
HAL Id: hal-03232996
https://hal.science/hal-03232996

Submitted on 23 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust fixed-time stability: application to sliding mode
control

Emmanuel Moulay, Vincent Léchappé, Emmanuel Bernuau, Franck Plestan

To cite this version:
Emmanuel Moulay, Vincent Léchappé, Emmanuel Bernuau, Franck Plestan. Robust fixed-time sta-
bility: application to sliding mode control. IEEE Transactions on Automatic Control, 2022, 67 (2),
pp.1061-1066. �10.1109/TAC.2021.3069667�. �hal-03232996�

https://hal.science/hal-03232996
https://hal.archives-ouvertes.fr


SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL - MAY 23, 2021 1

Robust fixed-time stability: application to sliding
mode control

Emmanuel Moulay, Vincent Léchappé, Emmanuel Bernuau, and Franck Plestan

Abstract—This article deals with robust fixed-time stability and
stabilization. First, new global robust fixed-time stability results
are proposed for scalar systems by using constant and variable
exponent coefficients. Then, they are applied to global robust
fixed-time stabilization of a class of uncertain nonlinear second-
order systems by using sliding mode control. All the results are
illustrated in simulation.

Index Terms—Fixed-time stability, sliding mode control, robust
control.

I. INTRODUCTION

Sliding mode control (SMC) has been developed by Utkin
in [1] and then by many authors, see [2] and the references
therein for more details. The aim of SMC is to enforce a
dynamical system to reach a manifold called “sliding sur-
face” defined by a function called “sliding variable” with
an appropriate controller ensuring that a constraint on the
sliding variable is satisfied. After the constraint is checked,
the system trajectories “slide” on the sliding surface towards
the desired equilibrium. The main advantage of SMC lies in
the simplicity of its feedback control strategy after choosing
the sliding variable, its robustness when using discontinuous
controllers and the finite-time convergence of the closed-loop
system trajectories to reach the sliding surface. Moreover, it
has been refined over time, for instance with the integral SMC
[3].

Finite-time stability has been developed by Bhat and Bern-
stein in [4] and then applied for finite-time stabilization,
for instance in [5], [6]. It ensures that dynamical systems
reach their equilibrium in a finite-time called settling-time
depending on the initial conditions. Finite-time stabilization
using a SMC strategy has been developed in [7], [8] where
a singularity problem is solved. The fixed-time stability was
introduced by Polyakov in [9] and then developed by many
authors, for instance in [10], [11], [12], [13], [14]. In addition
to finite-time stability, fixed-time stability ensures that the
settling-time does not depend on the initial conditions. Fixed-
time stabilization provides a predefined convergence time
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towards the equilibrium which is a desirable property for
engineering applications. In particular, fixed-time stabilization
using a SMC strategy with time-independent controllers has
been proposed in [15], [16], [17] also by solving a singularity
problem. The singularity problem comes from the fact that the
simplest finite-time and fixed-time sliding variables are non
differentiable. It results in more complex feedback controls to
implement. Finally, the notion of predefined/prescribed-time
SMC has been introduced in [18], [19], [20] by using time-
dependent controllers.

In this article, new global robust fixed-time stability results
are provided for scalar systems by using constant and state-
dependent variable exponent coefficients. State-dependent
variable exponent coefficients have already been used in the
context of homogeneous self-triggered control in [21]. They
have also been used for defining the controllers in [22] for
finite-time SMC. But to the best of the authors’ knowledge,
it has never been used for fixed-time stability. By employing
the SMC strategy, global robust asymptotic stabilization of
the global x−system of the state variable x with robust fixed-
time stabilization of the s−system of the sliding variable s is
obtained by using constant exponent coefficients in the sliding
variable and the controllers for a class of uncertain nonlin-
ear second-order systems. Moreover, global robust fixed-time
stabilization of the global x−system is obtained by using
state-dependent variable exponent coefficient in the sliding
variable and the controllers. The new sliding mode controllers
are time-independent, non singular, robust with respect to
bounded disturbances and easy to implement. So using a
variable exponent coefficient allows to obtain robust fixed-
time SMC of the global x−system contrary to the constant
exponent coefficient strategy. Actually, it is not easy to obtain
fixed-time stabilization of the global x−system when dealing
with SMC because some singularities appear when using the
simplest fixed-time sliding variable, see [16] and [17]. With
the use of a variable exponent coefficient in the sliding variable
and the controllers, we obtain a simple solution because the
controllers have no singularity.

