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Abstract

This paper investigates the robust flocking problem for second-order nonlinear systems with a leader and external

disturbances. In contrast with most of second-order systems in the literature, the intrinsic dynamics here are nonlinear

and non-identical that depend not only on the velocity but also on the position, which is more realistic. Moreover, the

interaction topology is undirected and switching. Provided that the leader’s velocity may be constant or time-varying,

two distributed flocking control laws have been proposed for two cases to make the differences of the velocities

between all followers and the leader approach to zero asymptotically. The proposed distributed flocking control laws

are both model-independent which results in the effectiveness of the controllers to cope with the different intrinsic

dynamics of the followers and the leader under some assumptions on boundedness of several states. An example is

given to illustrate the validity of the theoretical results.
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1 Introduction

Multi-agent systems have attracted enormous attention

from a large variety of fields including social science,

animal behavior, smart grids, physics, biology, intelligent

transportation and some areas in engineer, due to its

vastly useful application in practice. A multi-agent sys-

tem consists of some agents communicating with each

other locally by some kind of link, aiming to complete

various controller goals via local interaction of designated

agents by designing some suitable controllers. In control

theory, multi-agent systems have been focused on a lot

in several directions, such as flocking [1–6], sensor net-

works, spacecraft formation flying [7–10], consensus [11–

17], rendezvous [18], axial alignment, cooperative surveil-

lance, etc.

Among these different directions, flocking is a form of

collective behavior of numerous interacting agents with

the purpose of reaching a common group mission. This

behavior is ubiquitous in nature like a self-organized
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group with the ability to coordinate group behavior, such

as flocking of birds, fish, and bees, etc. It has a tremendous

number of potential applications in reality. For instance,

by employing flocking of cooperative unmanned aerial

vehicles (UAVs), one nation could perform necessary mil-

itary missions such as reconnaissance, etc. Therefore, it is

of huge significance for researchers to concentrate on the

study of flocking. As early as in 1986, three flocking rules

were brought forward by Reynolds based on the animals’

behavior as follows [19].

1. Collision Avoidance: avoid collisions with nearby

flockmates;

2. Velocity Matching: attempt to match velocity with

nearby flockmates;

3. Flock Centering: attempt to stay close to nearby

flockmates.

These rules are also called separation, alignment, and

cohesion, respectively, in [1]. Under the assumption that

all agents are informed with a constant virtual leader’s

velocity, the author has proposed a theoretical framework

for design and analysis of distributed flocking algorithms

by the introduction of α-,β-, and γ -agents in [1], where

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1007/s43684-021-00007-x&domain=pdf
http://orcid.org/0000-0002-4938-0468
mailto: houshengsu@gmail.com
http://creativecommons.org/licenses/by/4.0/


Li et al. Autonomous Intelligent Systems             (2021) 1:7 Page 2 of 10

the simple second-order dynamics have been studied. And

both the free-space and the obstacle-space have been

taken into account in several cases. In [20] it has been

shown that the flocking algorithm in [1] still drives all

agents to the same velocity even if only a part of agents

could receive the information of the leader’s velocity. A

flocking algorithm with multi-target tracking for multi-

agent systems has been provided in [21], in which the

authors proposed a method to implement the multi-target

missions under the introduction of two types of potential

functions. By using virtual force and pseudo-leader mech-

anism, the authors in [22] have proposed an approach to

determine the pseudo-leaders among all agents. A uni-

fied optimal control framework has been proposed for

flocking of second-order multi-agent systems in [23] and

the authors utilized a sort of new inverse optical control

strategy to procure the optimal control law along with

the occurrence of a challenging optimal problem. The

second-order systems with nonlinear intrinsic dynamics

have been discussed for the flocking problem with a gen-

eral switching graph in [24] by using a leader-following

strategy and pinning control. The more general second-

order systems with nonlinear intrinsic dynamics have

been considered for flocking problem with a virtual leader

in [2], where all agents have the same intrinsic nonlinear

dynamics as well as the virtual leader governed by locally

Lipschitz nonlinearity. Apart from the second-order point

models aforementioned, nonlinear Euler-Lagrange sys-

tems have been investigated for the flocking problem in

[25] and the flocking is reached by designing an adaptive

controller. For more details on flocking problem, we refer

readers to the survey [26, 27].

