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Abstract

Fisher linear discriminant analysis (LDA) can be sensitivéhe prob-
lem data. Robust Fisher LDA can systematically alleviagestbnsitivity
problem by explicitly incorporating a model of data uncertyin a clas-
sification problem and optimizing for the worst-case scienander this
model. The main contribution of this paper is show that wigmeral
convex uncertainty models on the problem data, robust Fisbé can

be carried out using convex optimization. For a certain typproduct
form uncertainty model, robust Fisher LDA can be carriedaiu cost
comparable to standard Fisher LDA. The method is demoestnaith

some numerical examples. Finally, we show how to extencethesults
to robust kernel Fisher discriminant analysis,, robust Fisher LDA in a
high dimensional feature space.

1 Introduction

Fisher linear discriminant analysis (LDA), a widely-usedhnique for pattern classifica-
tion, finds a linear discriminant that yields optimal discimation between two classes
which can be identified with two random variables, $&yandY in R™. For a (linear)
discriminant characterized by € R", the degree of discrimination is measured by the
Fisher discriminant ratio
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wherep, andX, (1, andX,) denote the mean and covarianceX{Y). A discriminant
that maximizes the Fisher discriminant ratio is given by

W™ = (8, + Ey)il(l% — Hy);
which gives the maximum Fisher discriminant ratio

(1o — Uy)T(zr + Ey)il(ﬂm — Hy) = Ing)(f(wmumaﬂya Yo, By)-

In applications, the problem daja,, p,, X, and¥, are not known but are estimated
from sample data. Fisher LDA can be sensitive to the problata:dthe discriminant
w"*™ computed from an estimate of the parameters 1, X,, andX, can give very



poor discrimination for another set of problem data thatse a reasonable estimate of the
parameters. In this paper, we attempt to systematicakgvialle this sensitivity problem
by explicitly incorporating a model of data uncertainty hretclassification problem and
optimizing for the worst-case scenario under this model.

We assume that the problem data 1., ¥,, and%, are uncertain, but known to belong to
a convex compact subggtof R" x R" x S | x §% .. Here we us&’ | (S!) to denote
the set of alln x n symmetric positive definite (semidefinite) matrices. We enake
technical assumption: for ea¢p,, 1y, ., X)) € U, we haveu, # u,. This assumption
simply means that for each possible value of the means arafiaoces, the classes are
distinguishable via Fisher LDA.

The worst-case analysis problewf finding the worst-case means and covariances for a
given discriminantv can be written as

minimize f(wa Mz ,Uya Zxa Ey) (1)
subjectto (piq, fy, Xa, Xy) € U,

with variablesy,, p,, ¥,, andX,. The optimal value of this problem is tlveorst-case
Fisher discriminant ratiqover the clasg/ of possible means and covariances), and any op-
timal points for this problem are calledorst-case means and covarianc@hese depend
onw.

We will show in§2 that (1) is a convex optimization problem, since the Fisl&riminant
ratio is a convex function ofi,, i, X, X, for a given discriminantv. As a result, it is
computationally tractable to find the worst-case perforceanf a discriminantv over the
set of possible means and covariances.

The robust Fisher LDA problenis to find a discriminant that maximizes the worst-case
Fisher discriminant ratio. This can be cast as the optirarairoblem

maximize min W, fhas s Py Dy 23
. (,um,uy,Zm,Ey)EMf( Mo ,uy x 1/) (2)
subjectto w # 0,

with variablew. We denote any optimab for this problem asv*. Here we choose a linear
discriminant that maximizes the Fisher discriminationorawith the worst possible means
and covariances that are consistent with our data uncgrtaiodel.

