
Robust Fisher Discriminant Analysis

Seung-Jean Kim Alessandro Magnani Stephen P. Boyd
Information Systems Laboratory

Electrical Engineering Department, Stanford University
Stanford, CA 94305-9510

sjkim@stanford.edu alem@stanford.edu boyd@stanford.edu

Abstract

Fisher linear discriminant analysis (LDA) can be sensitiveto the prob-
lem data. Robust Fisher LDA can systematically alleviate the sensitivity
problem by explicitly incorporating a model of data uncertainty in a clas-
sification problem and optimizing for the worst-case scenario under this
model. The main contribution of this paper is show that with general
convex uncertainty models on the problem data, robust Fisher LDA can
be carried out using convex optimization. For a certain typeof product
form uncertainty model, robust Fisher LDA can be carried outat a cost
comparable to standard Fisher LDA. The method is demonstrated with
some numerical examples. Finally, we show how to extend these results
to robust kernel Fisher discriminant analysis,i.e., robust Fisher LDA in a
high dimensional feature space.

1 Introduction

Fisher linear discriminant analysis (LDA), a widely-used technique for pattern classifica-
tion, finds a linear discriminant that yields optimal discrimination between two classes
which can be identified with two random variables, sayX andY in R

n. For a (linear)
discriminant characterized byw ∈ R

n, the degree of discrimination is measured by the
Fisher discriminant ratio

f(w, µx, µy,Σx,Σy) =
wT (µx − µy)(µx − µy)T w

wT (Σx + Σy)w
=

(wT (µx − µy))2

wT (Σx + Σy)w
,

whereµx andΣx (µy andΣy) denote the mean and covariance ofX (Y). A discriminant
that maximizes the Fisher discriminant ratio is given by

wnom = (Σx + Σy)−1(µx − µy),

which gives the maximum Fisher discriminant ratio

(µx − µy)T (Σx + Σy)−1(µx − µy) = max
w 6=0

f(w, µx, µy,Σx,Σy).

In applications, the problem dataµx, µy, Σx, andΣy are not known but are estimated
from sample data. Fisher LDA can be sensitive to the problem data: the discriminant
wnom computed from an estimate of the parametersµx, µy, Σx, andΣy can give very



poor discrimination for another set of problem data that is also a reasonable estimate of the
parameters. In this paper, we attempt to systematically alleviate this sensitivity problem
by explicitly incorporating a model of data uncertainty in the classification problem and
optimizing for the worst-case scenario under this model.

We assume that the problem dataµx, µy, Σx, andΣy are uncertain, but known to belong to
a convex compact subsetU of R

n × R
n × S

n
++ × S

n
++. Here we useSn

++ (Sn
+) to denote

the set of alln × n symmetric positive definite (semidefinite) matrices. We make one
technical assumption: for each(µx, µy,Σx,Σy) ∈ U , we haveµx 6= µy. This assumption
simply means that for each possible value of the means and covariances, the classes are
distinguishable via Fisher LDA.

The worst-case analysis problemof finding the worst-case means and covariances for a
given discriminantw can be written as

minimize f(w, µx, µy,Σx,Σy)
subject to (µx, µy,Σx,Σy) ∈ U ,

(1)

with variablesµx, µy, Σx, andΣy. The optimal value of this problem is theworst-case
Fisher discriminant ratio(over the classU of possible means and covariances), and any op-
timal points for this problem are calledworst-case means and covariances. These depend
onw.

We will show in§2 that (1) is a convex optimization problem, since the Fisherdiscriminant
ratio is a convex function ofµx, µy, Σx, Σy for a given discriminantw. As a result, it is
computationally tractable to find the worst-case performance of a discriminantw over the
set of possible means and covariances.

The robust Fisher LDA problemis to find a discriminant that maximizes the worst-case
Fisher discriminant ratio. This can be cast as the optimization problem

maximize min
(µx,µy,Σx,Σy)∈U

f(w, µx, µy,Σx,Σy)

subject to w 6= 0,
(2)

with variablew. We denote any optimalw for this problem asw⋆. Here we choose a linear
discriminant that maximizes the Fisher discrimination ratio, with the worst possible means
and covariances that are consistent with our data uncertainty model.