The paper is organized as follows. After some preliminaries
in Section II, the main results on robust fixed-time stability are
given in Section III. The application to SMC is developed in
Section IV. Finally, a conclusion is addressed in Section V.

II. PRELIMINARIES

In the following, denote R+ the set of positive real numbers
and e the constant such that ln(e) = 1. Recall some results
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on finite-time stability and fixed-time stability. Consider the
following ordinary differential equation

ẋ(t) = f(x(t)), x(t) ∈ Rn (1)
x(0) = x0

with f a continuous function such that f(0) = 0.
Definition 1: [6], [4] System (1) is globally finite-time stable

if it is Lyapunov stable and for all x0 ∈ Rn there exists
T (x0) ≥ 0 dependent on the initial conditions such that, for
any x(·) solution of (1) with x(0) = x0, limt→T (x0) ‖x(t)‖ =
0, i.e. ‖x(t)‖ ≡ 0 for all t ≥ T (x0). The function T is called
the settling-time.

Definition 2: [9] System (1) is globally fixed-time stable if:
(1) it is globally finite-time stable;
(2) the settling-time function T is upper bounded by a

constant T > 0, i.e. for all x0 ∈ Rn, T (x0) ≤ T and T
does not depend on the initial conditions.

Lemma 1: [9], [14] If there exists a continuously differen-
tiable positive definite radially unbounded function V : Rn →
R+ such that

V̇ (x) ≤ −aV (x)γ − bV (x)α (2)

where x ∈ Rn, a > 0, b > 0 and 0 < γ < 1 < α, then
system (1) is globally fixed-time stable and the settling-time
satisfies

T (x0) ≤
1

a(1− γ)
+

1

b(α− 1)
. (3)

V is called a Lyapunov function for system (1).
In the following, all simulations are performed with a fixed
step simulation equal to 0.1ms.

III. ROBUST FIXED-TIME STABILITY

A. Constant exponent coefficient

Consider the following robust fixed-time stability result.
Theorem 1: The system

ẋ = −k1 sgn(x)− k2|x|α sgn(x)− k3|x|γ sgn(x)− k4x+ d
x(0) = x0

(4)
with x(t) ∈ R, α > 1, 0 < γ < 1, d(t) ∈ R an external
disturbance such that |d(t)| < δ for a given δ > 0, k1 > δ,
k2 > 0, k3 ≥ 0, k4 ≥ 0 is globally fixed-time stable with the
settling-time T satisfying

T (x0) ≤
1

k1 − δ
+

1

k2(α− 1)
. (5)

Proof. Consider the following quadratic Lyapunov function

V (x) = x2 (6)

Then it leads to

V̇ (x) = −2k1|x| − 2k2|x|α+1 − 2k3|x|γ+1 − 2k4x
2 + 2dx

≤ −2(k1 − δ)|x| − 2k2|x|α+1

≤ −2(k1 − δ)V (x)
1
2 − 2k2V (x)

α+1
2 (7)

with α+1
2 > 1. By using Lemma 1, the result follows.

Remark 1: On the one hand, the function x 7→ |x|γ sgn(x)
with 0 < γ < 1 is not necessary to obtain the fixed-time

stability while still used for instance in [14], [9]. On the other
hand, the sign function x 7→ sgn(x) coupled with the function
x 7→ |x|α sgn(x) where α > 1 allows the fixed-time stability
and is known to reject the disturbances. This is the reason why
robust fixed-time stability is obtained. Moreover, if only the
first term is used, i.e. if k2 = k3 = k4 = 0, one only obtains
robust finite-time stability.

