
1SCIENTIFIC REPORTS |          (2019) 9:4483  | https://doi.org/10.1038/s41598-019-40752-x

www.nature.com/scientificreports

Robust PT symmetry of two-
dimensional fundamental and 
vortex solitons supported by 
spatially modulated nonlinearity
Eitam Luz1,2, Vitaly Lutsky1, Er’el Granot2 & Boris A. Malomed  1,3

The real spectrum of bound states produced by PT-symmetric Hamiltonians usually suffers breakup at a 
critical value of the strength of gain-loss terms, i.e., imaginary part of the complex potential. The 
breakup essentially impedes the use of PT-symmetric systems for various applications. On the other 

hand, it is known that the PT symmetry can be made unbreakable in a one-dimensional (1D) model with 
self-defocusing nonlinearity whose strength grows fast enough from the center to periphery. The model 

is nonlinearizable, i.e., it does not have a linear spectrum, while the (unbreakable) PT symmetry in it is 

defined by spectra of continuous families of nonlinear self-trapped states (solitons). Here we report 
results for a 2D nonlinearizable model whose PT symmetry remains unbroken for arbitrarily large values 

of the gain-loss coefficient. Further, we introduce an extended 2D model with the imaginary part of 
potential ~xy in the Cartesian coordinates. The latter model is not a PT-symmetric one, but it also 
supports continuous families of self-trapped states, thus suggesting an extension of the concept of the 
PT symmetry. For both models, universal analytical forms are found for nonlinearizable tails of the 2D 
modes, and full exact solutions are produced for particular solitons, including ones with the 
unbreakable PT symmetry, while generic soliton families are found in a numerical form. The PT
-symmetric system gives rise to generic families of stable single- and double-peak 2D solitons (including 
higher-order radial states of the single-peak solitons), as well as families of stable vortex solitons with m 

= 1, 2, and 3. In the model with imaginary potential ~xy, families of single- and multi-peak solitons and 
vortices are stable if the imaginary potential is subject to spatial confinement. In an elliptically 
deformed version of the latter model, an exact solution is found for vortex solitons with m = 1.

While wave functions of quantum systems may be complex, spectra of their energy eigenvalues must be real, 
which is usually secured by restricting the underlying Hamiltonian to be Hermitian1. However, the condition of 
the reality of the energy spectrum does not necessarily imply that it is generated by an Hermitian Hamiltonian. 
Indeed, it is well known that non-Hermitian Hamiltonians obeying the parity-time (PT ) symmetry may also 
produce entirely real spectra2–7. In terms of the single-particle complex potential,

≡ +P V iWr r r( ) ( ) ( ), (1)

the PT  symmetry requires its real and imaginary parts to be even and odd functions of coordinates2: 
= −V Vr r( ) ( ), − = −W Wr r( ) ( ), i.e.,

− = ⁎P Pr r( ) ( ), (2)

where the asterisk stands for the complex conjugate. Actually, Hamiltonians which keep PT  symmetry may be 
transformed into Hermitian ones8–10.
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In the general case, the energy spectrum generated by the PT -symmetric potential remains real (physically 
relevant) below a certain critical value of the strength of the imaginary part of the underlying potential, W(r) in 
Eq. (1), which is a threshold of the PT  symmetry breaking. Above the critical value, the system is made unstable 
by emerging imaginary parts of energy eigenvalues. In some models, the breakup of the PT  symmetry may follow 
the onset of the jamming anomaly, which means a transition from increase to decrease of the power �ux between 
the spatially separated gain and loss spots with the growth of the gain-loss coe�cient11. �e fragility of the PT  
symmetry essentially limits the use of this property in applications, where new e�ects, such as unidirectional 
transmissivity12, enhanced absorption of light13, lasing in microrings14, acoustic sensors15, as well as the operation 
of PT -symmetric metamaterials16 and microcavities17 strengthen with the increase of the gain-loss coe�cient.

�us far, the PT  symmetry was not experimentally realized in quantum systems, and, moreover, it was argued 
that, strictly speaking, PT -symmetric systems do not exist in the framework of the quantum �eld theory18. On 
the other hand, a possibility to implement the concept of the PT  symmetry in terms of classical physics was pre-
dicted for optical media with symmetrically placed gain and loss elements19–34, which is based on the similarity 
between the Schrödinger equation in quantum mechanics and the paraxial-propagation equation for optical 
waveguides. Experimentally, this possibility was implemented in several waveguiding settings35–38, as well as in 
other photonic media, including exciton-polariton condensates39,40, and in optomechanical systems41. In these 
contexts, breaking of the PT  symmetry was observed experimentally too. Emulation of the PT  symmetry was 
also demonstrated in acoustics42 and electronic circuits43, and predicted in atomic Bose-Einstein condensates44, 
magnetism45, and chains of coupled pendula46.