The main result of this paper is to give an effective method for solving the robust Fisher
LDA problem (2). We will show in§2 that the robust optimal Fisher discriminantw⋆ can
be found as follows. First, we solve the (convex) optimization problem

minimize max
w 6=0

f(w, µx, µy,Σx,Σy) = (µx − µy)T (Σx + Σy)−1(µx − µy)

subject to (µx, µy,Σx,Σy) ∈ U ,
(3)

with variables(µx, µy,Σx,Σy). Let (µ⋆
x, µ⋆

y,Σ⋆
x,Σ⋆

y) denote any optimal point. Then the
discriminant

w⋆ =
(

Σ⋆
x + Σ⋆

y

)−1
(µ⋆

x − µ⋆
y) (4)

is a robust optimal Fisher discriminant,i.e., it is optimal for (2). Moreover, we will see
thatµ⋆

x, µ⋆
y andΣ⋆

x,Σ⋆
y are worst-case means and covariances for the robust optimalFisher

discriminantw⋆. Since convex optimization problems are tractable, this means that we
have atractable general methodfor computing a robust optimal Fisher discriminant.

A robust Fisher discriminant problem of modest size can be solved by standard convex
optimization methods,e.g., interior-point methods [3]. For some special forms of the un-
certainty model, the robust optimal Fisher discriminant can be solved more efficiently than
by a general convex optimization formulation. In§3, we consider an important special form
for U for which a more efficient formulation can be given.



In comparison with the ‘nominal’ Fisher LDA, which is based on the means and covari-
ances estimated from the sample data set without considering the estimation error, the
robust Fisher LDA performs well even when the sample size used to estimate the means
and covariances is small, resulting in estimates which are not accurate. This will be demon-
strated with some numerical examples in§4.

Recently, there has been a growing interest in kernel Fisherdiscriminant analysisi.e., Fisher
LDA in a higher dimensional feature space,e.g., [7]. Our results can be extended to robust
kernel Fisher discriminant analysis under certain uncertainty models. This will be briefly
discussed in§5.

Various types of robust classification problems have been considered in the prior litera-
ture,e.g., [2, 5, 6]. Most of the research has focused on formulating robust classification
problems that can be efficiently solved via convex optimization. In particular, the robust
classification method developed in [6] is based on the criterion

g(w, µx, µy,Σx,Σy) =
|wT (µx − µy)|

(wT Σxw)1/2 + (wT Σyw)1/2
,

which is similar to the Fisher discriminant ratiof . With a specific uncertainty model on the
means and covariances, the robust classification problem with discrimination criteriong can
be cast as a second-order cone program, a special type of convex optimization problem [5].
With general uncertainty models, however, it is not clear whether robust discriminant anal-
ysis withg can be performed via convex optimization.

2 Robust Fisher LDA

We first consider the worst-case analysis problem (1). Here we consider the discriminantw
as fixed, and the parametersµx, µy, Σx, andΣy are variables, constrained to lie in the
convex uncertainty setU . To show that (1) is a convex optimization problem, we must
show that the Fisher discriminant ratio is a convex functionof µx, µy, Σx, andΣy. To
show this, we express the Fisher discriminant ratiof as the composition

f(w, µx, µy,Σx,Σy) = g(H(µx, µy,Σx,Σy)),

whereg(u, t) = u2/t andH is the function

H(µx, µy,Σx,Σy) = (wT (µx − µy), wT (Σx + Σy)w).

The functionH is linear (as a mapping fromµx, µy, Σx, andΣy into R
2), and the function

g is convex (providedt > 0, which holds here). Thus, the compositionf is a convex
function ofµx, µy, Σx, andΣy. (See [3].)