In the following, we compare in simulation the robustness of
the state x(t) of system (4) and the term u(t) = −k1 sgn(x)−
k2|x|α sgn(x) − k3|x|γ sgn(x) − k4x in several cases with
the disturbance d(t) = sin(10t) leading to δ = 1, the initial
condition x(0) = 3, α = 1.5 and γ = 0.5. Here are the three
cases:

• Case 1. k1 = 2, k2 = 2, k3 = 0, k4 = 0;
• Case 2. k1 = 2, k2 = 2, k3 = 2, k4 = 0;
• Case 3. k1 = 2, k2 = 2, k3 = 2, k4 = 2;

that leads to T (x0) ≤ 2s. Figure 1 shows that system (4) is
robust with respect to the disturbance for all cases and Figure 2
shows the induced chattering for the steady state x(t). The
settling-time of system (4) in case 3 is strictly lower than
the settling-time in cases 1 and 2 because the time-derivative
V̇ is rendered more negative. This explains the interest of
introducing additional terms in system (4) while keeping the
robust fixed-time stability.
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Fig. 1. Top. States x(t) versus time (sec) Bottom. u(t) versus time (sec)

B. Variable exponent coefficient

Consider the following new robust fixed-time stability result
using a state-dependent variable exponent coefficient.

Theorem 2: The system

ẋ(t) = −k|x(t)|
λx(t)2

1+µx(t)2 sgn(x(t)) + d(t)
x(0) = x0

(8)

with x(t) ∈ R, λ > 0 and µ > 0 such that θ = λ
1+µ > 1,

d(t) ∈ R an external disturbance such that |d(t)| < δ for a
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Fig. 2. Zoom on the steady state x(t) versus time (sec)

given δ > 0 and k > δe
λ
2e is globally fixed-time stable and

the settling-time satisfies

T (x0) ≤
1

(k − δ)(θ − 1)
+

1

ke
−λ
2e − δ

. (9)

Proof. First note that the function φ : x 7→ |x|
λx2

1+µx2 =

exp
(

λx2

1+µx2 ln(|x|)
)

is continuous at x = 0 with φ(0) = 1.
Therefore the right-hand side of (8) is locally bounded.

Consider the following quadratic Lyapunov function

V (x) = x2. (10)

It leads to
V̇ (x) = −2k|x|

λx2

1+µx2 +1
+ 2dx (11)

Consider the case V (x) ≥ 1. We have λx2

1+µx2 +1 ≥ λ
1+µ +

1 > 2. As |x| ≥ 1 and θ = λ
1+µ > 1 it leads to

V̇ (x) ≤ −2 (k − δ) |x|θ+1 (12)

≤ −2 (k − δ)V (x)
θ+1
2 (13)

As k− δ > 0 and θ+1
2 > 1 the proof of [9, Lemma 1] ensures

that all the solutions starting from {V (x) ≥ 1} reaches the set
{V (x) ≤ 1} in a fixed time T1 ≤ 1

(k−δ)(θ−1) .
Consider now the case V (x) ≤ 1. We have

V̇ (x) = −2k|x||x|
λx2

1+µx2 + 2dx (14)

As 1 + µx2 ≥ 1 and |x| ≤ 1 it leads to min

(
|x|

λx2

1+µx2

)
≥

min
(
|x|λx2

)
= e

−λ
2e and we have

V̇ (x) ≤ −2
(
ke

−λ
2e − δ

)
|x| (15)

≤ −2
(
ke

−λ
2e − δ

)
V (x)

1
2 (16)

with ke
−λ
2e − δ > 0. Theorem 4.2 in [4] implies that all the

solutions starting from {V (x) ≤ 1} reach the origin in a
uniform time T2 ≤ 1

ke
−λ
2e −δ

.

Finally, system (8) reaches the origin in a fixed time
T (x0) ≤ T1 + T2.

Figure 3 displays the time variations of the state x(t) and

u(t) = −k|x(t)|
λx(t)2

1+µx(t)2 sgn(x(t)) of system (8) with k = 3,
λ = 2, µ = 0.1 and d(t) = sin(10t). As δ = 1, it leads to
T (x0) ≤ 1.5s . Moreover, a zoom on the steady state x(t) of
system (8) is given in Figure 4.
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Fig. 3. Top. State x(t) versus time (sec) Bottom. u(t) versus time (sec)
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Fig. 4. Zoom on the steady state x(t) versus time (sec)

Remark 2: When x → ∞, system (8) is equivalent to the
system

ẋ(t) = −k|x(t)|
λ
µ sgn(x(t)) + d(t) (17)

with λ
µ > 1. If λ ≈ µ, it is possible to obtain a linear behavior

away from the origin.

