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Abstract: Many practical systems can be modeled in terms of uncertainties, which refer to the
differences or errors between actual data and mathematical simulations. However, systems including
slight uncertainties and exogenous disturbances may lead to the instability of those systems. Besides,
the behavior of systems is preferable to investigate within a prescribed bound over a fixed time
interval. Therefore, in this paper, we study a robust finite-time control of discrete-time linear switched
positive time-varying delay systems with interval uncertainties and exogenous disturbance. A
distinctive feature of this research is that the considered systems consist of finite-time bounded
subsystems and finite-time unbounded subsystems. A class of quasi-alternative switching signals
is validly designed to analyze the mechanism and switching behaviors of the systems among their
subsystems. By utilizing a copositive Lyapunov–Krasovskii functional method combined with the
slow mode-dependent average dwell time and the fast mode-dependent average dwell time switching
techniques, new sufficient conditions containing several symmetric negative-definite matrices are
derived to guarantee robust finite-time control of the systems. These results are applied to a water-
quality controllability model in streams to the standard level. Finally, the consistent results between
the theoretical analysis and the corresponding numerical simulations are shown.

Keywords: robust finite-time control; discrete-time systems; switched positive systems; time-varying
delay; exogenous disturbance

1. Introduction

During the last decades, there has been a growing interest in the study of hybrid
systems. An essential example of analysis is the switched system, which consists of a finite
number of subsystems and a switching rule specifying the switching among the multiple
subsystems [1–3]. Considerations of switching behaviors and their applications are gener-
ally investigated in the community of mathematicians, scientists, and engineers. Especially,
switched positive systems (SPSs) comprising all individual positive subsystems have been
successfully applied and solved in many real-world problems, for instance, formation
flying [4], network communication [5], wireless power control [6], congestion control [7],
compartmental model [8], water-quality model [9], and positive circuit model [10].

In many actual systems, there exists a class of dynamical systems in which the future
evolution of the state variables relies not only on their present value but also on their
past values. The systems under this characteristic are called time-delay systems [11,12].
Numerous physical and biological phenomena can be discovered in the area of time-delay
systems, such as fluid and mechanical transmissions, metallurgical and chemical processes,
networked communications, stochastic models, and reproduction in an organism. How-
ever, the dynamic performance of systems caused by the time delay may lead to chaos
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and instability of systems [13–15]. For these reasons, it is meaningful to investigate the
stability and stabilization of systems, including time delay. In particular, stability problems
of discrete-time systems, discrete-time systems with time delay, and discrete-time switched
systems with time delay have been addressed in [16–18], respectively. Due to the complex
dynamics of switched systems with time delay and the existence of slight uncertainties in
the systems, the stability of these systems is not a trivial problem. Consequently, the robust
stability and stabilization problems of the switched systems including uncertainties have
been reported in several publications, for example, switched continuous-time systems [19],
switched discrete-time systems [20,21], stochastic switched discrete-time systems [22],
SPSs [5,23,24], and switched positive time-varying delay systems [25].

It is well known that stability analysis for dynamical systems in the concept of classical
Lyapunov stability is the study of the behavior of trajectories of systems over an infinite
time interval with small perturbations of initial conditions. A variety of the stability results
of dynamical systems and differential equations has been achieved theoretically and numer-
ically by many researchers [26–30]. Furthermore, stability theory and optimal control have
been studied and there is interest in them [31,32]. Different from the Lyapunov stability
concept, finite-time stability (FTS) requires that the state trajectories of the considered
systems do not exceed a certain bound during a fixed finite-time interval under some given
constraints of the initial condition [33–36]. Besides, the concept of FTS is extended to a
finite-time boundedness (FTB) if exogenous disturbances or the influence of perturbing
forces are taken into account together [37]. Therefore, both FTS and FTB problems on
switched systems with time delay as well as time-varying delay have drawn significant
attention in the field of control (see [38–42] and references therein).

A switching law plays a crucial role in the stability analysis of switched systems. Some
relevant research is based on the various types of time-dependent switching, such as dwell
time (DT), average dwell time (ADT), mode-dependent average dwell time (MDADT),
which is composed of both slow mode-dependent average dwell time (SMDADT) and fast
mode-dependent average dwell time (FMDADT), and so on. Accordingly, the switching
behaviors and the performance of switched systems, especially SPSs, under employing
appropriate switching rules and some constraints of operation time have been investigated
and reviewed in the following. In [43], Zhao et al. dealt with the problem of stability for a
class of SPSs with time delay. Meanwhile, the sufficient conditions which can guarantee
the L1 FTB of SPSs with time-varying delay were derived by Xiang et al. [44]. Later, the
results obtained by [45] concerned with finite-time stabilization for a class of uncertain
SPSs with time-varying delays. Next, Liu et al. [46] studied FTB, stabilization and L2-gain
for SPSs with multiple time delays. All the results mentioned above used the method
of ADT switching. Depending on the MDADT approach, the static output-feedback L1
finite-time control problem for SPSs with time-varying delay was investigated in [47]. The
same method of MDADT switching was also utilized in the stability study of SPSs with
time delay discussed by Liu et al. [48]. For discrete-time SPSs, in [49], Hernandez-Vargas
et al. presented the results for the synthesis of stabilizing, guaranteed performance, and
optimal control laws for the systems. Their results were applied to a simplified human im-
munodeficiency viral mutation model. In [50], Zhang et al. provided sufficient conditions
to ensure the FTS and FTB of discrete-time SPSs by using the ADT strategy. In addition,
they solved the problem of robust finite-time stabilization of nonautonomous systems with
a weighted L1-gain. Furthermore, the exponential stability issue for a class of discrete-time
SPSs with time delay via the ADT approach was examined in [51].