�e PT  symmetry, being a linear feature, is o�en combined with intrinsic nonlinearity of settings in which it is 
realized. Most typically, it is the Kerr nonlinearity of underlying optical media, which gives rise to nonlinear Schrödinger 
equations (NLSEs) with the cubic term and complex potentials, subject to the constraint given by Eq. (2).  
Such equations may generate PT -symmetric solitons, which were considered in many theoretical works21,26–33 
(see also reviews47,48), and experimentally demonstrated too38. Although these works were chie�y dealing with 
one-dimensional (1D) models, stable PT -symmetric solitons were also predicted in some 2D settings30,49–55. A 
characteristic feature of PT -symmetric solitons is that, although existing in dissipative systems, they appear in 
continuous families, similar to their counterparts in conservative models56, while usual dissipative solitons exist 
as isolated solutions (attractors, if they are stable)57,58. �e realization of the PT  symmetry in 2D geometry may 
provide essential extension of the above-mentioned applications, such as the unidirectional transmission, 
enhanced absorption, and lasing for broad optical beams.

Solitons are also vulnerable to destabilization via the PT -symmetry breaking at the critical value of the 
gain-loss coe�cient59. Nevertheless, it was found that, in some settings, the solitons’ PT  symmetry can be made 
unbreakable, extending to arbitrarily large values of the strength of the model’s imaginary potential60–62, see also a 
brief review of the unbreakability concept in63. �e particular property of these models is that self-trapping of 
solitons is provided not by the self-focusing sign of the nonlinearity, but by the defocusing sign, with the coe�-
cient in front of the cubic term growing fast enough from the center to periphery. In the absence of gain and loss, 
this scheme of stable self-trapping was elaborated for 1D, 2D, and 3D bright solitons64–69. It is essential to stress 
that such models are nonlinearizable, which means that decaying tails of solitons are determined by the full non-
linear equation. In other words, the models have no linear spectrum, the spectrum of eigenstates being repre-
sented by nonlinear self-trapped modes (solitons). Accordingly, the models elaborated in refs 60–62 realize the PT  
symmetry in a sense di�erent from that de�ned in the usual systems—not in terms of the linear spectrum, which 
does not exist in this case, but in the form of stable families of complex-valued solitons with real propagation 
constants (eigenvalues), which exist in the presence of spatially odd imaginary potentials.

�e present work introduces 2D models which maintain stable solitons, including (nearly) unbreakable ones, 
in the presence of the spatially growing self-defocusing nonlinearity and antisymmetric imaginary potentials, 
iW x y( , ) in Eq. (1). One model, with

γ β= − = +W x y x r r x y( , ) exp( ), , (3)0
2 2 2 2

where γ > 00  and β ≥ 0 are constants, features the unbreakable or nearly unbreakable 2D PT  symmetry, repre-
sented by several species of families of stable solitons: single- and double-peak ones, as well as 2D solitons with 
embedded integer vorticity (topological charge), =m 1, 2, 3. �e second model, with

γ β= −W x y xy r( , ) exp( ), (4)0
2

is not, strictly speaking, a PT -symmetric one, but it is equally relevant for the realization in optics, and it shares 
basic manifestations of the PT  symmetry, maintaining families of single- and multi-peak solitons [featuring up 
to �ve peaks, in accordance with the structure of W x y( , )] and solitary vortices, also with =m 1, 2, 3. �e latter 
result is a contribution to the general topic of constructing models more general than the PT -symmetric ones 
with similar properties(including the case of the partial PT  symmetry51), which has been addressed in various 
settings52–54,56,70–75, see also review47.

In both models, universal analytical forms are obtained for tails of solitons, and full exact solutions are pro-
duced for particular species of single-peak solitons, with β = 0 in Eqs (3) and (4). In the former case, the exist-
ence of the exact solitons at arbitrarily large values of γ0 in Eq. (3) explicitly demonstrates the unbreakability of the 
PT  symmetry. In the latter case two di�erent families of exact solutions are found, which, however, exist only for 
γ ≤ 20  in Eq. (4) with β = 0. In addition, an anisotropic version of the latter model gives rise to particular exact 
solutions for vortex solitons with topological charge =m 1. Generic soliton families with =m 0, 1, 2, 3, which 
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include the exact single-peak solutions as particular ones, are constructed in a numerical form in both models, 
and their stability is investigated numerically—both through computation of eigenvalues for small perturbations 
and by means of direct simulations.