When x = 0, given the continuity of x 7→ |x|
λx2

1+µx2 ,
system (8) is equivalent to the system

ẋ(t) = −k sgn(x(t)) + d(t) (18)

which is known to be robust with respect to the disturbances
but leads to chattering. This is the reason why high frequency
oscillations appears on Figure 3 for u(t); by a similar way
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chattering appear on the steady state x(t) of system (8) as
shown by Figure 4.

IV. APPLICATION TO SLIDING MODE CONTROL

In this section, consider the following uncertain nonlinear
second-order system

ẋ1 = x2

ẋ2 = f(x) + g(x)u+ d
(19)

with x = (x1, x2) ∈ R2 the state, u ∈ R the control input,
f and g continuous functions such that f(0) = 0, g(x) 6=
0 for all x ∈ R2 and d the external disturbance such that
|d(t)| < δ. The second-order systems have been widely used
in practice, see for instance [23]. The objective is to use the
previous results on robust fixed-time stability for designing
sliding mode controllers.

A. Constant exponent coefficient

Consider the standard sliding variable

s(x) = x2 + βx1 (20)

with β > 0 and the controller

u(x) = −g−1(x)
[
f(x) + βx2 + k1 sgn(s)

+k2|s|α sgn(s) + k3|s|γ sgn(s) + k4s
]

(21)

with k1 > δ, k2 > 0, k3 ≥ 0, k4 ≥ 0, α > 1 and 0 < γ < 1.
Proposition 1: The closed-loop system (19)–(20)–(21)

reaches the sliding surface {s(x) = 0} in a fixed-time
satisfying

T (s0) ≤
1

k1 − δ
+

1

k2(α− 1)
(22)

is also globally asymptotically stable.
Proof. s−dynamics read as

ṡ =f(x) + g(x)u(x) + βx2 + d

=− k1 sgn(s)− k2|s|α sgn(s)− k3|s|γ sgn(s)− k4s+ d
(23)

By using Theorem 1, the first part of the proposition is
deduced. When the sliding surface is reached, one has

ẋ1 = −βx1 (24)

which ensures the asymptotic stability of the closed-loop
system (19)–(20)–(21) towards the origin.

For the simulations, consider the functions f ≡ 0, g ≡ 1,
d(t) = sin(10t), the parameters β = 1, α = 1.5, γ = 0.5,
δ = 1 and the gains ki where i = 1, · · · , 4 given by the
different cases presented in Subsection III-A. Since all the
parameters are the same as in Subsection III-A, one still has
T (s0) ≤ 2s. The time evolution of the sliding variable s(t)
and the norms of the state variable ‖x(t)‖ associated to the
closed-loop system (19)–(20)–(21) are shown on Figure 5.

Remark 3: Let us remark that if system (4) is used for
building the simplest fixed-time sliding variable of the form

s(x) = x2 + β1|x1|α sgn(x1) + β2|x1|γ sgn(x1) (25)
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Fig. 5. Top. Sliding variables s(t) versus time (sec) Bottom. Norms of state
variable ∥x(t)∥ versus time (sec)

with β1 > 0, β2 > 0, α > 1 and 0 < γ < 1 it leads to
a singular controller, see for instance [16], [17]. With the
classical sliding surface (20), one can get the global robust
fixed-time stabilization of the s−system (23), as explained in
Proposition 1, but only the global robust asymptotic stabi-
lization of the x−system (19). However, the controller (21) is
easy to implement. Global robust fixed-time stabilization of the
global x−system (19) is obtained in [16], [17] with complex
sliding variables and controllers and in the next subsection by
using a state-dependent variable power coefficient.