Now we turn to the main result of this paper. Consider a function of the form

R(w, a,B) =
(wT a)2

wT Bw
, (5)

which is the Rayleigh quotient for the matrix pairaaT ∈ S
n
+ andB ∈ S

n
++, evaluated atw.

The robust Fisher LDA problem (2) is equivalent to a problem of the form

maximize min
(a,B)∈V

R(w, a,B)

subject to w 6= 0,
(6)

where

a = µx−µy, B = Σx+Σy, V = {(µx−µy,Σx+Σy) | (µx, µy,Σx,Σy) ∈ U}. (7)



(This equivalence means that robust FLDA is a special type ofrobust matched filtering
problem studied in the 1980s; see,e.g., [8] for more on robust matched filtering.)

We will prove a ‘nonconventional’ minimax theorem for a Rayleigh quotient of the
form (5), which will establish the main result described in§1. To do this, we consider
a problem of the form

minimize aT B−1a
subject to (a,B) ∈ V,

(8)

with variablesa ∈ R
n, B ∈ S

n
++, andV is a convex compact subset ofR

n × S
n
++ such

that for each(a,B) ∈ V, a is not zero. The objective of this problem is a matrix fractional
function and so is convex onRn ×S

n
++; see [3,§3.1.7]. Our problem (3) is the same as (8),

with (7). It follows that (3) is a convex optimization problem.

The following theorem states the minimax theorem for the functionR. WhileR is convex in
(a,B) for fixedw, it is not concave inw for fixed (a,B), so conventional convex-concave
minimax theorems do not apply here.

Theorem 1. Let(a⋆, B⋆) be an optimal solution to the problem (8), and letw⋆ = B⋆−1a⋆.
Then(w⋆, a⋆, B⋆) satisfies the minimax property

R(w⋆, a⋆, B⋆) = max
w 6=0

min
(a,B)∈V

R(w, a,B) = min
(a,B)∈V

max
w 6=0

R(w, a,B), (9)

and the saddle point property

R(w, a⋆, B⋆) ≤ R(w⋆, a⋆, B⋆) ≤ R(w⋆, a, B), ∀w ∈ R
n\{0}, ∀(a,B) ∈ V. (10)

Proof. It suffices to prove (10), since the saddle point property (10) implies the minimax
property (9) [1,§2.6]. We start by observing thatR(w, a⋆, B⋆) is maximized over nonzero
w 6= 0 by w⋆ = B⋆−1a⋆ (by the Cauchy-Schwartz inequality). What remains is to show

min
(a,B)∈V

R(w⋆, a, B) = R(w⋆, a⋆, B⋆). (11)

Sincea⋆ andB⋆ are optimal for the convex problem (8) (by definition), they must satisfy
the optimality condition

〈

∇a(aT B−1a)
∣

∣

(a⋆,B⋆)
, (a − a⋆)

〉

+
〈

∇B(aT B−1a)
∣

∣

(a⋆,B⋆)
, (B − B⋆)

〉

≥ 0, ∀ (a,B) ∈ V

(see [3,§4.2.3]). Using∇a(aT B−1a) = 2B−1a, ∇B(aT B−1a) = −B−1aaT B−1, and
〈X,Y 〉 = Tr(XY ) for X,Y ∈ S

n, whereTr denotes trace, we can express the optimality
condition as

2a⋆T B⋆−1(a − a⋆) − TrB⋆−1a⋆a⋆T B⋆−1(B − B⋆) ≥ 0, ∀ (a,B) ∈ V,

or equivalently,

2w⋆T (a − a⋆) − w⋆T (B − B⋆)w⋆ ≥ 0, ∀ (a,B) ∈ V. (12)

Now we turn to the convex optimization problem

minimize R(w⋆, a, B)

subject to (a,B) ∈ V,
(13)

with variables(a,B). We will show that(a⋆, B⋆) is optimal for this problem, which will
establish (11).