On the other hand, all the research referred to above was mainly focused on only stable
(bounded) subsystems. In practical applications, the switched systems, including the stable
(bounded) subsystems and unstable (unbounded) subsystems, can be widely implemented
(see [52–58]). Among them, in [52], Li et al. discussed the FTS and FTB issues of nonlinear
switched systems with subsystems that are not finite-time stable or finite-time bounded by
using ADT switching. Later, Tan et al. [53] dealt with the FTS and FTB problems of switched
systems comprising both finite-time stable and unstable subsystems by utilizing MDADT
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switching. Recently, sufficient conditions in terms of multiple Lyapunov functions for FTS
of a class of hybrid systems with unstable modes were presented by Garg and Panagou [54].
Nevertheless, both the time delay phenomena and the positivity of the systems were not
taken into account in the three mentioned references. For the stability analysis, the result
of nonlinear switched time-delay systems, including stable and unstable subsystems, was
reported in [55]. Next, Pashaei and Hashemzadeh [56] solved the problem of FTS and FTB
for linear switched delayed systems with finite-time unstable and unbounded subsystems
by employing ADT switching. More recently, Mouktonglang and Yimnet [59] studied the
FTB of linear uncertain switched positive time-varying delay systems with finite-time un-
bounded subsystems and exogenous disturbance by using MDADT switching. In addition
to continuous-time switched systems, some fruitful results about discrete-time switched
systems have been stated as follows. In [57], Gao et al. investigated the FTS and FTB
for a class of discrete-time switched nonlinear systems with partial finite-time unstable
subsystems via the MDADT approach. In addition, the stability problem for discrete-time
nonlinear SPSs with unstable modes under different switching signals was studied by
Zhang et al. [58]. However, to the best of our knowledge, there is no result on the FTB for a
class of discrete-time SPSs, including time-varying delay, interval uncertainties, exogenous
disturbance, and finite-time unbounded subsystems in the literature.

The motivation for this article comes from the above observation. The main innovative
contributions of this study are proposed in the following:

(i) The stability of discrete-time SPSs with time-varying delay, interval uncertainties,
and exogenous disturbance is analyzed in the sense of the FTB when their subsystems are
both bounded and unbounded subsystems.

(ii) The new copositive Lyapunov–Krasovskii functional (CLKF) and a class of quasi-
alternative switching signals (QASSs) are perfectly designed to stabilize the systems during
the fixed finite-time interval.

(iii) Combining the SMDADT and FMDADT switching laws, novel delay-dependent
sufficient criteria (DDSC) containing several symmetric negative-definite matrices for the
FTB of the systems are derived. This is an efficient method to deal with the case that
subsystems are not just bounded.

(iv) Different from the previous results in [43,46,50,52,55,56], both the SMDADT and
FMDADT laws that are less conservative and more applicable in practice than the ADT
switching rule are utilized for studying the FTB of the systems.

(v) The water-quality controllability model in streams studied in [2,3,9] is adopted to
match the discrete-time switched positive time-varying delay system with interval uncer-
tainties and exogenous disturbance. In addition, the problem of water-quality control to
standard level in the finite-time interval is investigated by this system.

The paper is organized in the following manner. In the next section, the system de-
scriptions and preliminaries are stated. Then, in Section 3, the main results are shown.
Next, in Section 4, a numerical example is presented to support and validate our theoretical
results. Lastly, the discussion and conclusions are given in Section 4.

Notations: The following notations are utilized throughout this article. The sets of
non-negative and positive integers are denoted by N0 and N, respectively. Rn and Rn

+ refer
to the vectors of n-tuples of real and positive real numbers, respectively. The set of all m× n
real matrices is represented by Rm×n. In and AT are the n× n dimensional identity matrix
and the transpose of matrix A, respectively. For given vector ν ∈ Rn, νi (1 ≤ i ≤ n) is the
ith component of ν. The notation ν � 0 (ν � 0) stands for non-negative (positive) vector,
namely, all components of vector ν are non-negative (positive). β(ν) and β(ν) denote the
maximal and minimal elements of vector ν ∈ Rn, respectively. 1n = [1 1 ... 1]T ∈ Rn. The
matrix A is called non-negative if all entries are non-negative and defined by A � 0. In
addition, ‖ν‖1 = ∑n

i=1 |νi| and ‖A‖1 = max1≤j≤n ∑m
i=1 |aij| are the 1-norm of vector ν ∈ Rn

and the 1-norm of matrix A ∈ Rm×n, respectively.
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2. System Descriptions and Preliminaries

A class of discrete-time linear switched time-varying delay system with interval
uncertainties and exogenous disturbance can be stated as{

x(k + 1) = Aσ(k)x(k) + Dσ(k)x(k− d(k)) + Gσ(k)ω(k),
x(k0 + θ) = ψ(θ), θ = −d2,−d2 + 1, ..., 0,

(1)

where x(k) ∈ Rn is the state vector, σ(k) : N0 → N = {1, 2, ..., N} is the switching signal,
and N > 1 is the number of subsystems or modes of the switched system. Given the
switching signal σ(k), we denote the set of switching moments by {km : km ∈ N0} where
k0 is the initial time and km < km+1 for m ∈ N0. For two successive switching moments km
and km+1, we impose that σ(k− 1) = σ(km − 1) = j and σ(k) = σ(km) = i, where j, i ∈ N,
and the σ(km)th subsystem is activated when k ∈ [km, km+1). Based on the logical rule of
σ(k) at km, system (1) switches from the jth subsystem to the ith subsystem. For being the
interval uncertain of system (1), Ai, Di, and Gi satisfy

Ai � Ai � Ai,

Di � Di � Di,

and
Gi � Gi � Gi,

where Ai, Di, Gi, Ai, Di, and Gi are the given constant system matrices with appropriate
dimensions for all i ∈ N. The time-varying delay d(k) : N0 → N satisfying

0 < d1 ≤ d(k) ≤ d2, ∀k ∈ N0,

where d1 and d2 are positive integers. As mentioned in [36,50], the exogenous disturbance
ω(k) ∈ Rw satisfying the condition

∃ρ > 0 :
K f

∑
k=0
‖ω(k)‖1 ≤ ρ, (2)

with a given time constant K f ∈ N. Moreover, ψ(· ) : {−d2,−d2 + 1, ..., 0} → Rn is a given
discrete vector-valued initial state with the norm ‖ψ‖d = maxθ∈{−d2,−d2+1,...,0} ‖ψ(θ)‖1.

