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Abstract—In this letter, we consider the robust finite-horizon
filtering problem for a class of discrete time-varying systems
with missing measurements and norm-bounded parameter un-
certainties. The missing measurements are described by a binary
switching sequence satisfying a conditional probability distribu-
tion. An upper bound for the state estimation error variance is first
derived for all possible missing observations and all admissible
parameter uncertainties. Then, a robust filter is designed, guaran-
teeing that the variance of the state estimation error is not more
than the prescribed upper bound. It is shown that the desired filter
can be obtained in terms of the solutions to two discrete Riccati
difference equations, which are of a form suitable for recursive
computation in online applications. A simulation example is
presented to show the effectiveness of the proposed approach by
comparing to the traditional Kalman filtering method.

Index Terms—Kalman filtering, missing measurements, param-
eter uncertainty, robust filtering, time-varying systems.

I. INTRODUCTION

I T IS well known that filtering problems play an important
role in signal processing [1]. Various filtering schemes have

been proposed recently, such as robust filtering [8], [13], and
filtering [4]. In most existing literature, however, it is im-

plicitly assumed that the measurements always contain a true
signal, which may be corrupted by the noise. In fact, in prac-
tical applications, due to various reasons such as sensor tem-
poral failures and network data transmission delay or loss, the
measurement sequence may contain noise only. In other words,
the system may have missing measurements with probability
less than one [2], [3], [6].

The filtering problem with missing measurements was first
studied in [3] and [6], where the missing data were modeled by
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a binary switching sequence specified by a conditional proba-
bility distribution. Such a problem has recently stirred renewed
research interests since missing data phenomena become more
and more popular in today’s data-intensive engineering (e.g.,
networked control systems; see [5], [7], and [11]). For example,
in [9], [10], and [12], the filtering problem with missing data has
been investigated by using a jump Riccati equation approach.
The variance-constrained filtering problem has been considered
in [14] for discrete-time stochastic systems with probabilistic
missing measurements subject to norm-bounded parameter un-
certainties. The statistical convergence properties of Kalman
filter with missing measurements have been addressed in [11],
where a critical value has been shown to exist for the arrival rate
of the observations.

In this letter, along the lines of [3], [6], [11], and [14], we
model the missing measurements by a Bernoulli distributed
white sequence with a known conditional probability distribu-
tion. In [14], the robust stationary (infinite-horizon) filtering
problem has been discussed subject to missing measurements,
but the finite-horizon filter design case has not been considered.
Note that finite-horizon filters could provide a better transient
filtering performance if the noise inputs are nonstationary. In
[13], the robust finite-horizon filtering problem has been studied
thoroughly, but the missing measurement phenomenon has not
been taken into account. It is, therefore, our intention in this
letter to deal with the challenging problem: the finite-horizon
filtering problem for uncertain systems with missing measure-
ments.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following class of uncertain linear discrete time-
varying systems

(1)

where is a state vector, and is a zero mean
Gaussian white noise sequence with covariance . The
initial state has the mean and covariance . and
are known real time-varying matrices with appropriate dimen-
sions. is a real-valued uncertain matrix satisfying

(2)

Here, and are known time-varying matrices of appro-
priate dimensions, and represents the time-varying uncer-
tainties. The measurements, which may contain missing data,
are described by

(3)
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where the stochastic variable is a Bernoulli distributed
white sequence taking the values of 0 and 1 with

Prob (4)

Prob (5)

and is a known time-varying positive scalar. is a
measured output vector, is a zero mean Gaussian white
noise sequence with covariance , and is a known
time-varying matrix of appropriate dimension. For simplicity,
we assume that , and are mutually uncorrelated.

Remark 1: The system measurement mode (3), which can
be used to represent missing measurements or uncertain obser-
vations, was first introduced in [6] and has been subsequently
studied in many papers [11], [14]. On the other hand, Markovian
jumping systems have been employed to model the missing
phenomenon in [9], [10], and [12], and the filtering problem
has been investigated by solving several sets of coupled Riccati
equations. In this letter, we let the stochastic variable be
a Bernoulli sequence, and therefore, we are able to obtain more
practical solutions. For example, the algorithm developed in this
letter will not involve solving coupled matrix equations/inequal-
ities.

We consider the following filter for system (1)–(3):

(6)

where is the state estimate, and and are filter param-
eters to be determined.

The purpose of this letter is first to design finite-horizon filters
such that an upper bound for the estimation error variance is
guaranteed, that is, there exists a sequence of positive-definite
matrices satisfying

(7)

and then minimize such a bound in the sense of the matrix
norm, therefore obtaining the expected filter. This problem will
be referred to as a finite-horizon robust filtering problem.