Results
The models and analytical solutions for solitons. �e underlying equations. �e 1D NLSE for the 
amplitude of the electromagnetic �eld, u(x, z), with the local strength of the self-defocusing nonlinearity, Σ x( ), 
growing from =x 0 towards = ±∞x  faster than |x| (this condition is necessary for self-trapping imposed by the 
self-repulsion64), which is capable to maintain bright solitons with unbreakable PT  symmetry, is60

∂

∂
+
∂

∂
− Σ | | = .i

u

z

u

x
x u u iW x u

1

2
( ) ( )

(5)

2

2
2

Here z and x are scaled propagation coordinate and transverse coordinate, in terms of the planar optical wave-
guide. In work60, the analysis was presented for a steep 1D modulation pro�le,

σΣ = +x x x( ) (1 )exp( ), (6)2 2

with σ ≥ 0, where coe�cients equal to 1 may be �xed to these values by means of rescaling. �e choice of this 
pro�le allows one to obtain a particular exact solution for solitons64. Of course, in a real physical medium the local 
strength of the nonlinearity, de�ned as per Eq. (6), cannot grow to in�nitely large values at | | → ∞x . However, in 
reality it is su�cient that it grows according to Eq. (6) to �nite values, that correspond to |x| which is essentially 
larger than the width of the soliton created by this pro�le. �e growth of Σ x( ) may be safely aborted at still larger 
|x|64.

Further, the spatially-odd imaginary potential, which accounts for the PT -symmetric gain-loss pro�le (cf. Eq. 
(1)), was introduced in ref. 60 as

γ β= −W x x x( ) exp( ), (7)0
2

with γ > 00  and β ≥ 0. In the case of the spatially uniform self-focusing cubic nonlinearity, the 1D imaginary 
potential in the form given by Eq. (7) was introduced in ref. 76.

Here, we aim to  de�ne a 2D extension of the model, as the NLSE for the propagation of the electromagnetic 
�eld with amplitude u(x, y, z) in the bulk waveguide with transverse coordinates (x, y):
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where ≡ +r x y2 2  is the radial coordinate, and the nonlinearity-modulation pro�le is chosen similar to its 1D 
counterpart (6):

σΣ = +r r r( ) (1 )exp( ) (9)2 2

with σ ≥ 0. Further, we consider two di�erent versions of the 2D imaginary potential. First, it is a PT -symmetric 
one given by Eq. (3). �e other imaginary potential, de�ned as per Eq. (4), is not PT -symmetric, because the   
transformation, → − −x y x y( , ) ( , ), does not reverse the sign of W(x, y), in this case. However, in terms of the 
implementation in optics the gain-loss distribution corresponding to Eq. (4) is as relevant as that de�ned by Eq. 
(7), and, as mentioned above, properties of solitons in models which are akin to PT -symmetric ones is a subject 
of considerable interest.

Stationary states with a real propagation constant, k, are looked for as solutions to Eq. (8) in the form of

=u x y ikz U x y( , ) exp( ) ( , ), (10)

with complex function U(x, y) satisfying the following equation:

=
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Asymptotic solutions. As mentioned above, Eqs (8) and (11) are nonlinearizable, i.e., they cannot be character-
ized by a linear spectrum. Indeed, straightforward analysis of Eq. (11) demonstrates that it may produce localized 
solutions (solitons), with tails decaying at → ∞r  according to an asymptotic expression which is determined by 
the full nonlinear equation, rather than by its linearization. For the PT -symmetric imaginary potential (3) with 
β = 0, it is

σ
γ=




− −






U x y r i x( , )
1

2
exp

1

2
,

(12)asympt
2

0

provided that σ ≠ 0. In the case case of σ = 0, this asymptotic solution is replaced by
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0

Note that asymptotic solutions given by Eqs (12) and (13) exist at arbitrarily large γ0, suggesting the unbreak-
ability of the PT  symmetry in this case, as corroborated by exact solution (19) produced below.

�e imaginary potential de�ned by Eq. (4) with β = 0 produces the following result:
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for σ ≠ 0, and if σ = 0, the result is
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On the contrary to the the above asymptotic solutions, given by Eqs (12) and (13), which are available for 
arbitrarily large γ0, their counterparts produced by Eqs (14) and (15) exist only at γ < 20 , i.e., if the gain-loss 
coe�cient is not too large.

It is relevant to stress the universal character of all asymptotic approximations given by Eqs (12–15): they 
depend solely on coe�cients σ and γ0 of the underlying model, and, unlike the commonly known asymptotic 
forms of solitons in usual systems, do not depend on the propagation constant, k. �e single exception is presented 
by exact solution Eq. (18) given below, whose asymptotic form (actually coinciding with the exact soliton solution, 
in that case) explicitly depends on k, but this happens solely for specially chosen parameters given by Eq. (17).  
In the generic case, a dependence on k appears in the next-order correction to the shape of the asymptotic tail. In 
particular, the correction to the tails given by Eqs (12) and (13) are

δ = − .U x y k r U x y( , ) ( / ) ( , ) (16)asympt
2

asympt

Furthermore, for more complex solutions, such as multi-peak solitons and solitary vortices, as well as for 
higher-order radial states of the single-peak solitons, which are produced below in the numerical form, the 
asymptotic expression at large r is exactly the same as given by Eqs (12–15).