Based on these aforesaid, this paper investigates the

robust flocking problem for second-order systems with a

leader on undirected switching networks. Two distributed

flocking control protocols are presented to achieve flock-

ing asymptotically for two cases according to if the leader’s

velocity is constant or time-varying. Compared with the

existing flocking problem in the literature, the contri-

butions of this paper are threefold. First, the intrinsic

dynamics are non-identical, that is, the intrinsic dynamics

of all followers are all different from each other. Second,

the external disturbances are considered in the dynamic

equations of followers. Third, the intrinsic dynamics are

nonlinear, which rely not only on the velocity but also

on the position. Additionally, it should be noted that the

proposed distributed flocking control laws are model-

independent which results in the effectiveness of the

controller to tackle the different intrinsic dynamics of

the followers and the leader under some assumptions

on boundedness of several states by virtue of Lyapunov

theory.

The remainder of this paper is organized as follows.

Section 2 gives some notations and the background of

graph theory and nonsmooth analysis. The problem state-

ment is presented in Section 3. And main results are

provided in Section 4 which are divided into two cases:

one is the case with constant leader’s velocity, and the

other is the case with time-varying leader’s velocity. An

illustrative example is given to demonstrate the effective-

ness of the theoretical results in Sections 5 and 6 draws

the conclusion.

2 Preliminaries

2.1 Notation

Let Rn and R
n×m be the sets of n-dimensional vectors

and n × m matrices, respectively. R+ denotes the set

of nonnegative real numbers and diag{a1, a2, . . . , an} is

the diagonal n × n matrix with diagonal entries equal

to a1, a2, . . . , an. 0 is a vector or matrix with compatible

dimension with all entries 0 and 1 is denoted analogously.

For a vector x ∈ R
n, sgn(x) denotes the signum function

for every element of x. And ||x||1 := |x1| + |x2| · · · + |xn|
is the 1-norm of a vector. Given a matrixM, λmin(M) and

λmax(M) are, respectively, the smallest and largest eigen-

values ofM. ||x|| and ||A|| stand for the standard Euclidean
norm of a vector x ∈ R

n and the induced norm of a

matrix A ∈ R
n×n, respectively. Subscript T represents the

transpose of a vector or matrix.

2.2 Graph theory

A graph with N nodes is defined by GN = (VN , EN ) con-

sisting of a set of vertices VN = {v1, v2, . . . , vN } and a set

of edges EN ⊆ VN ×VN . An edge (vi, vj) ∈ EN means node

j could receive information from node i, in which node i

is called a neighbor of node j. A graph is called undirected

if any (vi, vj) ∈ EN implies (vj, vi) ∈ EN , and directed oth-

erwise. A directed path in a directed graph is a sequence

of edges of the form (i1, i2), (i2, i3), . . ., and an undirected

path in undirected graph is defined analogously. An undi-

rected graph is called connected if there is an undirected

path between every pair of distinct nodes. The neighbor

set of node i is denoted byNi = {vj ∈ VN : (vj, vi) ∈ EN }.
Define the adjacency matrix AN = (aij) ∈ R

N×N as:

aij > 0 if vj ∈ Ni, aij = 0 (i �= j) otherwise and aii = 0, i =
1, 2, . . . ,N . The Laplacian matrix associated with AN is

defined as LN = (lij) ∈ R
N×N , lii =

∑N
j=1 aij and lij =

−aij, i �= j. Combined with the leader, the followers graph

is expanded to be a new graph GN+1 = (VN+1, EN+1)

with the adjacency matrix AN+1 = (aij) ∈ R(N+1)×(N+1)