Remark 1. The discrete-time linear switched system with time-varying delay and exogenous
disturbance (1) and its system descriptions were studied in [2,3,9]. However, the authors did not
consider the interval uncertain of system (1).

The following definitions, lemma, and assumption are useful to derive the main results
of the work.

Definition 1 ([47]). System (1) is said to be positive if for any initial condition ψ(θ) � 0, θ =
−d2,−d2 + 1, ..., 0 for any exogenous disturbance ω(k) � 0, and for any switching signal σ(k),
the corresponding trajectory x(k) � 0 holds for all k ∈ N0.

Lemma 1 ([47]). System (1) is positive if and only if Ai � 0, Di � 0, and Gi � 0 hold for all
i ∈ N.

Assumption 1 ([5,25]). For each Ai, Di, and Gi in system (1) there are the known constant
matrices Ai � 0, Di � 0, and Gi � 0, such that Ai ∈ [Ai, Ai], Di ∈ [Di, Di], and Gi ∈
[Gi, Gi], where Ai, Di, Gi, Ai, Di, and Gi are the given constant system matrices with appropriate
dimensions for all i ∈ N.
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Definition 2 (Finite-Time Boundedness [46]). Given two positive constants c1, c2 with c1 < c2,
the time constant K f , a positive vector l, and a switching signal σ(k). System (1) is said to be
finite-time bounded with respect to (c1, c2, K f , l, ρ, σ(k)) if the solution x(k) of the system satisfies
the condition:

maxθ∈{−d2,−d2+1,...,0} ψT(θ)l ≤ c1 =⇒ xT(k)l < c2, ∀k = 1, 2, ..., K f ,

where ω(k) satisfies inequality (2).

The finite set N is divided into B and U; namely, N = B ∪U where B = {1, 2, ..., B}
represents the set of finite-time bounded subsystems with respect to the required parameters
(c1, c2, K f , l, ρ, σ(k)), and U = {B + 1, ..., N} denotes the set of finite-time unbounded
subsystems with respect to the same required parameters (c1, c2, K f , l, ρ, σ(k)), respectively.
In addition, let Ω be the set of switching signals which has only a finite number of switching
for any finite-time interval.

The definitions of both the SMDADT and FMDADT switching laws are stated
as follows:

Definition 3 ([53]). For any K ≥ k ≥ 0 and a switching signal σ(k) ∈ Ω, let Nσp(K, k) be the
number of times the pth subsystem is activated and Tp(K, k) be the total running time of the pth
subsystem, p ∈ B. If there exist constants N0p ≥ 0 and τap > 0 satisfying

Nσp(K, k) ≤ N0p +
Tp(K, k)

τap
, ∀K ≥ k ≥ 0, (3)

then τap is called the SMDADT of the switching signal σ(k).

Definition 4 ([53]). For any K ≥ k ≥ 0 and a switching signal σ(k) ∈ Ω, let Nσq(K, k) be the
number of times the qth subsystem is activated and Tq(K, k) be the total running time of the qth
subsystem, q ∈ U. If there exist constants N0q ≥ 0 and τaq > 0 satisfying

Nσq(K, k) ≥ N0q +
Tq(K, k)

τaq
, ∀K ≥ k ≥ 0, (4)

then τaq is called the FMDADT of the switching signal σ(k).

3. Main Results

In this section, the problem of the FTB for the uncertain system (1) with exogenous
disturbance and partial finite-time unbounded subsystems is studied. Inspired by the idea
in [40,53,59], a class of QASSs for the uncertain system (1) is designed as follows:

(a) If σ(km) ∈ B, then σ(km+1) ∈ N;
(b) If σ(km) ∈ U, then σ(km+1) ∈ B.

The mechanism of the above switching is that the system can switch from a finite-time
bounded subsystem to any other subsystems. However, it cannot switch from a finite-time
unbounded subsystem to another finite-time unbounded subsystem. To compensate for
the state divergence caused by the unbounded subsystems and stabilize the system in the
finite-time interval, the slow switching for the bounded subsystems and the fast switching
for the unbounded subsystems are designed and applied reasonably. Now, the new DDSC
for the FTB of the uncertain system (1) with finite-time bounded and finite-time unbounded
subsystems are derived by using QASSs above and combining the SMDADT and FMDADT
switching laws in the following theorem.