Exact solutions for single-peak solitons. Precisely at the above-mentioned critical value γ = 20 , the asymptotic 
solutions (14) and (15) vanish. However, in the special case,

σ γ β= = =0, 2, 0, (17)0

the vanishing asymptotic solution given by Eq. (15) is replaced by a di�erent one, which, as can be easily checked, 
is an exact solution to Eq. (11) (not just an asymptotic approximation valid at large r),

γ= − +
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It exists, as the continuous family, at all values of < −k 1.
Further, Eq. (11) which includes the PT -symmetric imaginary potential Eq. (3), with β = 0, gives rise to an 

exact solution at a special value k x
0
( ) of the propagation constant:
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which exists at all values of coe�cients γ0 and σ, except for σ = 0. In other words, at =k k x
0
( ) the asymptotic 

approximation Eq. (12) is tantamount to the exact solution. �is solution features the unbreakable PT  symmetry, 
as it persists at arbitrarily large values of the gain-loss coe�cient, γ0. Moreover, although Eq. (19) yields the exact 
solution at the single value of the propagation constant, given by Eq. (20), which is embedded in a generic family 
of numerically found fundamental solitons, as demonstrated below in Figs 1, 2 and 3, the entire family asymptot-
ically shrinks to the exact solution in the limit of large γ0. Indeed, it is easy to �nd that, for γ  10

2  and a relatively 
small deviation of the propagation constant from the special value (20), δ γ| | ≡ | − | k k k x

0
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0
2, the fundamental 
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featuring weak anisotropy of the shape, | |U x y( , )x
approx
( ) .
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Next, Eq. (11) with the imaginary potential taken as per Eq. (4) with β = 0, and with σ ≠ 0 in the 
nonlinearity-modulation pro�le (9), gives rise to the following exact solution, at the respective single value of k:

Figure 1. Typical examples of stable solitons produced by the model with the PT -symmetric imaginary 
potential de�ned by Eq. (3). (a) A fundamental single-peak soliton for γ = .1 20  in Eq. (3) and propagation 
constant = − .k 3 2 in Eq. (10). (b) A higher-order radial state of the single-peak soliton for γ = .0 20  and 
= −k 4. (c) A double-peak soliton for γ = .1 40  and = −k 4. In all the cases, σ = 1 and β = 0 are �xed in Eqs 

(3) and (9).

Figure 2. �e stability map for the PT -symmetric solitons maintained by imaginary potential (3), in the case 
of σ = 1 and β = 0 in Eqs (3) and (9). Stable fundamental single-peak solitons are marked by green dots. All 
unstable solitons are marked by red crosses, irrespective of their structure. Exact soliton solutions, given by Eqs 
(19) and (20), are indicated by green stars (except for one at γ = 20 , which is designated by the red cross, as the 
exact solutions are unstable at γ ≥ 20 ). Green numbers ≥2 in this �gure and below denote stable solitons with 
the same number of peaks. Further, green numbers 1 label stable single-peak solitons with the higher-order 
radial structure, as in Fig. 1(b). Green numbers 1 or 2, placed close to green dots, imply bistability, i.e., 
coexistence of stable fundamental single-peak solitons and stable higher-order or double-peak ones. Red crosses 
placed on top of green dots imply coexistence of fundamental single-peak solitons with some unstable mode. 
Soliton solutions were not found in white areas.
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In this case too, the asymptotic approximation Eq. (14) becomes identical to the exact solution at =k k xy
0
( ), 

both existing at γ < 20 , on the contrary to exact solution (19), which exists at all values of γ0.
�us, the models considered here do not have the linear spectrum. Instead of it, they are characterized by 

spectra (families) of self-trapped nonlinear solutions (solitons). �e radical change of the concept of the system’s 
spectrum implies a respective change in the concept of the PT  symmetry, which now applies not to the set of 
eigenvalues of the linearized system, but directly to families of nonlinear states. Lastly, it is worthy to note that all 
the asymptotic and exact solutions produced above, including the �rst correction (16) to the asymptotic tails, 
feature isotropic shapes of |U(x, y)|, although the imaginary potentials Eqs (3) and (4) are obviously anisotropic.