defined as ai0 > 0 if (0, i) ∈ EN+1 and ai0 = 0 other-

wise, i = 1, 2, . . . ,N , a0k = 0 for all k = 0, 1, . . . ,N , and

aij, i, j = 1, 2, . . . ,N , is the same defined as in AN . Define

M := LN + diag{a10, a20, . . . , aN0}. For the followers and
leader graph, let N̂i ⊆ {0, 1, . . . ,N} denote the neighbor

set of follower i. In addition, for the case of switching

graph topology, we assume that the agents have the same

communication/sensing radii R > 0, i.e., j ∈ N̂i(t) if



Li et al. Autonomous Intelligent Systems             (2021) 1:7 Page 3 of 10

||xj(t)−xi(t)|| < R and j /∈ N̂i(t) if ||xj(t)−xi(t)|| ≥ R, i =
1, 2, . . . ,N , j = 0, 1, . . . ,N .

In this paper, the results are based on the following

assumption on the communication graph.

Assumption 1 The graph GN is undirected and the

leader in GN+1(t) has directed paths to all followers at the

initial time t = 0.

It is worth noting that Assumption 1 is a weak condi-

tion, which is only postulated at the initial time, instead

of the whole time duration which has been widely used in

many existing works. Compared with the whole duration,

this assumption is easily satisfied at the initial time by con-

trived deployment, which has also been employed in such

as [2, 28].

Regarding the flocking problem, the following lemma

will be used later.

Lemma 1 ([29]) If the graph GN is undirected and the

leader in GN+1 has directed paths to all followers, then M

is symmetric positive-definite.

2.3 Nonsmooth analysis

Given the differential equation ([30])

ẋ = f (x, t), (1)

where f : Rn × R → R
n is measurable and essentially

locally bounded. A vector function x(·) is called a Filip-

pov solution of (1) if x(·) is absolutely continuous and

ẋ ∈ K[ f ] (x, t) for almost everywhere, where K[ f ] (x, t)

denotes the smallest convex closed set containing all the

limit values of the vector-valued function f (xi, t) for xi →
x and a constant t. For a locally Lipschitz functionV : Rn×
R → R, the generalized gradient ofV at (x, t) is defined by

∂V (x, t) := co{lim∇V (x, t)| (xi, ti) → (x, t), (xi, ti) /∈ �V },
where�V is the set of measure zero on which the gradient

of V with respect to x or t is not defined. The generalized

time derivative of V (x, t) with respect to t is defined as

˙̃V :=
⋂

ξ∈∂V (x,t)

ξT
(
K[ f ] (x, t)

1

)
.

The following nonsmooth version of LaSalle’s theorem

is useful later.

Lemma 2 ([30]) Let � be a compact set such that every

Filipov solution to the autonomous system ẋ = f (x), x(0) =
x(t0) starting in� is unique and remains in� for all t ≥ t0.

Let V : � → R be a time independent regular function

such that v ≤ 0 for all v ∈ ˙̃V (if ˙̃V is the empty set then

this is trivially satisfied). Define S = {x ∈ �| 0 ∈ ˙̃V }. Then
every trajectory in � converges to the largest invariant set,

S0, in the closure of S.

3 Problem statement

Consider a multi-agent system consists of N followers

labeled as 1 to N. In the meantime, the dynamics of each

follower i satisfy the following non-identical second-order

nonlinear differential equations ([17, 29, 31])

ẋi = vi,

v̇i = fi(xi, vi) + ui + wi, i = 1, 2, . . . ,N , (2)

where xi ∈ R
n, vi ∈ R

n, and ui ∈ R
n are the position,

velocity, and control input of follower i, respectively. Fur-

thermore, wi ∈ R
n is the continuous external disturbance

of follower i. And fi : R
n × R

n → R
n is continuously

differentiable nonlinear function.

Meanwhile, there exists a leader labeled as agent 0

besides those N followers, whose state is represented by

position x0 and velocity v0 with the derivative of v0 being

bounded, i.e., ||v̇0|| ≤ H1, where H1 > 0 is a constant.