Theorem 1. Consider the uncertain system (1) with exogenous disturbance and partial finite-time
unbounded subsystems satisfying Assumption 1. Let γp > 1, µp > 1, p ∈ B, γq > 1, 0 < µq <
1, and q ∈ U be the constants. For the given constants c2 > c1 > 0, the time constant K f > 0
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and the vector l � 0. Suppose that there exist positive vectors νp � 0 and νq � 0 and constants
ξp > 0, ξq > 0, βp > 0, and βq > 0, such that[

AT
p + (d2 − d1 + 1)D̃T − γp In

]
νp ≺ 0, (5)[

AT
q + (d2 − d1 + 1)D̃T − γq In

]
νq ≺ 0, (6)

GT
p νp − ξp1w ≺ 0, (7)

GT
q νq − ξq1w ≺ 0, (8)

βpl � νp � µpνr, (9)

βql � νq � µqνp, (10)

ΓK f <
βc2

ηc1 + ξρ
, (11)

hold for every p ∈ B, q ∈ U, r ∈ N, and p 6= r. Then, the uncertain system (1) is positive
and finite-time bounded with respect to (c1, c2, K f , l, ρ, σ(k)) under the switching signals with
SMDADT satisfying

τap ≥ τ∗ap =
K f ln µp

ln βc2
ηc1+ξρ − K f ln γp

, ∀p ∈ B, (12)

and FMDADT satisfying

τaq ≤ τ∗aq = −
ln µq

ln γq
, ∀q ∈ U, (13)

where

Γ = max
p∈B
{γp}, β = min

p∈B,q∈U
{βp, βq}, ξ = max

p∈B,q∈U
{ξp, ξq}, η =

β(νσ(0))

β(l)

[
1+d2(d2−d1+1)‖D̃T‖1

]
,

and
D̃ =

(
dkl

)
∈ Rn×n, dkl = max

i∈N

{
D(kl)

i

}
,

D(kl)
i is the kth row and lth column entry of system matrices Di, i ∈ N.

Proof. We divide the proof process into the following two steps.
Step 1. We prove that the uncertain system (1) is positive.
Using Assumption 1, we obtain that Ai � 0, Di � 0, and Gi � 0 for all i ∈ N.

According to Lemma 1, we can conclude that the uncertain system (1) is positive.
Step 2. We prove the FTB for the uncertain system (1) under the switching signals

with SMDADT satisfying condition (12) and FMDADT satisfying condition (13).
For any K f > 0, we denote k1, k2, ..., km, km+1, ..., kNσ(K f ,0) the switching moments over

the interval [0, K f ] where kNσ(K f ,0) = k∑p∈B Nσp(K f ,0)+∑q∈U Nσq(K f ,0) and K f = ∑p∈B Tp(K f , 0)+

∑q∈U Tq(K f , 0). For k ∈ [km, km+1), m ∈ N0, we construct the following CLKF candidate
for system (1):

Vσ(k)(k) = xT(k)νσ(k) +
−d1

∑
s=−d2

k−1

∑
h=k+s

xT(h)D̃Tνσ(k), (14)
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where νσ(k) � 0, σ(k) ∈ Ω. Along the trajectory of the uncertain system (1), we have

Vσ(km)(k+1) = xT(k)AT
σ(km)νσ(km) + xT(k−d(k))DT

σ(km)νσ(km) + ωT(k)GT
σ(km)νσ(km)

+
−d1

∑
s=−d2

k

∑
h=k+1+s

xT(h)D̃Tνσ(km)

≤ xT(k)AT
σ(km)νσ(km) + xT(k−d(k))DT

σ(km)νσ(km) + ωT(k)GT
σ(km)νσ(km)

+
−d1

∑
s=−d2

k

∑
h=k+1+s

xT(h)D̃Tνσ(km),

for k ∈ [km, km+1), m ∈ N0. We observe that

Vσ(km)(k+1)−γσ(km)Vσ(km)(k)

≤ xT(k)AT
σ(km)νσ(km) + xT(k−d(k))DT

σ(km)νσ(km) + ωT(k)GT
σ(km)νσ(km)

+
−d1

∑
s=−d2

(
k−1

∑
h=k+1+s

xT(h)D̃Tνσ(km) + xT(k)D̃Tνσ(km)

)

− γσ(km)x
T(k)νσ(km) − γσ(km)

−d1

∑
s=−d2

k−1

∑
h=k+s

xT(h)D̃Tνσ(km)

< xT(k)AT
σ(km)νσ(km) + xT(k−d(k))DT

σ(km)νσ(km) + ωT(k)GT
σ(km)νσ(km)

+
−d1

∑
s=−d2

(
k−1

∑
h=k+1+s

xT(h)D̃Tνσ(km) + xT(k)D̃Tνσ(km)

)

− γσ(km)x
T(k)νσ(km) −

−d1

∑
s=−d2

(
xT(k+s)D̃Tνσ(km)+

k−1

∑
h=k+1+s

xT(h)D̃Tνσ(km)

)
= xT(k)AT

σ(km)νσ(km) + xT(k−d(k))DT
σ(km)νσ(km) + ωT(k)GT

σ(km)νσ(km)

+ (d2 − d1 + 1)xT(k)D̃Tνσ(km) − γσ(km)x
T(k)νσ(km) −

−d1

∑
s=−d2

xT(k+s)D̃Tνσ(km),

for k ∈ [km, km+1), m ∈ N0. From Dσ(tm) � D̃ for all σ(tm) ∈ N, one has

Vσ(km)(k+1)− γσ(km)Vσ(km)(k) ≤ xT(k)
[

AT
σ(km)νσ(km) + (d2 − d1 + 1)D̃Tνσ(km) − γσ(km)νσ(km)

]
+ ωT(k)GT

σ(km)νσ(km),

for k ∈ [km, km+1), m ∈ N0. According to the conditions (5) and (6), we obtain

Vσ(km)(k+1)− γσ(km)Vσ(km)(k) ≤ ωT(k)GT
σ(km)νσ(km), (15)

for k ∈ [km, km+1), m ∈ N0. Substituting the conditions (7) and (8) into the inequality (15),
it yields

Vσ(km)(k+1)− γσ(km)Vσ(km)(k) ≤ ξωT(k)1w, (16)

for k ∈ [km, km+1), m ∈ N0, and ξ=maxp∈B,q∈U{ξp, ξq}.
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Considering the change in the value of the CLKF (14) at the switching moments and
the positivity of x(k) in the uncertain system (1). According to the condition (9), we get

Vp(km) = xT(km)νp +
−d1

∑
s=−d2

km−1

∑
h=km+s

xT(h)D̃Tνp

≤ xT(k−m)µpνr +
−d1

∑
s=−d2

k−m−1

∑
h=k−m+s

xT(h)D̃Tµpνr

= µpVr(k−m), (17)

for all p ∈ B, r ∈ N, and p 6= r. Similarly, using the condition (10), we have

Vq(km) ≤ µqVp(k−m), (18)

for all q ∈ U, p ∈ B. Suppose a switching time sequence 0 ≤ k0 < k1 < k2 < · · · and
for every K f ∈ N there exists a constant m ∈ N0 such that K f ∈ [km, km+1). From the
inequality (16), we have

Vσ(km)(K f ) ≤ γσ(km)Vσ(km)(K f − 1) + ξωT(K f − 1)1w.