B. Variable exponent coefficient

The main objective of this subsection is to design a new
simple sliding variable leading to global robust fixed-time
stabilization of system (19). Consider Theorem 2 and the
induced sliding variable with a state-dependent variable ex-
ponent coefficient given by

s(x) = x2 + β|x1|
λ1x2

1
1+µ1x2

1 sgn(x1) (26)

with θ1 = λ1

1+µ1
> 1, β > 0 and the controller

u(x) =− g(x)−1

[
f(x) + k|s|

λ2s2

1+µ2s2 sgn(s)

+
βλ1|x1|x2

1 + µ1x2
1

(
2 ln |x1|
1 + µ1x2

1

+ 1

)
|x1|

λ1x2
1

1+µ1x2
1

]
(27)

with θ2 = λ2

1+µ2
> 1, k > δe

λ2
2e .

Proposition 2: The closed-loop system (19)–(26)–(27) is
globally fixed-time stable and the settling-time satisfies

T (x0) ≤ 1

(k − δ)(θ2 − 1)
+

1

ke
−λ2
2e − δ

+
1

β(θ1 − 1)
+

1

βe
−λ1
2e

. (28)
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Proof. One has

ṡ = f(x) + g(x)u(x)

+
βλ1|x1|x2

1 + µ1x2
1

(
2 ln |x1|
1 + µ1x2

1

+ 1

)
|x1|

λ1x2
1

1+µ1x2
1 + d

= −k|s|
λ2s2

1+µ2s2 sgn(s) + d (29)

By using Theorem 2, one deduces that system (29) starting at
s(0) = s0 reaches the sliding surface {s = 0} in a fixed-time
satisfying T (s0) ≤ 1

(k−δ)(θ2−1) +
1

ke
−λ2
2e −δ

. From (26), one

has

ẋ1 = −β|x1|
λ1x2

1
1+µ1x2

1 sgn(x1). (30)

By using one more time Theorem 2, it is deduced that x1(t)
starting at x1(0) = x10 reaches the origin in a fixed-time
satisfying T (x10) ≤ 1

β(θ1−1) + 1

βe
−λ1
2e

. Finally, the closed-

loop system (19)–(26)–(27) reaches the origin in a fixed-time
T (x0) = T (s0) + T (x10) that is bounded by (28).

Consider the closed-loop system (19)–(26)–(27) with f =
0, g = 1, β = 0.2, λ1 = 2, λ2 = 4, µ1 = 0.1 µ2 = 1,
k = 10, x(0) = [0.1, x2(0)]

T and d(t) = sin(10t). In the
case, one gets T (x0) ≤ 13.7s. Figure 6 displays the time
evolution of the sliding variable s(t) and the state variable
x(t) = (x1(t), x2(t)).
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Fig. 6. Top. Sliding variable s(t) versus time (sec) Bottom. State variable
x(t) = (x1(t), x2(t)) versus time (sec)

The time evolution of the sliding variable s(t) given by sys-
tem (29) is plotted on Figure 7 for different initial conditions
x2(0).

Remark 4: Fist of all, the controller (27) is not singular due
to the fact that limx1→0 |x1| ln(|x1|) = 0. Then, if a more
simple sliding variable

s(x) = x2 + β|x1|λ|x1| sgn(x1) (31)
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Fig. 7. Sliding variable s(t) versus time for different initial conditions x2(0)

with β > 0, λ > 0 is chosen and if the controller reads as

u(x) =− g−1(x)
[
f(x) + βλ

(
x2 (ln |x1|+ 1) |x1||x1|

)
+ k|s||s| sgn(s)

]
(32)

with k > δ then

ṡ = f(x) + g(x)u(x) (33)

+βλ
(
x2 (ln |x1|+ 1) |x1||x1|

)
+ d (34)

= −k|s||s| sgn(s) + d (35)

The fixed-time stabilization is obtained but the controller u(x)
is singular due to the fact that limx1→0 |x1||x1| ln |x1| = −∞.