The main result of this paper is to give an effective methadstiving the robust Fisher
LDA problem (2). We will show in52 that the robust optimal Fisher discriminant can
be found as follows. First, we solve the (convex) optimi@agproblem

minimize rllulgg)cf(w, fzs Hyy Dy By) = (e — py) T (B 4+ 2y) " (e — pay)

3
subjectto (fiq, ty, Xa, Xy) € U, 3

with variables(ji,, j1,,, ¥z, 3y). Let (uy, py, 35, X7 ) denote any optimal point. Then the

discriminant .

wh = (S 43 (- ) (4)
is a robust optimal Fisher discriminante., it is optimal for (2). Moreover, we will see
thatyy, py andX;, X7 are worst-case means and covariances for the robust optistedr
discriminantw*. Since convex optimization problems are tractable, thiameghat we
have atractable general methofbr computing a robust optimal Fisher discriminant.

A robust Fisher discriminant problem of modest size can Iheedoby standard convex

optimization methodsg.g, interior-point methods [3]. For some special forms of tine u

certainty model, the robust optimal Fisher discriminamt lba solved more efficiently than

by a general convex optimization formulation.§®, we consider an important special form
for U for which a more efficient formulation can be given.



In comparison with the ‘nominal’ Fisher LDA, which is based the means and covari-
ances estimated from the sample data set without considérna estimation error, the
robust Fisher LDA performs well even when the sample sizel isestimate the means
and covariances is small, resulting in estimates which araccurate. This will be demon-
strated with some numerical exampleg4n

Recently, there has been a growing interest in kernel Fdikeriminant analysise., Fisher
LDA in a higher dimensional feature spaegg, [7]. Our results can be extended to robust
kernel Fisher discriminant analysis under certain ungggtanodels. This will be briefly
discussed ig5.

Various types of robust classification problems have beesidered in the prior litera-
ture,e.g, [2, 5, 6]. Most of the research has focused on formulatilyisb classification
problems that can be efficiently solved via convex optini@at In particular, the robust
classification method developed in [6] is based on the @viter

W (e — 1)
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g(wwmlly,zm Zy) = (

which is similar to the Fisher discriminant ratfo With a specific uncertainty model on the
means and covariances, the robust classification probl#mdigicrimination criteriory can
be cast as a second-order cone program, a special type ahcoptimization problem [5].
With general uncertainty models, however, it is not cleaethier robust discriminant anal-
ysis withg can be performed via convex optimization.

2 Robust Fisher LDA

We first consider the worst-case analysis problem (1). Hereamsider the discriminanat

as fixed, and the parametets, p,, ¥, andX, are variables, constrained to lie in the
convex uncertainty seéf. To show that (1) is a convex optimization problem, we must
show that the Fisher discriminant ratio is a convex funcobm,, 1, X,, and%,. To
show this, we express the Fisher discriminant rgtas the composition

f(w’ﬂmuya Eiﬁazy) = g(H(vauya Efwzy))a

whereg(u, t) = u?/t andH is the function

H(,Uam oy s Yz, Ey) = (wT(Mw - liy)a wT(Zx + Ey)w)

The functionH is linear (as a mapping froma,, 1,, ¥,, andy, into R?), and the function
g is convex (provided > 0, which holds here). Thus, the compositignis a convex
function of u,, py, X, and,. (See [3].)

Now we turn to the main result of this paper. Consider a fumctf the form
(w”a)?
wl Bw’

which is the Rayleigh quotient for the matrix pait” € S andB € S, evaluated atv.
The robust Fisher LDA problem (2) is equivalent to a probldrthe form

R(w,a,B) = (®)

maximize min R(w,a, B)
) (a,B)eV (6)
subjectto w # 0,
where

a = flg =y, B=X,+3, V= {(Mm_ﬂyvzx'i_zy) | (,uxv.uyazﬂfvzy) € U}. (7)



(This equivalence means that robust FLDA is a special typmlfist matched filtering
problem studied in the 1980s; seeg, [8] for more on robust matched filtering.)