A pair (ā, B̄) is optimal for (13) if and only if
〈

∇a
(w⋆T a)2

w⋆T Bw⋆

∣

∣

∣

∣

(ā,B̄)

, (a − ā)

〉

+

〈

∇B
(w⋆T a)2

w⋆T Bw⋆

∣

∣

∣

∣

(ā,B̄)

, (B − B̄)

〉

≥ 0, ∀ (a,B) ∈ V.

Using

∇a
(w⋆T a)2

w⋆T Bw⋆
= 2

aT w⋆

w⋆Bw⋆
w⋆, ∇B

(w⋆T a)2

w⋆T Bw⋆
= −

(aT w⋆)2

(w⋆T Bw⋆)2
w⋆w⋆T ,

the optimality condition can be written as

2
āT w⋆

w⋆T B̄w⋆
w⋆T (a − ā) − Tr

(āT w⋆)2

(w⋆T B̄w⋆)2
w⋆w⋆T (B − B̄)

= 2
āT w⋆

w⋆T B̄w⋆
w⋆T (a − ā) −

(āT w⋆)2

(w⋆T B̄w⋆)2
w⋆T (B − B̄)w⋆

≥ 0, ∀ (a,B) ∈ V.

Substitutingā = a⋆, B̄ = B⋆, and noting thata⋆T w⋆/w⋆T B⋆w⋆ = 1, the optimality
condition reduces to

2w⋆T (a − a⋆) − w⋆T (B − B⋆)w⋆ ≥ 0, ∀ (a,B) ∈ V,

which is precisely (12). Thus, we have shown that(a⋆, B⋆) is optimal for (13), which in
turn establishes (11).

3 Robust Fisher LDA with product form uncertainty models

In this section, we focus on robust Fisher LDA with the product form uncertainty model

U = M×S, (14)

whereM is the set of possible means andS is the set of possible covariances. For this
model, the worst-case Fisher discriminant ratio can be written as

min
(µx,µy,Σx,Σy)∈U

f(a, µx, µy,Σx,Σy) = min
(µx,µy)∈M

(wT (µx − µy))2

max(Σx,Σy)∈S wT (Σx + Σy)w
.

If we can find an analytic expression formax(Σx,Σy)∈S wT (Σx + Σy)w (as a function of
w), we can simplify the robust Fisher LDA problem.

As a more specific example, we consider the case in whichS is given by

S = Sx × Sy,
Sx = {Σx | Σx � 0, ‖Σx − Σ̄x‖F ≤ δx},
Sy = {Σy | Σy � 0, ‖Σy − Σ̄y‖F ≤ δy},

(15)

whereδx, δy are positive constants,̄Σx, Σ̄y ∈ S
n
++, and‖A‖F denotes the Frobenius norm

of A, i.e., ‖A‖F = (
∑n

i,j=1 A2
ij)

1/2. For this case, we have

max
(Σx,Σy)∈S

wT (Σx + Σy)w = wT (Σ̄x + Σ̄y + (δx + δy)I)w. (16)

Here we have used the fact that for givenΣ̄ ∈ S
n
++, max‖Σ−Σ̄‖F ≤δ xT Σx = xT (Σ̄+ δI)x

(see,e.g., [6]). The worst-case Fisher discriminant ratio can be expressed as

min
(µx,µy)∈M

(wT (µx − µy))2

wT (Σ̄x + Σ̄y + (δx + δy)I)w
.



This is the same worst-case Fisher discriminant ratio obtained for a problem in which the
covariances are certain,i.e., fixed to beΣ̄x + δxI andΣ̄y + δyI, and the means lie in the set
M. We conclude that a robust optimal Fisher discriminant withthe uncertainty model (14)
in whichS has the form (15) can be found by solving a robust Fisher LDA problem with
these fixed values for the covariances. From the general solution method described in§1, it
is given by

w⋆ =
(

Σ̄x + Σ̄y + (δx + δy)I
)−1

(µ⋆
x − µ⋆

y),

whereµ⋆
x andµ⋆

y solve the convex optimization problem

minimize (µx − µy)T
(

Σ̄x + Σ̄y + (δx + δy)I
)−1

(µx − µy)
subject to (µx, µy) ∈ M,

(17)

with variablesµx andµy.