Note that v0 could be either constant or time-varying. For

flocking of multi-agent systems, the objective is to achieve

the following properties by designing distributed cooper-

ative control law, which are also known as three flocking

rules of Reynolds [19]:

1. ||vi(t) − v0(t)|| → 0 as t → ∞, ∀i = 1, 2, . . . ,N .

2. The agents attempt to stay close to nearby flockmates.

3. Collisions are avoided among all agents.

For the purpose of reaching flocking for multi-agent

systems, the following assumption is utilized necessarily.

Assumption 2 x0, v0, v̇0,wi, xi, and vi are bounded for

i = 1, 2, . . . ,N.

Note that wi needs to be bounded for the sake of robust

flocking since its exact value could not be obtained by

followers that have only local interactions. In addition,

the trajectory of the leader is not necessary to be exactly

known as long as its state is bounded, which is a sort

of generic assumption. Therefore, this scenario is really

a generation of a variety of results in the literature. For

instance, the leader has the same intrinsic dynamic as the

followers in [22]. In reality, it is natural to require the states

of all agents to be bounded due to the consideration of

safety and restricted field, etc. However, the bound could

be any large what we need in practice.

For robust flocking, the connectivity-preservingmecha-

nism (see [2, 18]) for undirected switching graph, roughly

speaking, guarantees that one follower or the leader wills

till be a neighbor of another follower for any time t > 0

as long as it is the case at the initial time t = 0. The

mechanism is described as follows.

i) Initial edges are generated by

E(0) = {(i, j)| ||xj(0) − xi(0)|| < r, i, j ∈ V}. (3)
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ii) Let φi(j)(t) ∈ {0, 1} represent whether or not follower
j is a neighbor of follower i, which is defined as follows.

φi(j)(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0,

{
if [ (φi(j)(t

−) = 0) ∩ (||xj(t) − xi(t)|| ≥ R − ǫ)]

∪[ (φi(j)(t
−) = 1) ∩ (||xj(t) − xi(t)|| ≥ R)] ,

1,

{
if [ (φi(j)(t

−) = 0) ∩ (||xj(t) − xi(t)|| < R − ǫ)]

∪[ (φi(j)(t
−) = 1) ∩ (||xj(t) − xi(t)|| < R)] .

(4)

iii) Here 0 < r < R and 0 < ǫ ≤ R.

Note that ǫ in this paper is chosen to equal the sensing

radius of followers, i.e., ǫ = R, which prevents new edges

from being added to the initial graph at initial time 0.

The following definition states the notion of potential

function.

Definition 1 The potential function Vij is a continuously

differentiable, nonnegative function of ||xi − xj|| satisfying
the following conditions.

1. Vij achieves its unique minimum when ||xi − xj|| is
equal to its desired value dij.

2. Vij → ∞ as ||xi − xj|| → 0.

3. Vij → ∞ as ||xi − xj|| → R.

4. Vii = c, i = 1, 2, . . . ,N , where c is a positive constant.

For example, Vij could be given as

Vij =

⎧
⎪⎨
⎪⎩

+∞, ||xi − xj|| = 0,
2R

||xi−xj||2(R−||xi−xj||) , ||xi − xj|| ∈ (0,R),

+∞, ||xi − xj|| = R.

(5)

Similar to Lemma 3.1 in [32], we have the following

lemma.

Lemma 3 Let Vij be defined in Definition 1. The follow-

ing equality holds:

1

2

N∑

i=1

∑

j∈N̂i

(
∂Vij

∂xi
ẋi +

∂Vij

∂xj
ẋj

)
=

N∑

i=1

∑

j∈N̂i

∂Vij

∂xi
ẋi. (6)

For simplicity, let n = 1 in this paper. Note that it is

straightforward to extend the results to the case of general

dimension by means of the Kronecker product ⊗.