We will prove a ‘nonconventional’ minimax theorem for a Reigh quotient of the
form (5), which will establish the main result describedsih To do this, we consider
a problem of the form

minimize o’ B~ la s

subjectto (a,B) €V, (8)
with variablesa € R", B € S, andV is a convex compact subsetBf' x S’ , such
that for each(a, B) € V, a is not zero. The objective of this problem is a matrix fractib
function and so is convex dR™ x S% | ; see [3,§3.1.7]. Our problem (3) is the same as (8),
with (7). It follows that (3) is a convex optimization probfe

The following theorem states the minimax theorem for thefiom 2. While R is convex in
(a, B) for fixed w, it is not concave inw for fixed (a, B), so conventional convex-concave
minimax theorems do not apply here.

Theorem 1. Let(a*, B*) be an optimal solution to the problem (8), anddet = B*~'a*.
Then(w*, a*, B*) satisfies the minimax property

R(w*,a*, B*) = max min R(w,a,B)= min max R(w,a,B), 9
w#0 (a,B)EV (a,B)eV w#0

and the saddle point property
R(w,a*, B*) < R(w*,a*, B*) < R(w*,a, B), Vw € R"\{0}, VY(a,B) € V. (10)
Proof. It suffices to prove (10), since the saddle point property (&lies the minimax

property (9) [1,§2.6]. We start by observing th&t(w, «*, B*) is maximized over nonzero
w # 0 by w* = B*~'a* (by the Cauchy-Schwartz inequality). What remains is to show

in R(w*,a, B) = R(w*,a*, B¥). 11
oo (w*,a, B) = R(w*,a", B*) (11)

Sincea* and B* are optimal for the convex problem (8) (by definition), theyshsatisfy
the optimality condition

(Vala"Ba)| . poys(a=a*) + (VT B~a)| . 5.\, (B~ B*))
>0, VY(a,B)eV

(see [3,§4.2.3]). UsingV,(a”B~'a) = 2B~ 'a, Vp(a"B~'a) = —B~'aa” B!, and
(X,Y)=Tr(XY)for X,Y € S, whereTr denotes trace, we can express the optimality
condition as

20*"B* Y(a — a*) = TrB* *a*a* ' B* " Y(B—B*) >0, V(a,B)€V,
or equivalently,

Ta—a*)—w"(B=Bw" >0, V(a,B)eV. (12)

2w

Now we turn to the convex optimization problem

minimize R(w*,a, B)

subjectto (a,B) €V, (13)

with variables(a, B). We will show that(a*, B*) is optimal for this problem, which will
establish (11).



A pair (a, B) is optimal for (13) if and only if

(w*Ta)2 ~ (w*Ta)2 B
<vaw*TBw* 777(‘1*‘1) + VBm 77&(BfB) >0, V(a,B)€V.
(a,B) (a,B)
Using
o (w*Ta)? _ alw* . v, (wTa)? o (aTw*)? T
“w*T Bw* w*Bw* w*T Bw~* (w*T Bw~*)?2 ’
the optimality condition can be written as
a'w* 7 _ @w)? . or 3
wTBe " OO T e (BB
dTU)* T ~ (ELTU}*)Q T B .

> 0, V(a,B)eV.

Substitutinga = a*, B = B*, and noting that*"w* /w*? B*w* = 1, the optimality
condition reduces to

2w*” (a — a*) —w* (B — B*)w* >0, V(a,B)eV,

which is precisely (12). Thus, we have shown that, B*) is optimal for (13), which in
turn establishes (11). O

3 Robust Fisher L DA with product form uncertainty models

In this section, we focus on robust Fisher LDA with the pradoem uncertainty model
U=MxS, (14)

where M is the set of possible means afds the set of possible covariances. For this
model, the worst-case Fisher discriminant ratio can bdaewias

T _ 2
f(a’lj’m’ﬂ“yﬂzmvzy) = min (w (/1"'” :uy))

min .
(/lmauyazmvzy)eu (vauy)EM ma‘X(Ew,Ey)GS U]T(El + Ey)w

If we can find an analytic expression forax (s, s, jes wT (3, + X,)w (as a function of
w), we can simplify the robust Fisher LDA problem.