Exact solutions for elliptic vortices in an anisotropic model. In addition to 2D fundamental solitons, similar to the 
exact ones presented here, we also address below, by means of numerical methods, solitons with embedded vor-
ticities, = …m 1, 2, 3 . A challenging issue is to seek for exact solutions for vortex solitons. Such solutions can be 
found in the case of imaginary potential Eq. (4) with β = 0, in a more general anisotropic version of the 
nonlinearity-modulation pro�le in Eq. (8) with σ = 0, namely,

Σ = +x y x gy( , ) exp( ), (24)2 2

where positive ≠g 1 accounts for the ellipticity of the modulation pro�le. �en, an exact solution for elliptically 
deformed vortex solitons with =m 1 is given by the following ansatz [cf. Eq. (22)]:

= +



− + −






U x y U x iby x gy iaxy( , ) ( )exp
1

2
( ) ,

(25)0
2 2

where real ≠b 1 accounts for the ellipticity of the soliton’s phase �eld, and a is another real constant. �e substi-
tution of this ansatz and expressions Eqs (4) and (24) (with β = 0) in the accordingly modi�ed Eq. (11) leads to 
the following relations between parameters of the ansatz:

γ+ = −

− − + =

− + =

g a

g b b a

b a a g

(1 ) ,

( 1) (1 ) 0,

(1 ) , (26)

0
2

2 2 2 2

supplemented by expressions for the propagation constant and soliton’s amplitude:

Figure 3. �e same as in Fig. 2, but for β = .0 2 in Eq. (3), i.e., with the gain-loss term subject to weak spatial 
con�nement. In this case, there are no exact solitons solutions, while the asymptotic solution for the tails is 
given by Eq. (12) with γ = 00  (the con�nement eliminates γ0 from the asymptotic solution).
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= − + + = − .k g ab U a(3/2 /2 ), (1 )/2 (27)0
2 2

�e system of three equations (26) for two free parameters a and b demonstrates that the exact vortex solution 
is a nongeneric one, as it may exist only if an additional constraint, which can be derived by eliminating a and b 
in Eq. (27), is imposed on parameters g and γ0:

γ γ γ γ− + − + − = + + − .g g g g g g( 1) [ ( 1) ] [( 1) ] [( 1)( 1) 2 ]2 2 2 2
0
2 2

0
2

0
2 2 2

0
2 2

In the isotropic model, with =g 1, Eq. (26) has no nontrivial solutions. However, they can be found for ≠g 1. 
A particular example is

= ≈ . = − − ≈ − .

= + ≈ .

b a

U

1/ 2 0 7071, (3 5 )/(4 2 ) 0 1351,

3(3 5 ) /(4 2 ) 0 7006,0

which is a valid solution at = − ≈ .g (3 5 1)/8 0 7135 and γ = + ≈ .(3 5 )/(16 2 ) 0 23140 . �is value of g 

corresponds to eccentricity ≡ − = − ≈ .e g1 (9 3 5 )/8 0 5352 of the elliptic pro�le in Eq. (24).
Numerical results are reported below for the isotropic model, while the anisotropic one should be a subject 

for separate consideration.

Numerical results for zero-vorticity solitons. �e PT -symmetric imaginary potential (3): single- and 
double-peak solitons. �e isolated exact solution of the model with the PT -symmetric gain-loss distribution, 
given by Eqs (19) and (20), can be embedded in a continuous family of solitons, produced by a numerical solution 
of Eq. (11), with Σ r( ) and γ(x) taken as per Eqs (3) and (9). �e appropriate numerical algorithm is the Newton 
conjugate gradient method 77, which is brie�y outlined in section Method below. �e stability of the stationary 
states was identi�ed by numerical computation of eigenvalues of small perturbations, using linearized Eq. (32) for 
perturbations around the stationary solitons. Finally, the stability predictions, produced by the eigenvalues, were 
verified by simulations of the perturbed evolution of the solitons (some technical details are reported 
elsewhere63).

It is relevant to stress that the convergence of the algorithm which produces stationary states depends on 
appropriate choice of the initial guess. While stationary modes were not found in “ holes” appearing in stability 
charts which are displayed below in Figs 2, 3, 7, 10, 11, 12, 16 and 17, it is plausible that stationary solutions exist 
in the holes too, being, however, especially sensitive to the choice of the input. On the other hand, the intricate 
alternation of stability and instability spots, which is also observed in the charts, is a true peculiarity of the present 

Figure 4. Examples of stable single- and multi-peak PT -symmetric solitons, found in the model based on Eqs 
(4) and (9), with σ = 1 and (a) β = .0 5, γ =10 , = −k 1; (b) β = .0 5, γ = .0 20 , = −k 4; (c) β = .0 2, γ = .1 40 , 
= − .k 2 8; (d) β = .0 5, γ = .0 40 , = − .k 1 8.
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model. Moreover, genuine structure of the stability charts may be fractal, but analysis of this possibility is beyond 
the scope of the present work.

