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ABSTRACT

While many algorithms exist for accurate extraction of for-
mant frequencies from a speech waveform, these algorithms
are not typically shown to be robust in the presence of
highly-transient background noise such as competing
speech waveforms. Preliminary results are presented from
an algorithm using time-varying adaptive filters that appears
to be robust in the presence of white, Gaussian noise or a
single competing speaker over a large range of signal-to-
noise ratios (quiet to −6 dB). Use of a synthesized sen-
tence, for which the actual formant frequencies are known,
permits quantitative assessment of the algorithm’s accuracy
as a function of signal-to-noise ratio.

1. INTRODUCTION

Signal processing methods for tracking formants typically
utilize some form of spectral analysis and estimate the for-
mant frequencies from the spectral peaks [1, 2, 3]. Such
“peak picking” is made difficult when there is transient
background noise at a similar amplitude to a formant or
when neighboring formants are close together in frequency
such that their spectral shapes overlap. Rao and Kumaresan
suggested the use of adaptive filters to preprocess a speech
stimulus before spectral estimation [4], such that only one
formant is tracked by each adaptive filter and subsequent
spectral estimator—energy from neighboring formants is ig-
nored. We hypothesize that this algorithm would similarly
be effective in reducing the influence of background noise
on formant frequency estimates.

Promising results were obtained by Rao and Kumare-
san for test speech stimuli in quiet, but the algorithm was
not implemented in a fashion suitable for real-time applica-
tion. For many applications, such as dynamic formant en-
hancement in a digital hearing aid [5], any algorithm must
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be suitable for implementation in real-time with minimal
time lag in the formant estimates. Additionally, the algo-
rithm must be robust, so that if it momentarily loses track
of a formant, it can quickly refind the formant in the next
segment of voiced speech.

2. IMPROVEMENTS TO THE ALGORITHM OF
RAO AND KUMARESAN

Initial testing of a simulated real-time version of the Rao
and Kumaresan algorithm showed that the formant track-
ers could be misled by unvoiced segments of the sentence,
where there are no formants, or by background noise or si-
lence when the energy in an individual formant was negli-
gible. We propose adding a voicing detector and a formant
energy detector to test for each of these cases.

Figure 1 shows our design for an individual formant
tracker. The formant trackers are all identical, except that
the initial formant frequencies estimates are distributed
across the range of speech frequencies, such that each track-
er should be able to find an individual formant at the onset of
voiced speech. The acoustic signal is first pre-emphasized
by a high-pass filter (HPF) to equalize roughly the energy in
each formant. An approximate analytic version of the sig-
nal is then produced to improve the accuracy of the spectral
estimation performed later in the algorithm [6]. The sig-
nal is subsequently passed through an all-zero filter (AZF),
in which the zeros are set to the latest estimates of the other
formant tracker estimates, suppressing their influence in this
formant tracker. The AZF is followed by a single-pole dy-
namic tracking filter (DTF), in which the pole frequency is
set to the latest frequency estimate from the same formant
tracker, emphasizing signal energy near that frequency. A
first-order linear prediction coding (LPC) analysis is per-
formed to obtain the current formant frequency estimate.
Because formant transitions are relatively slow, adaptive fil-
tering (AZF +DTF) before the LPC analysis helps the track-
er to continuously follow a single formant and not be dis-
tracted by the other formants. The filtering should similarly
assist in the presence of background noise. To improve the
robustness of the algorithm, we propose taking a moving
average (MA) of the formant estimates over time; when no
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Fig. 1. Formant tracker modified from [4]. Abbreviations: high-pass filter (HPF); all-zero filter (AZF); dynamic tracking
filter (DTF); linear prediction coding (LPC); moving average (MA); formant frequency estimate
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voiced speech is detected or the energy in a formant drops
below a certain threshold, the formant tracker’s frequency
estimate decays back towards the moving average.

3. RESULTS

The performance of the improved algorithm for a synthe-
sized sentence “Five women played basketball” (courtesy
of R. McGowan of Sensimetrics Corp, Somerville, MA) is
illustrated in Fig. 2. Formant tracker estimates are plotted in
the top panel over the spectrogram of the sentence. During
voiced speech (indicated by harmonic structure in the spec-
trogram) the algorithm quickly finds the formant frequen-
cies and tracks any transitions in the formant frequencies.
During unvoiced speech and silence the trackers decay back
to the moving average of each tracker’s estimates, ready for
the next segment of voiced speech. The bottom panel il-
lustrates the gain-frequency response of the combined AZF
and DTF for each formant tracker at one instant in time.
Each filter combination has a peak at the latest estimate of
the formant frequency and zeros at the frequency estimates
of the other formants.

Figure 3 shows the performance of the tracking algo-
rithm in background white, Gaussian noise with a signal-to-
noise ratio (SNR) of 6 dB. For easy visual evaluation, the
same formant estimates for the sentence with background
noise are plotted over the clean speech spectrogram (top
panel) and over the speech plus noise spectrogram (bot-
tom panel). The formant trackers again do an excellent job,
except where the formant energy is swamped by the back-
ground noise (e.g., F2 at ∼ 0.35 s and F2–F4 at ∼ 1.45 s),
but these instances do not prevent the trackers from finding
the formants in the next segment of voiced speech.

