,
then all pairs (kilo,kjl-o) are re-added to the end of the queue. The algorithm
stops when the queue is emptied.

AC-3 is a natural choice for this attack since it guarantees consistency for
binary constraints, which are produced by the power analysis. AC-3 has asymp-
totic complexity O(n%d?), where n is the number of nodes (key bytes) and d
is the initial domain (in this case 256). So, the asymptotic running time of 232
is possible, although in practice the algorithm as tested against constraint sets
which the attack would produce runs very efficiently, taking only seconds on a
personal computer. Similar constraint propagation algorithms exist with better
asymptotic complexity, but for this attack they would probably not provide a
considerable speedup.

5.3 Search

The correct key is identified by search, using the constraint propagation algo-
rithm to guide the search. First, a guess xo is made for k(°. Then, based on this
assignment, forward propagation is used to eliminate values for the remaining
15 bytes. For each key byte kjl»o for j > 0, we eliminate the value y from the
domain of k}° if we know from the constraint set that (k;°, k%) # (z0,y). After
forward propagation, the AC-3 constraint propagation algorithm is run again to
remove inconsistent values from the domains of the remaining key bytes.

Next, a guess x1 is made for k{° based on the key byte’s remaining domain,
and another round of forward propagation and AC-3 propagation is performed.

When a full guess for all key bytes is made, this guess is then checked against a
known plaintext/ciphertext pair for correctness 6.

The search must backtrack if either a complete guess is made which is incor-
rect, or if at some point the domain of an unassigned key byte becomes empty.
In either case, the last assignment made is incorrect, it must be undone and a
new assignment made. This also requires unrolling the constraint propagation
that may have occurred due to the assignment being removed, this is facilitated
by storing in the domain of each key byte at what search depth constraints were
placed. In this manner, backtracking only requires a single scan over each byte’s
domain to remove incorrect constraints.

Because AC-3 is an optimal constraint propagation algorithm for binary con-
straints, this search is optimal in that it will eventually find the correct key, and
will search as few incorrect keys as is possible. In the extreme case of no con-
straints being known, the algorithm is equivalent to exhaustive search.

5.4 Decryption Attack

AES decryption in software is very similar to encryption, with a slightly different
key schedule, and equally vulnerable to cache trace attacks. The attack is slightly
simpler against decryption since it recovers constraints on the raw key, instead
of the final section of the expanded key. In decrypt mode, the attacks require
known plaintext instead of known ciphertext.

6 Experimental Results

6.1 Experimental Setup

As mentioned previously, the attack will always succeed given enough time,
although this could mean exhaustive search of every possible key if no constraints
are known and would not be a meaningful attack. To study the effectiveness of
the attack, we set a threshold 7 of offline work that the attacker is able to
perform in attempting to recover the key given a set of n cache traces. It is
impossible to precisely quantify “work” because different operations involved in
the attack, for instance checking a key for correctness vs. updating one element
in a table of constraints, will have a different fixed cost. We consider either
checking and updating one table entry, or checking one key for correctness, as one
“operation” and consider 7 to be the maximum number of operations practical
for the attacker to carry out. By stopping the search after 7 has been exceeded,
the amount of work done either in searching or propagating constraints to a fixed
amount. For our experiments we use a relatively small value of 7 = 23°, an level
which puts the attack time on the order of one minute on a common personal
computer. In a real attack 7 might be much higher.

5 Note that since guesses are being made about the final 16 bytes of the expanded key
schedule, the key expansion algorithm must be inverted, as previously mentioned this
is an easy process because the key expansion is specifically designed to be invertible.

The attack has been simulated against the optimized C implementation of
AES, as submitted in the original Rijndael proposal [DR02]. This implemen-
tation is used without significant change in many open source cryptographic
libraries such as OpenSSL v 0.9.8(a), Crypto++5.2.1, and LibTomCrypt 1.09,
libgcrypt v 1.2.2, and Botan v 1.4.2. We have assumed that it is possible to
produce a precise cache trace through power analysis, for experiments we have
simulated this process by augmenting the encryption code to keep a record of
hits and misses based on the indices looked up during the encryption operation.
We track for each cache line in the table T, whether or not it is in cache, loading
it in on the first access to it.

6.2 Data

The effectiveness of the attack is dependent on the value of § as defined in Section
3. Common cache-line sizes are 32 bytes for Pentium III and earlier, 64 bytes for
Pentium IV and other recent processors. These give values for ¢ of 8, and 16 if
a four-byte wide T} table is used. Some AES implementations implement T as
a one-byte wide table”, this gives values for 6 of 32, and 64 respectively. Thus,
we have simulated the attack for values of § ranging from 8-64 and we present
results in Figure 1.