Generic examples of numerically found stable solitons with single- and double-peak shapes are displayed in 
Fig. 1. Note that the double-peak modes have their two maxima separated in the direction of x, in accordance 
with the anisotropic shape of the imaginary potential in Eq. (3). As concerns single-peak modes, two di�erent 
varieties of stable ones were found: fundamental solitons, with the shape similar to that of the exact solution given 
by Eqs (19) and (20) [see Fig. 1(a)], and higher-order states with a radial ring surrounding the central peak, see 

Figure 5. �e stability chart, de�ned as in Figs 2 and 3, but for the model including imaginary potential (4), 
with σ = 1 and β = .0 5 in Eqs (4) and (9). As indicated by the upper dashed red curve, no solitons were found 
at γ ≥ 20 , where the exact solution given by Eq. (22) does not exist either.

Figure 6. �ree-dimensional (a) and top-view (b) shapes of |U(x, y)| for a typical stable vortex soliton with 
=m 1, supported by the PT -symmetric imaginary potential (3) with γ = .0 60 , β = 0, and σ = 0 in Eq. (9), the 

propagation constant being = −k 3. Panel (c) displays the phase structure of the vortex.
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Fig. 1(b). It is worthy to note that, unlike many other models, where higher-order radial states are unstable78–83, 
they are stable in the present case. Note also that shapes of both species of the single-peak solitons, fundamental 
and higher-order ones, seem isotropic in terms of |U(x, y)|, similar to exact solution (19). �e isotropy is obvi-
ously broken by double-peak modes, see Fig. 1(c).

Results of the stability analysis, based on the computation of perturbation eigenvalues, are summarized in the 
stability map in the plane of (k, γ0) [the soliton’s propagation constant and strength of the gain-loss term in Eq. 
(3)], for β = 0 and β = .0 2 in Figs 2 and 3, respectively. Several noteworthy features are revealed by these plots. 
First, it is worthy to note signi�cant stability areas for both the double-peak and higher-order single-peak PT

Figure 7. Stability charts for vortex solitons with topological charge =m 1 in the model including the PT
-symmetric imaginary potential (3) with β = 0, and σ = 0 or 1 in Eq. (9), in panels (a and b) panels, 
respectively. Green circles and red crosses denote stable and unstable vortex solitons, respectively. �e same 
notation is used below in other stability charts for vortex solitons.

Figure 8. �e same as in Fig. 6, but for stable vortex soliton with =m 3 and parameters γ = .0 80 , β = .0 5, 
σ = 0, = −k 4.
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-symmetric solitons in Figs 2 and 3. Further, bistability is observed at many points, in the form of coexisting stable 
fundamental and double-peak solitons, or fundamental and higher-order radial states of single-peak ones. As 
concerns the possibility of maintaining the unbreakable PT  symmetry, Fig. 2 demonstrates shrinkage of the 
existence and stability regions of the modes with the increase of γ0 at β = 0 to the exact soliton solution given by 
Eqs (19) and (20), in agreement with the trend represented by approximate solution (21). Eventually, the exact 
solution loses its stability at γ ≥ 20 . On the other hand, the introduction of a relatively weak con�nement of the 
gain-loss term, with β = .0 2 in Eq. (3), demonstrates that the PT  symmetry remains unbreakable in Fig. 3, where 

Figure 10. Stability charts for solitons with vorticity =m 1 in the case of the PT -symmetric imaginary 
potential (3) with β = .0 5, and σ = 0 or 1 in Eq. (9), in panels (a and b), respectively.

Figure 9. �e same as in Fig. 6, but for a case when the stable vortex soliton with =m 1, featuring a complex 
shape, is created, the parameters in Eqs (3) and (9) being γ = .0 40 , β = 0, and σ = 1. �e propagation constant 
is = − .k 3 6.
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both the existence and stability regions extend in the direction of large values of −k and γ0, without featuring any 
boundary.

As concerns unstable solitons, they typically blow up in the course of the evolution, see an example below in 
Fig. 18. Although it shows the blowup of a vortex soliton, the instability development of zero-vorticity ones is 
quite similar.

�e stability charts, drawn in Figs 2 and 3 for σ = 1 in Eq. (9), are similar to their counterparts produced at 
other values of σ, including σ = 0, when the exact solution given by Eqs (19) and (20) does not exist, while the 
asymptotic form of the solitons’ tails is given by Eq. (13).

�e imaginary potential (4): single- and multi-peak solitons. A drastic di�erence revealed by the stability analysis 
of the model based on Eqs (4), (8) and (9) is that the respective exact solutions, given by Eq. (18) for the special 
case (17), and by Eqs (22) and (23) for σ > 0, β = 0 and arbitrary γ0, are completely unstable, on the contrary to 
the stability of the exact solutions in the case of the PT -symmetric imaginary potential Eq. (3) (at γ < 20 ). 
Furthermore, all numerical solutions found in the full 2D model with β = 0 in Eq. (4) are unstable too. �e sta-
bilization in this model is provided by β > 0, i.e., by imposing the spatial con�nement on the gain-loss term in 
Eq. (4). For �xed σ, there is a minimum value βmin of β which secures the stabilization. For instance, we have 
concluded that the solitons may be stable in the model with σ = 1 in Eq. (9) at β β≥ ≈ .0 2min  in Eq. (4), still 
being completely unstable, e.g., at β = .0 1.