That is,
Vσ(km)(K f ) ≤ γσ(km)Vσ(km)(K f − 1) + ξ‖ω(K f − 1)‖1.

Furthermore, it follows that

Vσ(km)(K f ) ≤ γ2
σ(km)Vσ(km)(K f − 2) + ξγσ(km)‖ω(K f − 2)‖1 + ξ‖ω(K f − 1)‖1

≤ · · ·

≤ γ
K f−km

σ(km)
Vσ(km)(km) + ξ

K f−1

∑
s=km

γ
K f−1−s
σ(km)

‖ω(s)‖1. (19)

At the switching moment km, according to (17) and (18), we can obtain

Vσ(km)(K f ) ≤ γ
K f−km

σ(km)
µσ(km)Vσ(km−1)(k

−
m) + ξ

K f−1

∑
s=km

γ
K f−1−s
σ(km)

‖ω(s)‖1. (20)

In fact, σ(km − 1) = σ(km−1). then,

Vσ(km)(K f ) ≤ µσ(km)γ
K f−km

σ(km)
Vσ(km−1)

(k−m) + ξ

K f−1

∑
s=km

γ
K f−1−s
σ(km)

‖ω(s)‖1. (21)

Together with the inequalities (19) and (21), we obtain

Vσ(km)(K f ) ≤ µσ(km)γ
K f−km

σ(km)

[
γ

km−km−1
σ(km−1)

Vσ(km−1)
(km−1) + ξ

km−1

∑
s=km−1

γkm−1−s
σ(km−1)

‖ω(s)‖1

]

+ ξ

K f−1

∑
s=km

γ
K f−1−s
σ(km)

‖ω(s)‖1. (22)
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Based on the relationship among the inequalities (19)–(22), we can derive

Vσ(km)(K f )

≤ µσ(km)µσ(km−1)
γ

K f−km

σ(km)
γ

km−km−1
σ(km−1)

γ
km−1−km−2
σ(km−2)

Vσ(km−2)
(km−2)

+ µσ(km)µσ(km−1)
γ

K f−km

σ(km)
γ

km−km−1
σ(km−1)

ξ
km−1−1

∑
s=km−2

γ
km−1−1−s
σ(km−2)

‖ω(s)‖1

+ µσ(km)γ
K f−km

σ(km)
ξ

km−1

∑
s=km−1

γkm−1−s
σ(km−1)

‖ω(s)‖1 + ξ

K f−1

∑
s=km

γ
K f−1−s
σ(km)

‖ω(s)‖1

≤ · · ·

≤ µσ(km)µσ(km−1)
· · · µσ(k1)

γ
K f−km

σ(km)
γ

km−km−1
σ(km−1)

γ
km−1−km−2
σ(km−2)

· · · γk1−k0
σ(k0)

Vσ(k0)
(k0)

+ µσ(km)µσ(km−1)
· · · µσ(k1)

γ
K f−km

σ(km)
γ

km−km−1
σ(km−1)

· · · γk2−k1
σ(k1)

ξ
k1−1

∑
s=k0

γk1−1−s
σ(k0)

‖ω(s)‖1

+ µσ(km) · · · µσ(k2)
γ

K f−km

σ(km)
· · · γk3−k2

σ(k2)
ξ

k2−1

∑
s=k1

γk2−1−s
σ(k1)

‖ω(s)‖1 + ξ

K f−1

∑
s=k2

γ
K f−1−s
σ(k2)

‖ω(s)‖1

≤ µσ(km)µσ(km−1)
· · · µσ(k1)

γ
K f−km

σ(km)
γ

km−km−1
σ(km−1)

γ
km−1−km−2
σ(km−2)

· · · γk1−k0
σ(k0)

Vσ(k0)
(k0)

+ µσ(km)µσ(km−1)
· · · µσ(k1)

γ
K f−km

σ(km)
γ

km−km−1
σ(km−1)

· · · γk2−k1
σ(k1)

ξγk1−k0
σ(k0)

k1−1

∑
s=k0

‖ω(s)‖1

+ µσ(km) · · · µσ(k2)
γ

K f−km

σ(km)
· · · γk3−k2

σ(k2)
ξγk2−k1

σ(k1)

k2−1

∑
s=k1

‖ω(s)‖1 + ξγ
K f−k2

σ(k2)

K f−1

∑
s=k2

‖ω(s)‖1.