The problem (17) is relatively simple: it involves minimizing a convex quadratic function
over the set of possibleµx andµy. For example, ifM is a product of two ellipsoids, (e.g.,
µx andµy each lie in some confidence ellipsoid) the problem (17) is to minimize a convex
quadratic subject to two convex quadratic constraints. Such a problem is readily solved in
O(n3) flops, since the dual problem has two variables, and evaluating the dual function
and its derivatives can be done inO(n3) flops [3]. Thus, the effort to solve the robust is
the same order (i.e., n3) as solving the nominal Fisher LDA (but with a substantiallylarger
constant).

4 Numerical results

To demonstrate robust Fisher LDA, we use the sonar and ionosphere benchmark problems
from the UCI repository (www.ics.uci.edu/∼mlearn/MLRepository.html).
The two benchmark problems have 208 and 351 points, respectively, and the dimension
of each data point is 60 and 34, respectively. Each data set israndomly partitioned into
a training set and a test set. We use the training set to compute the optimal discriminant
and then test its performance using the test set. A larger training set typically gives better
test performance. We letα denote the size of the training set, as a fraction of the total
number of data points. For example,α = 0.3 means that30% of the data points are used
for training, and70% are used to test the resulting discriminant. For various values ofα,
we generate100 random partitions of the data (for each of the two benchmark problems),
and collect the results.

We use the following uncertainty models for the meansµx, µy and the covariancesΣx,Σy:

(µx − µ̄x)T Px(µx − µ̄x) ≤ 1, ‖Σx − Σ̄x‖F ≤ ρx,

(µy − µ̄y)T Py(µy − µ̄y) ≤ 1, ‖Σy − Σ̄y‖F ≤ ρy,

Here the vectors̄µx, µ̄y represent the nominal means and the matricesΣ̄x, Σ̄y represent
the nominal covariances, and the matricesPx, Py and the constantsρx andρy represent
the confidence regions. The parameters are estimated through a resampling technique [4]
as follows. For a given training set we create 100 new sets by resampling the original
training set with a uniform distribution over all the data points. For each of these sets we
estimate its mean and covariance and then take their averagevalues as the nominal mean
and covariance. We also evaluate the covarianceΣµ of all the means obtained with the
resampling. We then takePx = Σ−1

µ /n and Py = Σ−1
µ /n. This choice corresponds

to a 50% confidence ellipsoid in the case of a Gaussian distribution.The parametersρx

andρy are taken to be the maximum deviations between the covariances and the average
covariances in the Frobenius norm sense, over the resampling of the training set.
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Figure 1: Test-set accuracy (TSA) for sonar and ionosphere benchmark versus size of the
training set. The solid line represents the robust Fisher LDA results and the dotted line the
nominal Fisher LDA results. The vertical bars represent thestandard deviation.

Figure 1 summarizes the classification results. For each of our two problems, and for each
value ofα, we show the average test set accuracy (TSA), as well as the standard deviation
(over the100 instances of each problem with the given value ofα). The plots show the
robust Fisher LDA performs substantially better than the nominal Fisher LDA for small
training sets, but this performance gap disappears as the training set becomes larger.

5 Robust kernel Fisher discriminant analysis

In this section we show how to ‘kernelize’ the robust Fisher LDA. We will consider only
a specific class of uncertainty models; the arguments we develop here can be extended to
more general cases. In the kernel approach we map the problemto an higher dimensional
spaceRf via a mappingφ : R

n → R
f so that the new decision boundary is more general

and possibly nonlinear. Let the data be mapped as

x → φ(x) ∼ (µ̄φ(x), Σ̄φ(x)), y → φ(y) ∼ (µ̄φ(y), Σ̄φ(y)).