Figure 12. �e same as in Fig. 10, but for vorticity =m 3.

Figure 11. �e same as in Fig. 10 (stability charts) but for vortex solitons with =m 2.
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Figure 13. �e same as in Fig. 6, but for the stable vortex soliton with =m 1 in the case of imaginary potential 
given by Eq. (4), with γ = .0 40 , β = .0 5, σ = 0, and propagation constant = − .k 3 4.

Figure 14. �e same as in Fig. 13, but for stable vortex solitons with =m 2 and = − .k 3 6.
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As mentioned above, the steep growth of Σ r( ) in Eq. (9) cannot extend to in�nity, it being su�cient to main-
tain the adopted pro�le of Σ r( ) on a scale which is essentially larger than a characteristic size of solitons supported 
by this pro�le. �e same pertains to the linear growth of the imaginary potential at large |x| in Eq. (3): in reality, it 
should not continue at distances much larger than the size of the stable solitons considered in the previous sec-
tion. However, the presence of βmin implies that the corresponding “tacit” con�nement of γ(x, y) in Eq. (4) is not 
sufficient to produce stable 2D solitons. At β β> min, the numerical solution generates stable fundamental 
single-peak solitons and their higher-order radial counterparts with isotropic shapes of |U(x, y)|, as shown in 
Fig. 4(a,b). Further, stable multi-peak solitons are found too. Due to the 2D structure of the imaginary potential 
(4), they feature a four- or �ve-peak structure, built along both the x and y axes, as shown in Fig. 4(c,d), instead of 
the uniaxial double-peak modes supported by the quasi-1D imaginary potential (3), cf. Fig. 1(c).

A typical stability chart for the 2D solitons generated by the model with β β> min is displayed in Fig. 5. It fea-
tures bistability between the fundamental single-peak solitons and the higher-order ones, or four- and �ve-peak 
complexes, in a relatively small region of the (k, γ0) plane, at su�ciently small values of γ0. Figure 5 clearly shows 
that no solitons were found at γ ≥ 20 , this restriction coinciding with that for the exact solution given by Eqs (22) 
and (23). �us, unlike the PT -symmetric imaginary potential (3), the model based on potential (4) does not 
produce unbreakable soliton families.

Vortex solitons. Soliton solutions of Eq. (11) with embedded vorticity were found numerically by means of 
the above-mentioned Newton conjugate gradient method, initialized by the ansatz with integer vorticity ≥m 1 
added to the previously found 2D stationary solutions of Eq. (11):

θ→ ≡ +U x y U x y r im U x y x iy( , ) ( , ) exp( ) ( , ) ( ) , (28)m m

where (r, θ) are the polar coordinates. �e stability of resulting vortex solitons was again analyzed through the 
computation of eigenvalues for modes of small perturbations around the vortex states, see Eq. (32), and then 
veri�ed by direct simulations.

Vortex solitons in the case of the PT -symmetric imaginary potential. In the framework of the model with imagi-
nary potential (3), stable vortex solitons were found in the case of β = 0 (no gain-loss con�nement) with =m 1, 
while vortices with ≥m 2 do not exist or are unstable. An example of stable vortices is shown in Fig. 6, and the 
respective stability charts for di�erent values of σ in Eq. (9) are presented in Fig. 7. �e strongly anisotropic shape 
of the vortex is a consequence of the anisotropy of the underlying imaginary potential (3).

Figure 15. �e same as in Fig. 13, but for stable vortex solitons with =m 3 and parameters γ = .0 20 , β = .0 5, 
σ = 0, = − .k 2 2.
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�e introduction of the con�nement of the gain and loss in Eq. (3) (in particular, setting β = .0 5) makes it 
possible to construct stable vortex solitons with higher vorticities, corresponding to >m 1 in Eq. (28). An exam-
ple of a stable vortex with =m 3 is shown in Fig. 8.

In most cases, stable vortices generated by input (28) from double-peak stationary solutions have the same 
shape as those originating from their single-peak counterparts. However, in few cases the application of the lowest 
vorticity, with =m 1 in Eq. (28), to the double-peak input leads to the creation of stable vortex solitons with a 
complex shape, see an example in Fig. 9.