Without loss of generality, we impose that k0 = 0. It yields that

Vσ(km)(K f )

≤ ∏
p∈B

µ
Nσp(K f ,0)
p ∏

q∈U
µ

Nσq(K f ,0)
q e(K f−km) ln γσ(km)+∑m

s=1(ks−ks−1) ln γσ(ks−1)Vσ(0)(0)

+ ∏
p∈B

µ
Nσp(K f ,0)
p ∏

q∈U
µ

Nσq(K f ,0)
q e(K f−km) ln γσ(km)+∑m

s=1(ks−ks−1) ln γσ(ks−1)ξ
k1−1

∑
s=0
‖ω(s)‖1

+ ∏
p∈B

µ
Nσp(K f ,0)
p ∏

q∈U
µ

Nσq(K f ,0)
q e(K f−km) ln γσ(km)+∑m

s=2(ks−ks−1) ln γσ(ks−1)ξ
k2−1

∑
s=k1

‖ω(s)‖1

+ ∏
p∈B

µ
Nσp(K f ,0)
p ∏

q∈U
µ

Nσq(K f ,0)
q e(K f−k2) ln γσ(k2)ξ

K f−1

∑
s=k2

‖ω(s)‖1

≤ ∏
p∈B

µ
Nσp(K f ,0)
p ∏

q∈U
µ

Nσq(K f ,0)
q e[∑p∈B Tp(K f ,0) ln γp+∑q∈U Tq(K f ,0) ln γq]Vσ(0)(0)

+ ∏
p∈B

µ
Nσp(K f ,0)
p ∏

q∈U
µ

Nσq(K f ,0)
q e[∑p∈B Tp(K f ,0) ln γp+∑q∈U Tq(K f ,0) ln γq]ξ

K f−1

∑
s=0
‖ω(s)‖1.

According to a property of the exogenous disturbance in (2), it is immediate that

Vσ(km)(K f ) ≤ ∏
p∈B

µ
Nσp(K f ,0)
p ∏

q∈U
µ

Nσq(K f ,0)
q e[∑p∈B Tp(K f ,0) ln γp+∑q∈U Tq(K f ,0) ln γq]Vσ(0)(0)

+ ∏
p∈B

µ
Nσp(K f ,0)
p ∏

q∈U
µ

Nσq(K f ,0)
q e[∑p∈B Tp(K f ,0) ln γp+∑q∈U Tq(K f ,0) ln γq]ξρ.
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Without loss of generality, we can select the constants in (3) and (4) satisfying N0p = 0
and N0q = 0, for all p ∈ B, q ∈ U. Thus, we have

Vσ(km)(K f ) ≤ ∏
p∈B

µ

Tp(K f ,0)
τap

p ∏
q∈U

µ

Tq(K f ,0)
τaq

q e[∑p∈B Tp(K f ,0) ln γp+∑q∈U Tq(K f ,0) ln γq]Vσ(0)(0)

+ ∏
p∈B

µ

Tp(K f ,0)
τap

p ∏
q∈U

µ

Tq(K f ,0)
τaq

q e[∑p∈B Tp(K f ,0) ln γp+∑q∈U Tq(K f ,0) ln γq]ξρ

= e∑p∈B

( ln µp
τap +ln γp

)
Tp(K f ,0)

e∑q∈U

( ln µq
τaq +ln γq

)
Tq(K f ,0)

Vσ(0)(0)

+ e∑p∈B

( ln µp
τap +ln γp

)
Tp(K f ,0)

e∑q∈U

( ln µq
τaq +ln γq

)
Tq(K f ,0)

ξρ.

It can be derived from the inequality (13) that

e∑q∈U

( ln µq
τaq +ln γq

)
Tq(K f ,0) ≤ 1,

for all q ∈ U. Thus, we obtain

Vσ(km)(K f ) ≤ e∑p∈B

( ln µp
τap +ln γp

)
Tp(K f ,0)

(
Vσ(0)(0) + ξρ

)
. (23)

Using CLKF (14), the conditions (9), (10), and Definition 2 for the following estimations:

Vσ(km)(K f ) ≥ xT(K f )νσ(km)

≥ xT(K f )βl,

where β = minp∈B,q∈U{βp, βq}, and

Vσ(0)(0) = xT(0)νσ(0) +
−d1

∑
s=−d2

−1

∑
h=s

xT(h)D̃Tνσ(0)

≤
β(νσ(0))

β(l)
xT(0)l + d2(d2−d1+1)

β(νσ(0))

β(l)
‖D̃T‖1 max

s∈{−d2,−d2+1,...,0}
xT(s)l

≤ ηc1,

where η =
β(νσ(0))

β(l)

[
1+d2(d2−d1+1)‖D̃T‖1

]
. From the inequality (23), we obtain

xT(K f )l ≤
(

ηc1 + ξρ

β

)
e∑p∈B

( ln µp
τap +ln γp

)
Tp(K f ,0)

. (24)

Let ε = maxp∈B

(
ln µp
τap

+ ln γp

)
. Hence,

xT(K f )l ≤
(

ηc1 + ξρ

β

)
eεK f . (25)

It follows from the condition (11) and the inequality (12) that

εK f = max
p∈B

(K f ln µp

τap
+ K f ln γp

)
< ln

(
βc2

ηc1 + ξρ

)
. (26)
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Utilizing the inequalities (25) and (26), we arrive at

xT(K f )l < c2.

Similarly, we can have
xT(k)l < c2,

for all k = 1, 2, ..., K f . It can be concluded by Definition 2 that the uncertain system (1) is
finite-time bounded with respect to (c1, c2, K f , l, ρ, σ(k)) for the switching signal σ(k) with
SMDADT (12) and FMDADT (13).

Remark 2. In Theorem 1, our switching scheme not only gives the lower bounds that the bounded
subsystems should dwell on but also provides the upper bounds for the unbounded subsystems.