4 Main results

This section focuses mainly on the robust flocking prob-

lem for multi-agent system (2) with the velocity of the

leader being time-varying. In this case, the distributed

flocking algorithm is proposed as

ui = −
∑

j∈N̂i(t)

∂Vij

∂xi
− k2sgn(vi − v̂i0) − k3 · sgn

⎛
⎝ ∑

j∈N̂i(t)

aij(v̂i0 − v̂j0)

⎞
⎠

− k1
∑

j∈N̂i(t)

aij(vi − vj), i = 1, 2, . . . ,N ,

(7)

where k1, k2, k3 are positive control gains to be determined

later, and v̂i0 is the estimate of the leader’s velocity by fol-

lower i with v̂00 = v0, satisfying the following adaptation

law:

˙̂vi0 = −k3 · sgn

⎛
⎝ ∑

j∈N̂i(t)

aij(v̂i0 − v̂j0)

⎞
⎠ , i = 1, 2, . . . ,N .

(8)

Physically speaking, the first term on the right-hand

side of (7) is used to preserve the initial connectivity

among agents at all times, the second term is designed to

deal with the nonlinearity and disturbance in the agent’s

dynamics, the third term is introduced to counteract the

impact of time-varying v0, and the last term is employed

to align all agents’ velocities.

Under input (7), system (2) can be rewritten as

˙̃x = ṽ,

˙̃v ∈a.e. K[ L1 + N1 − k1Mṽ − k2sgn(v̂0) + ˙̂v0 − v̇01 − V1] ,

(9)

where x̃ = (x̃1, x̃2, . . . , x̃N )T , x̃i = xi − x0, ṽ =
(ṽ1, ṽ2, . . . , ṽN )T , ṽi = vi − v0, L1 :=

(
L11, L

1
2, . . . , L

1
N

)T
,

N1 :=
(
N1
1 ,N

1
2 , . . . ,N

1
N

)T
, L1i := wi + fi(x0, v0), N

1
i :=

fi(xi, vi) − fi(x0, v0), i = 1, 2, . . . ,N , V1 :=
(∑

j∈N̂1(t)
∂V1j

∂x1
,

. . . ,
∑

j∈N̂N (t)
∂VNj

∂xN

)T
, v̂0 := (v̂10, v̂11, . . . , v̂N0)

T , v̂0 :=
(
v̂01, v̂

0
2, . . . , v̂

0
N

)T
, v̂0i := vi − v̂i0, K[ ·] means the differ-

ential inclusion defined in last section, and a.e. stands

for “almost everywhere”. From Assumption 2, it is obvi-

ous to see that ||L1|| is bounded and in view of the mean

value theorem, there exists a positive nondecreasing func-

tion α0 such that ||N1|| ≤ α0(||y||)||y|| (see [29]), where

y = (x̃T , ṽT )T . After denoting α(z) := α0(z)z, z ≥ 0,

which is a positive nondecreasing function as well, one has

||N1|| ≤ α(||y||). As a result, it follows from Assumption 1

that there exists a positive constantH2 such that ||y|| ≤ H2

and hence ||N1|| ≤ α(H2). We are now ready to given the

flocking result.

Theorem 1 Under Assumptions 1 and 2, the distributed

flocking algorithm (7) for multi-agent system (2) can ensure

that velocity differences between all followers and the

leader ultimately converge to zero, i.e., limt→∞ ||vi(t) −
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v0(t)|| = 0, i = 1, 2, . . . ,N, and the collision of all agents is

avoided, if the following inequalities hold:

k2 ≥ ||L2|| + α(H2), k3 >
√
NH1. (10)

Proof Let t0 = 0, t1, t2, . . . be the switching time slots

of interaction networks for system (2). Constructing the

Lyapunov function candidate as

V = 1

2

N∑

i=1

∑

j∈N̂i(t)

Vij +
N∑

i=1

Vi0 + 1

2
ṽT ṽ. (11)

Then the generalized derivative of V is calculated as

˙̃V = 1

2

N∑

i=1

∑

j∈N̂i(t)

(
∂Vij

∂ x̃i
˙̃xi +

∂Vij

∂ x̃j
˙̃xj
)

+
N∑

i=1

(
∂Vi0

∂ x̃i
˙̃xi +

∂Vi0

∂ x̃0
˙̃x0

)
+ ṽT ˙̃v

=
N∑

i=1

∑

j∈N̂i(t)