As a more specific example, we consider the case in whishgiven by

S = 8. xS, i
Sy = {Ey | Yy =0, sz - Ey”F < 5y}7

whered,, &, are positive constants;,, &, € S, and||A|| » denotes the Frobenius norm

of A,i.e, |A|r = (327 ,_, A%;)"/2. For this case, we have

(zzrflzi)){es w’ (8, + Ey)w = w' (8 + By + (8 + dy) DHw. (16)

Here we have used the fact that for givere S , , max 5, <5 27 Xz = 27 (S +01)z
(seee.qg, [6]). The worst-case Fisher discriminant ratio can be exped as
T . 2
in (W (pe — 1y)) _
(Mo 11y ) EM wT(Ez + Ey + ((5T + 53,)1)10




This is the same worst-case Fisher discriminant ratio nbthfor a problem in which the
covariances are certaire., fixed to bex,, + 6,1 andX, + 6, /, and the means lie in the set
M. We conclude that a robust optimal Fisher discriminant withuncertainty model (14)
in which S has the form (15) can be found by solving a robust Fisher LDgbfam with
these fixed values for the covariances. From the general@olmethod described it it

is given by

* N N -1 * *
w* = (B + By + (6 + ) 1) (n; — thy),
wherey; andy;; solve the convex optimization problem

minimize (112 — 115)" (S + Sy + (0 +0,)1) " (1 — p1y) (17)
subjectto (fiy, fy) € M,

with variablesu, andy,.

The problem (17) is relatively simple: it involves minimig a convex quadratic function
over the set of possible, and,. For example, itM is a product of two ellipsoidsge(g,

1 andp,, each lie in some confidence ellipsoid) the problem (17) isitunmize a convex
guadratic subject to two convex quadratic constraintsh3ugroblem is readily solved in
O(n?) flops, since the dual problem has two variables, and evatatie dual function
and its derivatives can be done@n(n?) flops [3]. Thus, the effort to solve the robust is
the same ordei.g., n?) as solving the nominal Fisher LDA (but with a substantieisger
constant).

4 Numerical results

To demonstrate robust Fisher LDA, we use the sonar and itieosfpenchmark problems
from the UCI repository iww. i ¢s. uci . edu/ ~m earn/ MLReposi tory. ht m ).
The two benchmark problems have 208 and 351 points, regphgtand the dimension
of each data point is 60 and 34, respectively. Each data sahdomly partitioned into
a training set and a test set. We use the training set to centpeatoptimal discriminant
and then test its performance using the test set. A largmirigaset typically gives better
test performance. We let denote the size of the training set, as a fraction of the total
number of data points. For example,= 0.3 means tha80% of the data points are used
for training, and70% are used to test the resulting discriminant. For variousegbfa,
we generata 00 random partitions of the data (for each of the two benchmeaoklpms),
and collect the results.

We use the following uncertainty models for the meaps,, and the covariances,, ¥,

(Nz_ﬂx)TPx(Mx_ﬂx) <1, ||EI_SIHF < Pz,
(1y _/ly)TPy(My — fy) <1, ||Ey_EyHF < py;

Here the vectorgi,, ji, represent the nominal means and the matricess, represent
the nominal covariances, and the matriégs P, and the constantg, andp, represent
the confidence regions. The parameters are estimated theotesampling technique [4]
as follows. For a given training set we create 100 new setebgmpling the original
training set with a uniform distribution over all the datams. For each of these sets we
estimate its mean and covariance and then take their aveahiges as the nominal mean
and covariance. We also evaluate the covariaigeof all the means obtained with the
resampling. We then take, = E;l/n and P, = Zgl/n. This choice corresponds
to a50% confidence ellipsoid in the case of a Gaussian distributitime parameterg,.
andp, are taken to be the maximum deviations between the covasaand the average
covariances in the Frobenius norm sense, over the resaggilthe training set.
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Figure 1: Test-set accuracy (TSA) for sonar and ionosphenetimark versus size of the
training set. The solid line represents the robust Fishek k€sults and the dotted line the
nominal Fisher LDA results. The vertical bars represensthadard deviation.