Remark 3. In order to obtain the feasible positive vectors νp, νq, positive constants ξp, ξq, βp, βq,
the SMDADT τap, and the FMDADT τaq guaranteeing the FTB of the uncertain system (1), an
algorithm is provided as follows:
Step 1: Determine whether Ai � 0, Di � 0, and Gi � 0 for all i ∈ N, where these constant
matrices are defined in Assumption 1, to ensure the positivity of the uncertain system (1);
Step 2: Choose the positive integers d1 and d2 from the given time-varying delay d(k) and set the
initial condition ψ(θ) � 0, where θ = −d2,−d2 + 1, ..., 0;
Step 3: Choose the time constant K f and compute the positive constant ρ from the condition of the
exogenous disturbance defined as in (2);
Step 4: Construct the matrix D̃ defined in Theorem 1;
Step 5: Choose the parameters γp > 1, µp > 1, p ∈ B, γq > 1, 0 < µq < 1, and q ∈ U, the
positive constants c1 < c2, and the positive vector l satisfying maxθ∈{−d2,−d2+1,...,0} ψT(θ)l ≤ c1;
Step 6: Determine a feasibility of (5)–(10) by using some available algorithms such as the LP
toolbox in Matlab. Then, we can obtain the feasible positive vectors νp, νq and positive constants
ξp, ξq, βp, βq for every p ∈ B, q ∈ U;
Step 7: Calculate the positive constants β, ξ, Γ, and η;
Step 8: Determine whether (11) is satisfied or not. If it is satisfied, then the values τ∗ap and τ∗aq can
be obtained by (12) and (13), respectively. Thus, we can estimate the values τap and τaq, which
ensure that switching system (1) is the FTB. Otherwise, we repeat Step 5 to obtain a proper value of
c2. Then, we determine whether (11) is satisfied or not.

Next, another FTB result of system (1) without its interval uncertainty is presented
as follows:

Corollary 1. Consider system (1) with exogenous disturbance. Let γp > 1, µp > 1, p ∈ B, γq >
1, 0 < µq < 1, and q ∈ U be the constants. For the given constants c2 > c1 > 0, the time
constant K f > 0, and the vector l � 0. Suppose that there exist positive vectors νp � 0, νq � 0
and constants ξp > 0, ξq > 0, βp > 0, and βq > 0, such that[

AT
p + (d2 − d1 + 1)DT − γp In

]
νp ≺ 0,[

AT
q + (d2 − d1 + 1)DT − γq In

]
νq ≺ 0,

GT
p νp − ξp1w ≺ 0,

GT
q νq − ξq1w ≺ 0,

βpl � νp � µpνr,

βql � νq � µqνp,

ΓK f <
βc2

ηc1 + ξρ
,
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hold for every p ∈ B, q ∈ U, r ∈ N, p 6= r. Then system (1) is positive and finite-time bounded
with respect to (c1, c2, K f , l, ρ, σ(k)) under the switching signals with SMDADT satisfying

τap ≥ τ∗ap =
K f ln µp

ln βc2
ηc1+ξρ − K f ln γp

, ∀p ∈ B,

and FMDADT satisfying

τaq ≤ τ∗aq = −
ln µq

ln γq
, ∀q ∈ U,

where

Γ = max
p∈B
{γp}, β = min

p∈B,q∈U
{βp, βq}, ξ = max

p∈B,q∈U
{ξp, ξq}, η =

β(νσ(0))

β(l)

[
1+d2(d2−d1+1)‖DT‖1

]
,

and
D = (dkl) ∈ Rn×n, dkl = max

i∈N

{
D(kl)

i

}
,

D(kl)
i is the kth row and lth column entry of system matrices Di, i ∈ N.

Proof. With the same symbols in Theorem 1, this corollary can be proved by utilizing the
following CLKF candidate for system (1):

Vσ(k)(k) = xT(k)νσ(k) +
−d1

∑
s=−d2

k−1

∑
h=k+s

xT(h)DTνσ(k),

where νσ(k) � 0, σ(k) ∈ Ω. The remainder of the proof is similar to that of Theorem 1.
Hence, the detail is omitted.

4. Numerical Simulations

In this section, we provide a numerical example together with the simulation results
to demonstrate the correctness and effectiveness of our theoretical analysis presented in the
previous section.

Example 1. In [2,3,9], the preservation of water-quality standards in streams is discussed. Refer-
ences used the mathematical methods and computer control techniques to simulate the growth and
management of water-quality constituents to the standard level in the form of a linearized model.
The model can be described by a discrete-time switched positive time-varying delay system with
interval uncertainties and exogenous disturbance, which is consistent with the uncertain system (1).
For terminology in this model, x(k) represents the state vector of water-quality constituents such as
oxygen, algae, and ammonia nitrogen. The physical meaning and more details of the time-varying
delay, the delayed factor, and the disturbance were exhibited in those references. Furthermore, the ex-
istence of interval uncertainties in the constant system matrices reflects the fact of the studied system.
Namely, the process of simulation may have slight errors. Therefore, the problem of water-quality
control to standard level in the finite-time interval has been intensively studied by the uncertain
system (1) comprising two subsystems in this example. The system data are given as follows:

A1 =

[
0.249 0.319
0.470 0.155

]
, A1 =

[
0.251 0.321
0.490 0.165

]
,

D1 =

[
0.019 0.079
0.018 0.061

]
, D1 =

[
0.021 0.081
0.022 0.063

]
,

G1 =

[
0.009
0.010

]
, G1 =

[
0.011
0.010

]
,



Symmetry 2022, 14, 735 13 of 18

A2 =

[
0.829 0.350
0.505 0.285

]
, A2 =

[
0.831 0.370
0.515 0.285

]
,

D2 =

[
0.009 0.045
0.018 0.029

]
, D2 =

[
0.011 0.049
0.022 0.031

]
,

G2 =

[
0.048
0.049

]
, G2 =

[
0.052
0.051

]
,

d(k) = 1 + sin2
(

kπ

2

)
, and ω(k) = 0.01e0.04k sin(0.05kπ).