∂Vij

∂ x̃i
˙̃xi +

N∑

i=1

∂Vi0

∂ x̃i
˙̃xi − ṽTV1

− k1ṽ
TMṽ + k2ṽ

TK[ sgn(v̂0)]+ṽT ˙̂v0
− K[ v̇0] ṽ

T1 + ṽT (L1 + N1)

= −k1ṽ
TMṽ − k2ṽ

TK[ sgn(v̂0)]+ṽT ˙̂v0
− K[ v̇0] ṽ

T1 + ṽT (L1 + N1)

≤ −k1λmin(M)||ṽ||2 + (k2 + k3 + H1)||ṽ||1
+ (||L1|| + α(||y||))||ṽ||
≤[ (k2 + k3 + H1)

√
N + ||L1|| + α(||y||)] ||ṽ||

≤[ (k2 + k3 + H1)
√
N + ||L1|| + α(H2)]

√
2V , (12)

where we have used Lemma 3 and the fact ˙̃x0 = 0. (12)

directly leads to that V (t) ≤ (
√
V (0) + t1[ (k2 + k3 +

H1)
√
2N +

√
2(||L1|| + α(H2))] /2)

2 for any t ∈[ t0, t1).
As a consequence, V is bounded in time [ t0, t1). More-

over, in view of the definition of potential function, one

follower is always a neighbor of another follower or the

leader once it is the case at the initial time t = 0, since

the potential function and thereby V will become infinite

as ||xj − xi|| → R. Hence, no existing edge will be lost

in any time t ∈[ t0, t1]. Additionally, from the definition

of connectivity-preserving mechanism, no new edges are

added to the interaction structure of initial graph at time

t = 0. Consequently, inequality (12) is still correct for

any time t ∈[ t0, t1]. Similarly, it can be concluded that the

network structure in any time interval [ tk , tk+1), k ≥ 1 is

always the same as that of initial graph at time t = 0. That

is, Assumption 1 holds for all time t ≥ 0.

To proceed, consider the estimator (8). Using the nota-

tion v̂0 and nonsmooth analysis, (8) can be rewritten

as

˙̂v0 ∈a.e. −K[ k3sgn(Mv̂0) + v̇01] . (13)

Constructing the Lyapunov function candidate as

V = 1

2
(v̂0)TMv̂0, (14)

whose generalized derivative is derived as

˙̃V = −k3(v̂
0)TMK[ sgn(Mv̂0)]−K[ v̇0] (v̂

0)TM1

≤ −k3||Mv̂0||1 + H1||Mv̂0||1
≤ −k3||Mv̂0|| +

√
NH1||Mv̂0||

≤ −(k3 −
√
NH1)||Mv̂0||, (15)

which is negative if k3 >
√
NH1. As previously shown,

Assumption 1 holds for all time t ≥ 0 and thus (15) is

correct with fixed M for all time t ≥ 0. And M is positive

definite by Lemma 1. With reference to Theorem 3.1 in

[30], one has limt→∞ v̂0 = 0. Moreover, by inequality (15),

it can be obtained

˙̃V ≤ −(k3 −
√
NH1)||Mv̂0||

= −(k3 −
√
NH1)

√
(v̂0)TMTMv̂0

≤ −(k3 −
√
NH1)

√
λmin(M2)||v̂0||

≤ −(k3 −
√
NH1)

λmin(M)√
λmax(M)

√
2V , (16)

which follows that

√
V (t) ≤

√
V (0) −

√
2λmin(M)(k3 −

√
NH1)t

2
√

λmax(M)
.