III. UPPER BOUND FOR THE ERROR COVARIANCE

It is noted that the system (1)–(3) involves uncertain and sto-
chastic terms, and the accurate error covariance is impossible to
determine. Therefore, in this section, we aim to derive an upper
bound for the time-varying estimation error covariance. Define
a new state vector by

(8)

and then an augmented state-space model combining the system
(1)–(3) and the filter (6) can be expressed by

(9)

where

(10)

(11)

(12)

It is easy to see that the augmented system (9) is actually a
stochastic parameter system. The state covariance matrix of the
augmented system (9) is denoted by

(13)

Since is a zero-mean stochastic matrix sequence in (9),
we have the following Lyapunov equation that governs the evo-
lution of the covariance matrix from (9)

(14)

where

(15)

Before giving the upper bound for , we present two
lemmas.

Lemma 1: (Lemma 2 of [15]) Given matrices , and
with compatible dimensions such that . Let be a

positive definite matrix and be an arbitrary constant such
that ; then, we have

(16)

Lemma 2: (Lemma 3.2 of [13]) For , suppose
, and
. If there exists such that
and , then the solutions

and to the following difference equations

(17)

satisfy .
The following corollary can be obtained immediately from

Lemma 1 and (14), which provides a matrix recursive inequality
for computing the actual covariance.

Corollary 1: If there exists an such that
, then the following inequality holds:

(18)

Definition 1: The filter (6) is said to be a quadratic filter asso-
ciated with a sequence of matrices
if, for some positive scalars ), the sequence
satisfies

(19)

(20)

Remark 2: It will be shown in the sequel that, if we could
design a quadratic filter of the form (6), i.e., there exist positive
definite solutions to (19) and (20), then is an expected
upper bound, and a solution to the optimization problem can be
found. Hence, it is important to investigate the existence as well
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as the solving algorithm for the solution to the recursive matrix
equation (19).

From Definition 1 and Lemma 2, it is not difficult to obtain
the following theorem, which confirms that the solution to
(19) and (20) indeed provides an upper bound for the error co-
variance matrix in (14).

Theorem 1: Given and satisfying (14) and (19)–(20),
respectively. If , then we have

(21)

Furthermore, the following corollary is accessible from Def-
inition 1 and Theorem 1 readily.

Corollary 2: , the following inequality holds:

(22)

IV. FINITE-HORIZON FILTER DESIGN

Theorem 2: Let be a sequence of positive scalars.
If the following two discrete-time Riccati-like difference equa-
tions

(23)

and

(24)

have positive-definite solutions and such that

(25)

then there exists a quadratic filter (6) with parameters

(26)

and

(27)

where

(28)

such that the state estimation error variance satisfies bounded-
ness condition

(29)

Proof: Let us start with finding a solution to (19). Suppose
that is of the following form:

(30)

where and are defined in (23) and (24), respectively. De-
fine

(31)

and

(32)

The functional and satisfy the conditions in Lemma 2, hence,
and . From (25), it can also be verified that

(20) holds. Substituting (26), (27), and (30) into (19) and con-
sidering conditions (23) and (24), we can further show that (30)
is a solution to (19). Finally, from Corollary 2, we can conclude
that (29) holds. This ends the proof.

The following theorem shows that filter (6) with parameters
(26) and (27) is an optimal filter.

Theorem 3: If (23) and (24) have positive-definite solutions
and such that , then, the quadratic

filter (6) with parameters (26) and (27) minimizes the bound .
Proof: We give the sketch of the proof here. From (10),

(12), (19), and (30), we have

(33)

In order to find the optimal filter parameters and that
minimize , we take the first variation to (33) with respect
to and and obtain

(34)

and

(35)
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Fig. 1. Actual error variances for the first state.

Then, the filter parameters and in (26) and (27) can be
derived, respectively, by tedious manipulations on (34) and (35).
This completes the proof.

Remark 3: Theorems 2 and 3 provide the optimal filter de-
sign by optimizing the upper bound for state estimation error
variance. One-step ahead variance bound is optimized by se-
lecting the filter parameters and , as in (26) and (27),
under given scaling parameter . The optimization is step by
step by solving the Riccati-like difference equations (23) and
(24).

V. ILLUSTRATIVE EXAMPLE

In this section, we present an illustrative example to demon-
strate the effectiveness of the proposed algorithms.

Consider the following discrete time-varying uncertain
system with missing measurement

where is a deterministic perturbation matrix sat-
isfying , and both and are zero-mean Gaussian
white noise sequences with unity covariances. The stochastic
variable is a Bernoulli distributed white sequence taking
values on 0 and 1 with Prob .

We choose in this example. Using Theorem 2 under
the initial conditions of and , the filtering
performance is obtained by solving (23) and (24). In Figs. 1
and 2, we show the actual estimation error variances for the
first and second state, respectively, which are obtained by the
proposed method in this letter, and by the traditional Kalman
filtering method (without taking into account the parameter un-
certainties and measurement missing problem).

Fig. 2. Actual error variances for the second state.

It can be seen that the performance of our designed filter is
better than the typical Kalman filter in the presence of modeling
error and measurement missing, and the actual estimation error
variances for the states stay below their upper bounds.
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