Under the given time-varying delay above, we select d1 = 1 and d2 = 2. It is obvious that
A1 � 0, A2 � 0, D1 � 0, D2 � 0, G1 � 0, and G2 � 0. According to Assumption 1 and
Lemma 1, the studied system is positive. For the numerical simulations, we set the initial condition
as ψ(θ) = [5 8]T , θ = −d2,−d2 + 1, ..., 0, and let the system matrices be

A1 =
A1 + A1

2
=

[
0.250 0.320
0.480 0.160

]
, D1 =

D1 + D1

2
=

[
0.020 0.080
0.020 0.062

]
, G1 =

G1 + G1

2
=

[
0.010
0.010

]
,

and

A2 =
A2 + A2

2
=

[
0.830 0.360
0.510 0.285

]
, D2 =

D2 + D2

2
=

[
0.010 0.047
0.020 0.030

]
, G2 =

G2 + G2

2
=

[
0.050
0.050

]
.

Given the positive vector l = [1 1]T , then, we assign the positive constants c1 = 13, c2 = 130
and the time constant K f = 30, which satisfies maxθ∈{−d2,−d2+1,...,0} ψT(θ)l ≤ c1. From the
condition of the exogenous disturbance defined as in (2), it is obvious that ρ = 0.602. The state
response and the value of xT(k)l, k ∈ {0, 1, 2, ..., K f } for subsystem 1 and subsystem 2 are shown,
respectively, in Figures 1 and 2. From two subsystems of the simulations, it is verified that the first
subsystem is finite-time bounded with respect to (13, 130, 30, [1 1]T , 0.602, σ(k)), and the second
one is finite-time unbounded with respect to the same required parameters.

Then, it is obvious that

D̃ =

[
0.021 0.081
0.022 0.063

]
.

For given sclars γ1 = 1.005, µ1 = 2.010, γ2 = 1.400, and µ2 = 0.500 we can obtain a set of
feasible solution for Theorem 1:

ν1 = [2.7571 2.5917]T , ν2 = [1.3783 1.2958]T , ξ1 = 0.1, ξ2 = 0.2, β1 = 2.1, β2 = 1.2.

Thus, this system is finite-time bounded with respect to (13, 130, 30, [1 1]T , 0.602, σ(k))
under the switching signal σ(k) with SMDADT τ∗a1 = 12.5602 and FMDADT τ∗a2 = 2.0600,
which satisfy the conditions specified by (12) and (13), respectively. Without loss of generality,
we can select τa1 = 13 > 12.5602 and τa2 = 2 < 2.0600 for subsystem 1 and subsystem 2,
respectively. The designed switching signal σ(k) of this system is depicted in Figure 3. The state
response and the value of xT(k)l of this system under the corresponding switching signal σ(k) are
shown at the left-hand side and the right-hand side of Figure 4, respectively. The plot indicates
that the value of xT(k)l at K f = 30 does not exceed c2 = 130. From Figure 4, it can be seen that
although the uncertain system (1) representing the water-quality controllability model in streams
includes both the bounded subsystem and the unbounded subsystem, it is finite-time bounded with
respect to (13, 130, 30, [1 1]T , 0.602, σ(k)) under the designed switching signals. These numerical
results show that the state vectors representing water-quality constituents from two subsystems can
be managed and restored to the standard level in the fixed finite-time interval by designing switching
signals based on Theorem 8. Consequently, the correctness and effectiveness of our theoretical
analysis and numerical simulations are illustrated.
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Figure 1. State response of the first subsystem.
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Figure 2. State response of the second subsystem.
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Figure 3. The designed switching signal σ(k).
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Figure 4. State response of the uncertain system (1) under the corresponding switching signal σ(k).

Remark 4. From sufficient conditions (5) and (6) in Theorem 1, the part of symmetric negative-
definite matrices −γp In and −γq In, where γp > 1, p ∈ B, γq > 1, q ∈ U, is important for
proving to be the robust finite-time control of the uncertain system (1). From the above example, it
is obvious that

−γ1 I2 =

[
−1.005 0

0 −1.005

]
and − γ2 I2 =

[
−1.400 0

0 −1.400

]
.

5. Discussion and Conclusions

In this article, the FTB problem for a class of discrete-time SPSs with time-varying delay,
interval uncertainties, exogenous disturbance, and finite-time unbounded subsystems was
investigated. A class of QASSs for the systems with bounded and unbounded subsystems
was designed to analyze the switching behaviors of the systems. Namely, the systems can
switch from a finite-time bounded subsystem to any other subsystems. However, they
cannot switch from a finite-time unbounded subsystem to another finite-time unbounded
subsystem.

Since the advantage of the MDADT switching law is that the ADT of each subsystem
can be calculated using the crucial characteristics of individual subsystems, the MDADT
switching law is more general and less conservative than the ADT switching law used
in [43,46,50,52,55,56]. Our switching law used in this work is MDADT, which consists of
the SMDADT and FMDADT switching laws. It is utilized to deal with the problem of the
FTB for the systems, including both the finite-time bounded and the finite-time unbounded
subsystems under designing a class of QASSs. Namely, we use the SMDADT switching
law with the finite-time bounded subsystems and use the FMDADT switching law with the
finite-time unbounded subsystems to compensate for the divergent behavior of the state
trajectory from the finite-time unbounded subsystems.

By the positivity of the studied systems together with the SMDADT and FMDADT
switching laws, the suitable CLKF was established, and the systems can be ensured for
being FTB by the sufficient conditions obtained in Theorem 1. In addition, a new DDSC of
systems without the interval uncertainties was also derived in Corollary 1. These strategies
are applied to the water-quality controllability model in streams. A numerical example was
shown to illustrate the effectiveness of our analytical results. However, to the best of our
knowledge, there is no result on the FTB for a class of discrete-time SPSs, including time-
varying delay, interval uncertainties, exogenous disturbance, and finite-time unbounded
subsystems in the literature. Therefore, this research is the first work for studying the FTB
of the systems and cannot be compared directly with other results.
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