Therefore, vanishing the right-hand side yields that

v̂i0 → v0 in finite time T0, that is, v̂i0 = v0,∀t ≥ T0, i =
1, 2, . . . ,N , where T0 is defined by

T0 :=
√

λmax(M)(v̂0(0))TMv̂0(0)

λmin(M)(k3 −
√
NH1)

. (17)

As for T0 in (17), there must exist a constant l ∈ N such

that T0 ∈[ tl, tl+1). At this stage, partitioning the time into

two parts: t ∈[ 0, tl) and t ∈[ tl,∞). When t ∈[ 0, tl), (12)
has shown that V (t) ≤ (

√
V (0)+ tl[ (k2 +k3 +H1)

√
2N +√

2(||L1|| + α(H2))] /2)
2 for any t ∈[ 0, tl) and thus V (t) is

bounded. When t ∈[ tl,∞), v̂i0 = v0, i = 1, 2, . . . ,N . The

generalized derivative of V in (11) can be evaluated as

˙̃V ≤ −k1λmin(M)||ṽ||2 − (k2 − ||L1|| − α(H2))||ṽ||,
(18)

which is negative if k2 ≥ ||L2|| + α(H2). Notice that

{y(T)| ||y(T)|| ≤ α−1(k2 − ||L1||)} is a compact set and

V̇ = 0 implies that ṽ = 0, i.e., ṽi = v0. Invoking Lemma 2,

one concludes that limt→∞ ||vi−v0|| = 0, and the collision

is avoided since V will become infinite as ||xi − xj|| → 0
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which contradicts the boundedness of V. This completes

the proof.

Remark 1 In comparison with existing results, such as

[2, 20–24], this paper is the first to address the flock-

ing problem for multiple agent systems with non-identical

intrinsic dynamics and external disturbances. The main

difficulties lie in the controller design and its convergence

analysis for the studied problem.

As a special case, when the velocity of the leader is con-

stant, i.e., v̇0 = 0, a simpler distributed flocking algorithm

for (2) can designed as

ui = −
∑

j∈N̂i(t)

∂Vij

∂xi
− k2sgn(vi − v̂i0) − k1

∑

j∈N̂i(t)

aij(vi − vj), i = 1, . . . ,N

(19)

where notations are the same as exploited in (7). Besides,

the adaptation law (8) of v̂i0 is somewhat simplified to

˙̂vi0 = −sgn

⎛
⎝ ∑

j∈N̂i(t)

aij(v̂i0 − v̂j0)

⎞
⎠ , i = 1, 2, . . . ,N .

(20)

The controller (19) has the same physical meaning as

that of (7), and the main difference is that the third term

on the right-hand side of (7), which are introduced to off-

set the time dependence of v0, is unnecessary here since

v0 is constant.

Similarly, as argued earlier in the proof of Theorem

1, one can obtain that all the estimators v̂i0 will con-

verge to v0, i = 1, 2, . . . ,N in finite time T1 :=√
λmax(M)(v̂0)TMv̂0/λmin(M), and the similar result to

Theorem 1 is provided as follows.

Theorem 2 Under Assumptions 1 and 2, the distributed

flocking algorithm (19) for systems (2) can ensure that

velocity differences between all followers and the leader

will ultimately converge to zero, i.e., limt→∞ ||vi(t)−v0|| =
0, i = 1, 2, . . . ,N, and the collision of all agents is avoided

if the following inequality holds:

k2 ≥ ||L1|| + α(H2). (21)

5 An illustrative example

In this section we mainly present an example to illustrate

the effectiveness of the theoretical results. In the exam-

ple, the flocking problem consists of 8 followers labeled as

i, i = 1, 2, . . . , 8 and a leader labeled as 0, in which each

agent has the following intrinsic dynamics that is adapted

from the example in [2]:

fi(xi, vi) =

⎛
⎝

10(vi2 − vi1) − xi1 + i
10

2vi1 − vi1vi3 − vi2 − xi2 + 2 sin(π i
9 )

vi1vi2 − 2.5vi3 − xi3 + cos( i
8 )

⎞
⎠ , (22)

where xi = (xi1, xi2, xi3)
T , vi = (vi1, vi2, vi3)