0.9 o 5-38
0.8 #-35=16
0.7 —4—5=32
0.6 | 5=064

0.5

Success Rate

0.4
0.3 A
0.2
0.1 1

0 10 20 30 40 50 60 70 80 90 100

of samples

Fig. 1. Success rate of attack for common values of §

" This is actually a more logical size. It is not clear why the original Rijndael code chose
a four-byte wide table except for consistency with the other tables, nevertheless, this
choice persists as an artifact in many implementations.

6.3 Analysis

It is interesting that the attack is less effective at high or low values of §, specif-
ically, the performance at § = 16 or 32 is best, and § = 64 is the worst. This
can be understood because varying § produces two simultaneous effects. Higher
values of § produce constraints more quickly, specifically each miss at position
1 < j <15 produces j - 256 - 0 as outlined in Section 5.1 (a miss at position 0 is
useless). However, at higher values of ¢ the number of misses is lower, especially
at higher j, since the table is loaded into cache much more quickly. Specifically,

since the table will occupy % cache lines, the probability of a miss in position
256 . .
j can be estimated® at (—xg 1)3*1 =(1- %)3*1. This is problematic for high
5

values of delta because it makes misses in the final cache accesses very unlikely,
for example, with § = 64 the chance of the last cache access missing is just
0.75'% = 1.3%. Thus, each miss produces more constraints at higher value of &,
but the misses occur less frequently.

The results observed can be explained by a probabilistic model of the con-
straints produced by a set of cache traces. The attack algorithm takes a set of V
cache traces and uses it to produce constraints by eliminating impossible values
for pairs of key bytes, and then attempting to search for the key using those
constraints. The success rate of the attack given a time limit 7 should be well
predicted by the number of constraints produced. For any cache trace, a miss
occurs at position j with probability (1— i)j and produces j-256-§ constraints,

256
giving an expected value for the number of constraints as:

15
E(#constraints) = Z(l - 2156)] <j-256-6

j=1

6 8 16 32 64
E(#constraints)|[178,976(263,303|292,626| 204,235

This gives a rough explanation for the observed data, as samples are the most
useful in terms of constraint production at § = 32. However, the constraints
produced are not equally distributed but instead biased towards the earlier key
bytes, because the earlier cache accesses are more likely to be misses. This bias
is different for different values of §, however, as seen in Figure 2, higher values
of § are more biased towards constraining the earlier key bytes. This bias is
actually beneficial to the search, as values are guessed for the lower key bytes
first. Since there are more constraints on these bytes, the search tree is pruned
more quickly by assigning to these bytes, this is an application of the common
“most constraining variable” heuristic used in constraint satisfaction [RN95].

8 We model the accesses as independent random variables, which is reasonable because
the output ciphertext should appear random if the cipher is secure.

Due to this effect, the higher values of § perform better than the naive estimate
at constraint generation would predict.

20.00%

18.00%

16.00%

——5=8

—®—3=16

—A—3§=32
3=064

14.00%

12.00%

10.00%
8.00%
6.00%

4.00%

Expected % of constraints generated

0.00%

Woaw Durkn

Fig. 2. Bias towards constraints on lower key bytes

The relatively long “tail” in the success rate for § = 64 in Figure 1 can also be
explained by the random model. At & = 64, it is expected that a lower number of
misses will be observed in the available cache traces, but this will compensated
by the fact that each miss is more useful. For the higher key bytes the chance
of a miss is very low at 6 = 64. There is a binomial distribution of the expected
number of misses at each position. For § = 64, since the expected number of
misses is very low in the later positions, the number of samples needed is much
more variable. The absence of a few misses will greatly reduce the number of
constraints produced. In contrast, at lower é the number of misses expected is
high, so individual misses are less important and the success rate spikes quickly.