The uncertainty model we consider has the form

µφ(x) − µφ(y) = µ̄φ(x) − µ̄φ(y) + Puf , ‖uf‖ ≤ 1,
‖Σφ(x) − Σ̄φ(x)‖F ≤ ρx, ‖Σφ(y) − Σ̄φ(y)‖F ≤ ρy.

(18)

Here the vectors̄µφ(x), µ̄φ(y) represent the nominal means, the matricesΣ̄φ(x), Σ̄φ(y) rep-
resent the nominal covariances, and the (positive semidefinite) matrixP and the constants
ρx andρy represent the confidence regions in the feature space. The worst-case Fisher
discriminant ratio in the feature space is then given by

min
‖uf‖≤1,‖Σφ(x)−Σ̄φ(x)‖F ≤ρx,‖Σφ(y)−Σ̄φ(y)‖F ≤ρy

(wT
f (µ̄φ(x) − µ̄φ(y) + Puf ))2

wT
f (Σφ(x) + Σφ(y))wf

.

The robust kernel Fisher discriminant analysis problem is to find the discriminant in the
feature space that maximizes this ratio.

Using the technique described in§3, we can see that the robust kernel Fisher discriminant
analysis problem can be cast as

maximize min
‖uf‖≤1

(wT
f (µ̄φ(x) − µ̄φ(y) + Puf ))2

wT
f (Σ̄φ(x) + Σ̄φ(y) + (ρx + ρy)I)wf

subject to wf 6= 0,

(19)



where the discriminantwf ∈ R
f is defined in the new feature space.

To apply the kernel trick to the problem (19), the nonlinear decision boundary should be
entirely expressed in terms of inner products of the mapped data only. The following
proposition tells us a set of conditions to do so.

Proposition 1. Given the sample points{xi}
Nx

i=1 and{yi}
Ny

i=1, suppose that̄µφ(x),µ̄φ(y),
Σ̄φ(x),Σ̄φ(y), andP can be written as

µ̄φ(x) =
∑Nx

i=1 λiφ(xi), µ̄φ(y) =
∑Ny

i=1 λi+Nx
φ(yi), P = UΥUT ,

Σ̄φ(x) =
∑Nx

i=1 Λi,i(φ(xi) − µ̄φ(x))(φ(xi) − µ̄φ(x))
T ,

Σ̄φ(y) =
∑Ny

i=1 Λi+Nx,i+Nx
(φ(yi) − µ̄φ(y))(φ(yi) − µ̄φ(y))

T ,

whereλ ∈ R
Nx+Ny , Υ ∈ S

Nx+Ny

+ , Λ ∈ S
Nx+Ny

+ is a diagonal matrix, andU is a matrix

whose columns are the vectors{φ(xi) − µ̄φ(x)}
Nx

i=1 and{φ(yi) − µ̄φ(y)}
Ny

i=1. Denote asΦ

the matrix whose columns are the vectors{φ(xi)}
Nx

i=1, {φ(yi)}
Ny

i=1 and define

D1 = Kβ, D2 = K(I − λ1T
N )Υ(I − λ1T

N )KT ,

D3 = K(I − λ1T
N )Λ(I − λ1T

N )KT + (ρx + ρy)K, D4 = K,

whereK is the kernel matrixKij = (ΦT Φ)ij , 1N is a vector of ones of lengthNx + Ny,
andβ ∈ R

Nx+Ny is such thatβi = λi for i = 1, . . . , Nx andβi = −λi for i = Nx +
1, . . . , Nx + Ny. Letν⋆ be an optimal solution of the problem

maximize min
ξT D4ξ≤1

νT (D1 + D2ξ)(D1 + D2ξ)
T ν

νT D3ν
subject to ν 6= 0.

(20)

Then,w⋆
f = Φν⋆ is an optimal solution of the problem (19). Moreover, for every point

z ∈ R
n,

w⋆T
f φ(z) =

Nx
∑

i=1

ν⋆
i K(z, xi) +

Ny
∑

i=1

ν⋆
i+Nx

K(z, yi). (21)

Along the lines of the proofs of Corollary 5 in [6], we can prove this proposition.
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