Figure 1 summarizes the classification results. For eachimofinm problems, and for each
value ofa, we show the average test set accuracy (TSA), as well asahdast deviation
(over thel00 instances of each problem with the given valuexpf The plots show the
robust Fisher LDA performs substantially better than thenimal Fisher LDA for small
training sets, but this performance gap disappears asdiméinig set becomes larger.

5 Robust kernel Fisher discriminant analysis

In this section we show how to ‘kernelize’ the robust Fish&AL We will consider only

a specific class of uncertainty models; the arguments weafeWere can be extended to
more general cases. In the kernel approach we map the problamhigher dimensional
spaceR/ via a mappingy : R* — R/ so that the new decision boundary is more general
and possibly nonlinear. Let the data be mapped as

x = 3(x) ~ (fg(a), Do)y Y — 0Y) ~ (Bpw)s Zoy))-
The uncertainty model we consider has the form

L (z) = Holy) = Ho(x) — Pogy) + Pug,  lugl <1, (18)
[Zo(x) = Zo@llF < per (1B — Zewllr < py-

Here the vectorgi, ., fis(y) fepresent the nominal means, the matriggs, ), £, rep-
resent the nominal covariances, and the (positive semitigfinatrix P and the constants
p. andp, represent the confidence regions in the feature space. Ttst-vase Fisher
discriminant ratio in the feature space is then given by

i (W} (Fpe) — fg(y) + Pus))?
s ISLIE gy =S e <pallEomy —Somlle<ey  Wf (Sew) + o) )wy

The robust kernel Fisher discriminant analysis problenoifind the discriminant in the
feature space that maximizes this ratio.

Using the technique described§8, we can see that the robust kernel Fisher discriminant
analysis problem can be cast as

maximize  min (w.:fp(%(x) — flg(y) + Puy))?

' lusli<t wh (Sga) + Soy) + (o2 + py)wy (19)
subjectto wy # 0,




where the discriminant; € R/ is defined in the new feature space.

To apply the kernel trick to the problem (19), the nonlineacidion boundary should be
entirely expressed in terms of inner products of the mapd dnly. The following
proposition tells us a set of conditions to do so.

Proposition 1. Given the sample pointsz; } Y+ and {yi}fvjl, Suppose thatiy ) fe(y),
S () Se(y), and P can be written as
— Ny — Ny
fig(e) = 2y Nd(@i),  Fgy) = 2ih Miwn, 0(yi), P =UYUT,
3 Nz _ _
Bpa) = iy Nii(B(x:) = fig(a)) (B(x:) = figa)) "
S Ny _ _
Soty) = 2it Nit N, i+ N, (W) — o)) ((4i) — Lgy)
Ng+N. No+Ny No+Ny H H H P
wherel € RY="%, T € S yAeS, is a diagonal matrix, and/ is a matrix
whose columns are the vectdig(z;) — /j¢(w)}f\’;l and{o(y;) — /jd,(y)}fv:’yl. Denote asb
the matrix whose columns are the vectpeg ;) } ', {¢(yi)}£\’;’1 and define
Dy =KpB, Dy=K(I-MNH)TT - LK,
Dy = K(I - MEHAI ~ NMEKT + (o, +p,) K, Di=K,
whereK is the kernel matrix¢;; = (®7®);;, 1y is a vector of ones of lengtN,. + N,

and g € RN=+Ny js such thatg; = \; fori = 1,...,N, and3; = —\; fori = N, +
1,..., N, + N,. Letr* be an optimal solution of the problem

- T(Dy + Do) (Dy + D-ET
maximize  min v (D1 + Do§) (D1 + Da§)" v

£TD4E<1 vT Dsv (20)
subjectto v # 0.

Then,w} = ®v* is an optimal solution of the problem (19). Moreover, for gveoint
z € R™,

)T

)

Ny Ny
wid(z) =D Vi K(z,2:) + Y _vin K(z,u). (21)
i=1 i=1
Along the lines of the proofs of Corollary 5 in [6], we can peawis proposition.
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