7 Robustness to a Partially pre-loaded cache

The above experiments and random model are based on the cache being clean
prior to encryption, although this assumption is not explicitly utilized. To simu-
late the effects of some table entries being pre-loaded into the cache, prior to the
encryption each table line can be marked as being loaded into the cache with a
probability o. As a baseline, we set 0 = 0 to simulate a totally clean cache, this
is the best case scenario for the attack. We simulated the effects of a partially
pre-loaded cache by varying the value of o used in the experiments. The results
were very similar to the above results, albeit requiring ﬁ times more samples
to achieve the same success rates. The reason for this is that the production of
constraints is decreased by ﬁ For any encryption operation in which some

lookup index I; does not collide with any of the previous lookups in the encryp-
tion, with probability ¢ the line accessed by [; was randomly pre-loaded into the
cache. In this case, the access is recorded as a false hit and its information is
lost to the attack. Thus, constraints are only retained with probability 1 — o, so
ﬁ times more traces must studied to obtain the same number of constraints
as the optimal case where o = 0.

This analysis indicates that the number of samples required is infinite as
o — 1. This is an obvious condition of the attack model, if every line of the
table is consistently in memory prior to encryption, the cache trace will be
nothing but hits (many of them false hits) and no useful information is gained.
Thus the attack, while not assuming a clean cache, will still fail if unless some
portion of the table is not pre-loaded. This suggests that pre-loading the cache
prior to encryption should be an effective countermeasure.

In order to try and get some of the table lines out of cache prior to encryption,
an attacker may be able to run specific code on the machine®, but more likely
will rely on code running in between encryptions to read in other data which
evicts the cache lines used by Tj4. In practice, this means it is unlikely that a
different, random portion of T will be in cache prior to each encryption. It is far
more likely that some certain subset of T4 is being evicted by the code running in
between encryptions, and that the same lines of Ty tend to get knocked out over
and over rather than different random lines. However, this is a problem because
of the randomness produced by the cipher. The worst possible case is if only one
line is out of memory prior to encryption, and it is the same line before every
encryption. Experimentally, the attack still succeeds in this situation, and the
performance numbers are indistinguishable from one random line being evicted
from cache. This indicates that even if only one line of cache is invalidated
between encryptions, the attack will still succeed. This scenario puts o at %,

meaning that the total number of samples required increases by 1% =9,
-

which not a serious impediment to the attack for § in the range 8-64.

8 Utilizing a Clean Cache Assumption

The attack can be strengthened if it is assumed that the cache is clean prior to
encryption, because information is then revealed by cache hits as well as cache
misses, this is then a very similar attack to the final round attack of Aciigmez
and Kog. Specifically, if we assume a clean cache and have a cache trace where
l; is a hit, we know that the cache line accessed by [; must be equal to a cache
line already accessed, that is, it must be that (I;) = (I;) for some 0 < i < j.
These constraints are powerful because they indicate only a small number of
possible values for ;. Unfortunately, these constraints are not as easy to work
with because they are not binary constraints as before, they are disjunctions
potentially involving all 16 unknown key bytes. If /; is a hit, it can be inferred
that (I;) = (lo) V (I;) = (l1) V-V (l;) = (lj-1).

9 Such methods are described by [OST06] and also [BMO06]

For the case of [, a hit does produce a binary constraint with ly, namely it
directly indicates that (lp) = (l1). This case can be added to the set of binary
constraints as discussed in Section 5.1.

For other hits, they do not produce binary constraints and must be treated
differently. Because a hit at lookup [; produces a constraint which only relates
to indices [; with ¢ < j, these constraints can be considered when guessing a new
value for kjl»o in the search, as described in Section 5.3. Because a guess will have
already been made for the bytes k%, ki°, ..., k%, the constraints based on hits
can be used to avoid making a guess for I; which is impossible.

Suppose the search algorithm is prepared to guess that kj° = z. For each
cache trace where [; is a hit, the value I = T, 'e; @ 2] is computed, this is
the lookup [; that would have occurred if the guess z is correct. Next, the set
of previous lookups in that trace lo,l1,...,l;—1 can be computed since guesses
have already been made for the key bytes k3%, k10, ..., k}.Bl. Specifically, if all of
the key guesses were correct than each previous lookup /; can be calculated as
T, '[e; @ k2C). I the guess 2 is correct, then it must be that (1Z) = (l;) for some
previous [;, so z is checked against each previous value. If no match is found,
than the guess z is incorrect and another guess must be tried.

In this way, the constraints can be used to identify incorrect guesses earlier
than would otherwise be possible, pruning significant portions of the search
tree. This enables the attack to succeed faster or with fewer samples under
a constant amount of search. To quantify this effect, the above approach was
implemented and run in experiments similar to those for the attack without
using hit information, with the same constant upper bound in the amount of
search performed. This improves the success rate, as can be seen by comparing
the experimental results in Figure 3 to those in Figure 1, and as summarized in
Table 8.