In order to reduce the chattering induced by the use of
controller (27), consider the following controller

u(x) =− g−1(x)

[
f(x) + k1 sgn(s) + k2|s|α sgn(s)

+
βλ1|x1|x2

1 + µ1x2
1

(
2 ln |x1|
1 + µ1x2

1

+ 1

)
|x1|

λ1x2
1

1+µ1x2
1

]
(36)

with k1 > δ, k2 > 0, α > 1.
Proposition 3: The closed-loop system (19)–(26)–(36) is

globally fixed-time stable and the settling-time satisfies

T (x0) ≤ 1

k1 − δ
+

1

k2(α− 1)
(37)

+
1

β(θ1 − 1)
+

1

βe
−λ1
2e

. (38)

Proof. One has

ṡ = f(x) + g(x)u(x)

+
βλ1|x1|x2

1 + µ1x2
1

(
2 ln |x1|
1 + µ1x2

1

+ 1

)
|x1|

λ1x2
1

1+µ1x2
1 + d

= −k1 sgn(s)− k2|s|α sgn(s) + d (39)

By using Theorem 1, one deduces that system (39) starting at
s(0) = s0 reaches the sliding surface {s = 0} in a fixed-time
satisfying T (s0) ≤ 1

k1−δ + 1
k2(α−1) . Then it yields

ẋ1 = −β|x1|
λ1x2

1
1+µ1x2

1 sgn(x1) (40)
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By using Theorem 2, it is deduced that x1(t) starting at
x1(0) = x10 reaches the origin in a fixed-time satisfying
T (x10) ≤ 1

β(θ1−1) + 1

βe
−λ1
2e

. Finally, the closed-loop sys-

tem (19)–(26)–(36) reaches the origin in a fixed-time T (x0) =
T (s0) + T (x10).

The time evolution of the sliding variable s(t) and the state
variable x(t) = (x1(t), x2(t)) associated to the closed-loop
system (19)–(26)–(36) is plotted on Figure 8 with the same
parameters as before and k1 = k2 = 20, α = 1.5. So one gets
T (x0) ≤ 13.5s.
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Fig. 8. Top. Sliding variable s(t) versus time (sec) Bottom. State variable
x(t) = (x1(t), x2(t)) versus time (sec)

Remark 5: The use of the sliding variable (26) with a state-
dependent variable exponent coefficient leads to the global
robust fixed-time stabilization of the global x−system (19)
with the simple controllers (27) and (36) such that the closed-
loop system behaves like the standard SMC around the sliding
surface. So, a robust behavior of the closed-loop system is
obtained similar to the standard SMC but in fixed time.
When using system (1) with constant exponent coefficients
for building a sliding variable for fixed-time stabilization, the
associated controller is singular, see [16], [17].

Remark 6: Note that the proposed fixed-time SMC solution
has the advantage of being simple and easy to tune with respect
to the methods presented in [16], [17]. Indeed, our controllers
have 6 parameters to tune whereas the controllers in [16] have
14 parameters. In [17], 6 scalar parameters need to be chosen
as well as a function to define the sliding surface. The choice
of this function is not obvious since it is based on properties of
its time-derivative. Finally, both controllers in [16], [17] have
a singularity which imposes to use a switched structure and
this makes the controller more complex.

V. CONCLUSION

This article deals with global robust fixed-time stability.
Several robust fixed-time stability results involving constant
and state-dependent variable exponent coefficients are pro-
vided and applied to the robust fixed-time stabilization of a
class of uncertain nonlinear second-order systems by using

sliding-mode control. For future works, a high order sliding
mode strategy could be used for reducing the chattering when
dealing with robust fixed-time stabilization.
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A. G. Loukinanov, “Variable structure predefined-time stabilization of
second-order systems,” Asian Journal of Control, vol. 21, no. 3, pp.
1179–1188, 2019.

[20] Y. Song, Y. Wang, and M. Krstic, “Time-varying feedback for stabi-
lization in prescribed finite time,” International Journal of Robust and
Nonlinear Control, vol. 29, no. 3, pp. 618–633, 2019.

[21] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered
control for nonlinear systems,” IEEE Transactions on automatic control,
vol. 55, no. 9, pp. 2030–2042, 2010.

[22] E. Tahoumi, F. Plestan, M. Ghanes, and J.-P. Barbot, “New robust control
schemes based on both linear and sliding mode approaches: Design
and application to an electropneumatic actuator,” IEEE Transactions on
Control Systems Technology, 2020.

[23] G. Bartolini, A. Ferrara, and E. Usai, “Applications of a sub-optimal
discontinuous control algorithm for uncertain second order systems,”
International Journal of Robust and Nonlinear Control, vol. 7, no. 4,
pp. 299–319, 1997.