Use of a synthesized sentence with known formant tra-
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Fig. 2. Formant tracker performance in quiet for the syn-
thesized sentence “Five women played basketball.” Formant
tracker estimates are plotted in the top panel over the spec-
trogram of the sentence. The known time delay of the for-
mant trackers (10 ms) is compensated for, to aid compar-
ison with the spectrogram. Combined AZF and DTF gain
frequency responses are plotted (bottom panel) for each for-
mant tracker at one instant in time. F1 (solid line), F2
(dashed line), F3 (dot-dashed line), F4 (dotted line).

jectories permits evaluation by calculating the root-mean-
square error (RMSE) between the formant estimates and the
known formant values from the speech synthesizer during
voiced segments of speech when there is non-negligible for-
mant energy. The known time delay of the formant trackers
(10 ms) is compensated for. Plotted in Fig. 4 are RMSEs
for each formant tracker as a function of SNR with white,
Gaussian noise. The RMSEs increase systematically as a
function of formant frequency because of the diminishing
formant energy with formant frequency. The RMSEs for
F1 and F2 increase fairly steadily with SNR; the F1 tracker
is still fairly accurate at −6 dB SNR, while the F2 tracker
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Fig. 3. Formant tracker performance in background white,
Gaussian noise (at 6 dB SNR) for the synthesized sentence
“Five women played basketball.” Formant tracker estimates
are plotted in the top panel over the spectrogram of the sen-
tence and in the bottom panel over the spectrogram of the
sentence plus background noise. The plotting convention is
the same as for Fig. 2.

performance has deteriorated considerably. The RMSEs for
F3 and F4 increase at an SNR of 12 dB compared to the
quiet condition but then decrease again at lower SNRs (6
to −6 dB). At moderate SNRs, the signal is often detected
as being voiced, but the F3 and F4 trackers are distracted by
the background noise. At lower SNRs, the voicing detector
rarely detects the voiced segments of speech, and conse-
quently the F3 and F4 formant trackers tend to stay at their
moving averages and are less likely to wander away from
the true formant values than at the moderate SNRs.

Shown in Fig. 5 is the performance of the formant track-
ers for the same synthesized sentence in the presence of a
competing single speaker (“Don’t ask me to carry an oily
rag like that,” from the TIMIT speech database). Identical
formant tracker estimates for the combined sentences are
plotted over the spectrogram of the synthesized sentence in
the top panel, the competing sentence in the middle panel,
and the two sentences combined at an SNR of 6 dB in the
bottom panel. This SNR is sufficient for the trackers to ig-
nore formants in the competing sentence, except when there
is no formant energy in the “target” sentence; the algorithm
quickly finds the target formants at the next onset of voiced
speech in the target sentence.

Plotted in Fig. 6 are RMSEs as a function of SNR with
the single competing speaker. The results are very simi-
lar to those for white, Gaussian noise (see Fig. 4). The
RMSEs increase systematically as a function of formant
frequency, and the RMSEs for F1 and F2 increase fairly
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Fig. 4. RMS errors of formant trackers in background white,
Gaussian noise as a function of SNR for the synthesized
sentence “Five women played basketball.” F1 (solid line),
F2 (dashed line), F3 (dot-dashed line), F4 (dotted line).

steadily with SNR; the F1 tracker is still fairly accurate
at −6 dB SNR, while the F2 tracker performance has de-
teriorated considerably. The RMSEs for F3 and F4 increase
at an SNR of 12 dB but then decrease again at lower SNRs
(6 to −6 dB). At moderate SNRs, the signal is often de-
tected as being voiced because of the presence of the com-
peting sentence, but the F3 and F4 trackers are distracted by
the unvoiced high-frequency energy in the target sentence.
At lower SNRs, the F3 and F4 formant trackers tend to al-
ternate between following energy in the target and compet-
ing sentences and are less likely to wander away from the
true formant values of the target sentence than at the mod-
erate SNRs. This result might be different if the competing
sentence had formants differing greatly from the target sen-
tence.

4. DISCUSSION

The results presented in Figures 2–6 indicate both qualita-
tively and quantitatively the potential accuracy and robust-
ness of the proposed formant tracking method. These re-
sults are only for a single sentence from a male speaker, and
suitable algorithm parameters were determined only for this
sentence; performance with other sentences and with a fe-
male or child speaker may greatly differ. We are currently
conducting thorough testing of the algorithm with several
target sentences and background noise sources at a range of
SNRs.

One problem with the proposed algorithm is that ac-
curate estimation of a formant frequency in voiced speech
by LPC requires an analysis window of close to two voic-
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Fig. 5. Formant tracker performance for the synthesized
sentence “Five women played basketball” with a compet-
ing single speaker (“Don’t ask me to carry an oily rag like
that,” from the TIMIT speech database). Formant tracker es-
timates are plotted over the spectrograms of the synthesized
sentence in the top panel, the competing sentence in the
middle panel, and the two sentences combined at an SNR
of 6 dB in the bottom panel. The plotting convention is the
same as for Fig. 2.

ing pitch periods. A male’s voicing pitch is often as low
as 100 Hz, requiring a 20 ms analysis window, which re-
sults in an average delay of 10 ms. The processing prior
to the LPC analysis will add some small additional delay,
producing a total delay of 10–15 ms. While this delay may
be tolerable for some applications, low-delay alternatives to
LPC analysis may be preferable [7]. Difficulty may also
arise if background noise or a sudden change in the formant
frequencies (e.g., when there is a switch in who is speak-
ing during a conversation) causes the trackers to wander far
away from the true formant values. It may therefore be nec-
essary to place limits on the frequency range allowable for
each formant tracker.
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Fig. 6. RMS errors of formant trackers in the presence of a
competing speaker as a function of SNR for the synthesized
sentence “Five women played basketball.” F1 (solid line),
F2 (dashed line), F3 (dot-dashed line), F4 (dotted line).
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