0.9 A
0.8
0.7
0.6
0.5

Success Rate

0.4
0.3 A
0.2
0.1

0 -

20

—-5=8
-#-5=16
—4—5 =32

d=064

30

40

50

of samples

60

70

80

90

100

Fig. 3. Success rate of attack for common values of §, with clean-cache assumption

6 = 8|6 = 16|50 = 32|6 = 64
Med. samples, no cache assumption 56 31 19 49
Med. samples, clean cache assumption|| 25 14 10 45

Table 1. Comparison of performance with or without a clean-cache assumption

It is also useful to compare the above results with the analysis provided by
Aciigmez and Kog of their own attacks. This data appears to fit in well with their
calculations, confirming both the accuracy of their model and the efficiency of
this formulation of the attack.

9 Countermeasures

Defending AES against side channel attacks in general is a daunting task. For
cache-trace attack based on power analysis, the best defense would be hardware-
based obfuscation of the encryption’s software’s cache accesses. This could take
the form of either designing a microprocessor to use a consistent amount of
power regardless of the operation it is performing, or at the minimum reducing
the power difference between cache hits and misses. Kocher concedes that it is
probably impractical to ever build a semiconductor-based processor which did
not leak information through its power usage [KJJ99]. It should be possible
to insert noise in the power usage graph by randomly using additional power.
This would probably be unacceptable in practice for many platforms for which
minimizing power usage is crucial, such as laptop computers and other portable
devices.

It has been suggested frequently that the encryption process obscure its cache
accesses by either adding random lookups or preloading all elements of the ta-
ble [Ber05,0ST06,BM06,AK06,BBM*06,BGNS06]. Pre-loading the table should
eliminate cache trace attacks as the cache trace would be all hits for the actual
encryption operation. This approach should slow down encryption by 30 — 50%,
which may make it impractical for widespread use.

Randomly performing cache lookups during the final round in between the
necessary lookups could also be effective against this attack if done properly. It is
important to note that if the random lookups occur at deterministic positions in
the lookup sequence, the attacker can simply ignore them, and the only effect will
be to decrease the number of misses and slow down the attack. It is not sufficient
that the addresses looked up are random, the lookups themselves must occur at
random points in the sequence so that an attacker cannot tell if a cache miss
in the sequence is a randomly added lookup or one of the necessary lookups.
Another approach would be to add no extra lookups, but randomly permute
the order lookups are performed within a round. Although it would come at a
performance cost, Brickell et al. astutely note that it is probably sufficient to
only protect the first and last rounds of encryption with such techniques, as the

lookups performed in the middle rounds are much more difficult to correlate
with ciphertext or plaintext data [BGNS06].

Another method, as discussed in [BMO06], is to eliminate the use of a special
T, table and instead re-use the previous four tables, each of which completely
contains the S-box values. This is an attractive defense because it comes at no
performance cost and would greatly reduce the number of constraints produced
by the cache trace attack. Unfortunately, this protection is not be possible for
the decryption routines since the inverse S-box table is not contained in any of
the decryption tables.

10 Conclusions

This paper has presented an approach to attacking AES given a small set of
cache traces by reduction to a simple constraint satisfaction problem. By not
assuming a clean cache, the attack is more robust than previous attacks. The
attack also demonstrates that such an attack is practical with a low number
of samples and requires computations which are easily performed on a desktop
computer.

If an attacker is able to gain access to the power consumption profile of a
target machine, presumably by physical access and inserting a monitoring device,
than this attack could be used for many malicious purposes. One example would
be hijacking the AES key used to encrypt data in an SSL session. This would be
likely if a target machine is encrypting a small number of packets, while doing
some unrelated work in between to evict some AES tables from memory. Another
possibility would be to attempt to recover the encryption key used in a target’s
encrypted file system, if the target is occasionally encrypting disk blocks.

A machine’s power consumption data is a high amount of information to give
to an attacker, but the fact it enables a relatively strong attack against AES
further illustrates that cached memory is fundamentally insecure and should be
avoided by future cryptographic primitives.

References

[ABDMO00] Mehdi-Laurent Akkar, Régis Bevan, Paul Dischamp, and Didier Moyart.
Power analysis, what is now possible.... In Advances in Cryptology—
ASIACRYPT 2000, pages 489-502, 2000.

[AKO6] Onur Aciigmez and Cetin Kaya Kog¢ Trace Driven Cache Attack on AES.
TACR Cryptology ePrint Archive, April 2006.