T with the

initial positions (0.99, 4.23, 2.83)T , (1.89, 0.11, 3.09)T ,

(4.69, 1.43, 0.73)T , (0.89, 6.51, 3.59)T , (3.73, 1.23, 2.03)T ,

(1.17, 2.01, 5.27)T , (0.38, 3.48, 2.31)T , (2.98, 0.98, 3.08)T

for followers 1, 2, . . . , 8, respectively, and the ini-

tial velocities (3.39, 2.92, 1.21)T , (3.11, 2.21, 5.82)T ,

(4.79, 0.66, 2.64)T , (3.09, 4.23, 1.28)T , (4.43, 1.70, 5.12)T ,

(2.17, 5.11, 3.15)T , (1.88, 2.62, 0.59)T , (3.99, 1.15, 5.18)T

for followers 1, 2, . . . , 8, respectively. For the leader, it has

the following intrinsic dynamics:

f0(x0, v0) =

⎛
⎝

10(v02 − v01) − x01
2v01 − v01v03 − v02 − x02
v01v02 − 2.5v03 − x03

⎞
⎠ , (23)

where x0 = (x01, x02, x03)
T , v0 = (v01, v02, v03)

T with the

initial position x0(0) = (4, 5, 3.5)T and the initial velocity

v0(0) = (2, 2.5, 3)T .

Furthermore, the external disturbances wi is given by

wi(t)=
(
2 sin(

π i

12
t), 0, cos(

π i

2
t)

)T

, i=1, 2, . . . , 8. (24)

This example is related to the following potential function

Vij =

⎧
⎨
⎩

+∞, ||xi − xj|| = 0,
R

||xi−xj||(R−||xi−xj||) , ||xi − xj|| ∈ (0,R),

+∞, ||xi − xj|| = R.

(25)

Meanwhile, the initial interaction topology is given by

E(0) = {(i, j)| ||xj(0) − xi(0)|| < r, i, j ∈ V} with r = 7. For

the estimate v̂i0 of the leader velocity v0, the initial value

is given by v̂i0(0) = (3, 1.5, 0.6)T , i = 1, 2 . . . , 8. For some

parameters, let k1 = 2, k2 = 12, k3 = 15, and consider the

directed graph by making the sensing radius R = 10.

Figure 1 shows that the estimates of leader velocity def-

initely converge to the actual leader velocity in finite time,

and Fig. 2 shows the initial position and velocity struc-

ture, from which it is obvious to see that all followers

are moving in different directions. And Fig. 3 presents

that all followers match the velocity of the leader, which

reachs the velocity matching as a flocking rule, and at

the same time the collision avoidance and flocking cen-

tering rules are achieved as shown in Fig. 3. Furthermore,

Fig. 4 precisely depicts the velocity matching rule, which

means that the velocities of all followers will be equal to

the velocity of the leader.

6 Conclusion

The robust flocking problem for second-order systems is

investigated with external disturbances in this paper, in

which the intrinsic dynamics are all distinct from each

other for all agents. Moreover, the intrinsic dynamics,
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Fig. 1 Velocity convergence of estimates and here v01 , v02 , v03 are x, y, z components of leader velocity v0 , respectively, and v10 , v20 , v30 are x, y, z

components of observer to leader velocity v0 , respectively

Fig. 2 Initial states
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Fig. 3 Final states

Fig. 4 Velocity convergence of follower and here v01 , v02 , v03 are x, y, z components of leader velocity v0 , respectively
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which are not like most of the second-order systems dis-

cussed in the literature, are nonlinear that depend not

only on the velocity but also on the position which is

more practical. Two distributed flocking control laws have

been proposed to make the differences of the velocity

between all followers and the leader approach to zero

asymptotically based on that the leader’s velocity may

be constant or time-varying. The proposed distributed

flocking control laws are both model-independent which

results in the effectiveness of the controllers to cope

with the different intrinsic dynamics of the followers

and the leader under some assumptions on bounded-

ness of several states. Finally, an example is presented

to illustrate the efficiency of the theoretical results.

Future directions include the investigation of finite-time

robust flocking by using continuous-time controllers, and

the scenario with stochastic and possibly unbounded

disturbances.
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