[BAKO98] Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpent: A new block
cipher proposal. In Fast Software Encryption 98, pages 222—238, 1998.

[BB05] David Brumley and Dan Boneh. Remote timing attacks are practical.
Computer Networks, 48(5):701-716, 2005.

[BBMT06] Guido Bertoni, Luca Breveglieri, Matteo Monchiero, Gianluca Palermo,
and Vittorio Zaccaria. AES Power Attack Based on Induced Cache Miss
and Countermeasure. International Conference on Information Technology:
Coding and Computing - ITCCO05, IEEE Computer Society, 2005.

[Ber05]

[BMO6]

[BGNSO6]

[DR9Y]

[DRO2]

[GMOO1]

[KJJ99]

[Koc96]

[KQ99)]

[KSWHO00]

[Lau05]

[Mac77]
[Mat97]

[NBB100]

[NSW06]
[NS06]
[0STO6]
[Pag02]
[Pag03]

[Pag05]

Daniel J. Bernstein. Cache-timing attacks on AES. April 2005.
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

Joseph Bonneau and Ilya Mironov. Cache-collision Timing Attacks Against
AES. April 2006. Workshop on Cryptographic Hardware and Embedded
Systems 2006.

Ernie Brickell and Gary Graunke and Michael Neve and Jean-Pierre Seifert.
Software mitigations to hedge AES against cache-based software side chan-
nel vulnerabilities. IACR, ePrint Archive, Report 2006/052, Feb 2006.
Joan Daemen and Vincent Rijmen. Resistance against implementation
attacks: A comparative study of the AES proposals. Second AES Candidate
Conference, February 1999.

Joan Daemen and Vincent Rijmen. The design of Rijndael: AES—the
advanced encryption standard. Springer-Verlag, 2002.

Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromag-
netic analysis: Concrete results. In Cryptographic Hardware and Embedded
Systems—CHES 2001, pages 251-261, 2001.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power anal-
ysis. In Advances in Cryptology—CRYPTO ’99, pages 388397, 1999.
Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Advances in Cryptology—CRYPTO ’96,
pages 104-113, 1996.

F. Koeune and J.-J. Quisquater. A timing attack against Rijndael. Tech-
nical Report CG-1999/1, June 1999.

John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side channel
cryptanalysis of product ciphers. Journal of Computer Security, 8(2/3),
2000.

Cedric Laradoux. Collision attacks on processors with cache and coun-
termeasures. Western European Workshop on Research in Cryptology—
WEWOoRC’05, C. Wolf, S. Lucks, and P.-W. Yau (editors), pp. 76-85, 2005.
Alan Mackworth Consistency in networks of relations Artificial Intelligence
8, 1977.

Mitsuru Matsui. New block encryption algorithm MISTY. In Fast Software
Encryption 97, pages 54-68, 1997.

J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin,
J. Foti, and E. Roback. Report on the development of
the Advanced Encryption Standard (AES). October 2000.
http://csre.nist.gov/CryptoToolkit /aes/round2 /r2report.pdf.

Michael Neve, Jean-Pierre Seifert, and Zhenghong Wang. A refined look at
Bernstein’s AES side-channel analysis. ASIACCS, p. 369, 2006.

Michael Neve and Jean-Pierre Seifert. Advances on access-driven cache
attacks on AES. In SAC’06, to appear.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and coun-
termeasures: the case of AES. In CT-RSA, pages 1-20, 2006.

Daniel Page. Theoretical use of cache memory as a cryptanalytic side-
channel. Technical Report CSTR-02-003, University of Bristol, April 2002.
Daniel Page. Defending against cache based side channel attacks. Technical
Report. Department of Computer Science, University of Bristol, 2003.
Daniel Page. Partitioned cache as a side-channel defense mechanism. TACR
Cryptology ePrint Archive, Report 2005/280, August 2005.

[Per05] Colin Percival. Cache missing for fun and profit. Presented at BSDCan 05,
2005. http://www.daemonology.net/hyperthreading-considered-harmful/.

[RNO5] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, Upper Saddle River, NJ, 1995.

[TSST03] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi
Miyauchi. Cryptanalysis of DES implemented on computers with cache. In
Cryptographic Hardware and Embedded Systems—CHES 2003, pages 62—
76, 2003.

[TTMMO2] Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Minematsu, and Hiroshi
Miyauchi. Cryptanalysis of block ciphers implemented on computers with
cache. In International Symposium on Information Theory and Applica-
tions 2002, pages 803—-806, 2002.