Stability charts for the vortex solitons with m = 1, 2, and 3, supported by the PT -symmetric imaginary poten-
tial which is subject to the spatial con�nement, with β = .0 5 in Eq. (3), are shown in Figs 10, 11 and 12. While the 
stability area shrinks with the increase of m, a few stable isolated modes were found even for =m 4 (not shown 
here). �e comparison of Figs 7 and 10 shows that the introduction of the spatial con�nement of the gain-loss 
pro�le helps to expand the stability area for =m 1 towards larger values of γ0, thus upholding the trend to observe 
the unbreakable PT  symmetry in this 2D model. In direct simulations, the evolution of unstable vortex modes 
leads towards the blowup, via their fusion into a single peak, similar to what is displayed below in Fig. 18.

Vortex solitons in the model with imaginary potential (4). Starting from input Eq. (28), stable vortices can be 
constructed in the model with the gain-loss pro�le given by Eq. (4) only if it is subject to the spatial con�nement 
(recall the same is reported above for zero-vorticity solitons). Examples of stable solitons with vorticities m = 1, 2 
and 3 found in this model are shown in Figs 13, 14 and 15. Note that higher-order states with ≥m 2 are actually 
compound modes built of m unitary vortices, whose pivots do not merge into a single one, remaining separated, 
although with a small distance between them, as can be seen for =m 2 in Fig. 14 (cf. a similar effect 
recently reported in ref.84). �e separated pivots form arrays along axes x or y, the particular direction being ran-
domly chosen by the initial conditions, as is clearly seen in Fig. 15. Nevertheless, the overall shapes of the unitary 
and higher-order vortices are nearly isotropic, due to the structure of the gain-loss term in Eq. (4) (cf. strongly 
anisotropic shapes of vortices in Figs 6, 8 and 9, supported by the imaginary potential (3)).

Stability charts obtained in this model for the solitons with embedded vorticities m = 1 and 2 are shown in 
Figs 16 and 17. Only few examples of stable vortices with m = 3 have been found in this case (for instance, the one 
shown in Fig. 15, as well as at σ = 0, γ = .0 40 , = − .k 1 2).

Finally, a generic example of the evolution of an unstable vortex soliton is shown in Fig. 18. �e strong di�er-
ence between vertical scales in di�erent panels of the �gure clearly suggests that the instability leads to the blowup 
of the unstable mode, in the course of which the original vortex tends to fuse into a single peak. In fact, all unsta-
ble solitons considered in this work tend to develop the blowup in direct simulations.

Discussion
�e objective of this work is to elaborate 2D models with the spatially modulated self-defocusing nonlinearity and 
gain-loss distributions [imaginary potentials, iW(x, y)] which give rise to families of stable single-peak, 
multi-peak, and vortical solitons, including ones which may persist and remain stable (“unbreakable”) at arbitrar-
ily large values of strengths γ0 of the imaginary potential. �e unbreakability is possible in the case of the PT
-symmetric imaginary potential, which is given by Eq. (3). An asset of the models, which can be implemented in 
bulk nonlinear optical waveguides with embedded gain and loss elements, is that they produce universal asymp-
totic solutions for solitons’ tails, along with full exact solutions for selected species of 2D fundamental and vortex 
solitons (the latter one is available in the elliptically deformed version of the model). In particular, in the limit of 
large γ0, the unbreakable family of fundamental solitons tends to shrink towards the exact solution. Generic 

Figure 16. Stability charts for vortex solitons with =m 1 in the model including imaginary potential (4), with 
β = .0 5 and σ = 0 in (a) or σ = 1 in (b).
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families of zero-vorticity solitons, including single- and multi-peak ones and higher-order radial states of 
single-peak solitons, as well as families of self-trapped modes with embedded vorticity m = 1, 2, and 3, are con-
structed in the numerical form, and their stability is identi�ed by means of the numerical computation of eigen-
values for small perturbations, and veri�ed by direct simulations. In the case of the PT -symmetric imaginary 
potential (3) the solitons are stable in vast parameter regions, and feature a trend towards maintaining the 
unbreakable PT  symmetry. Under the action of the imaginary potential (4), families of stable fundamental and 
vortex solitons exist too, provided that the imaginary potential is subject to spatial con�nement.

A relevant extension of the analysis may be to address the elliptically deformed model, which is considered in 
the present work in a brief form. A challenging problem is the possibility of the fractal structure of the stability 
patterns in the models’ parameter planes.

Methods
The Newton conjugate gradient method for the 2D robust PT-symmetry model. Solutions of 
the stationary Eq. (11) were constructed by means of the Newton conjugate gradient method, which is presented 
in detail in book77. In terms of this method, the stationary-solution operator L0 is de�ned by Eq. (11), while the 
respective linearization operator L1 is de�ned as

=
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(29)1
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where the nonlinearity coe�cient, Σ r( ), and imaginary potential, W(x, y) are de�ned, respectively, by Eqs (3) or 
(4) and (9).

Simulations of the evolution of the wave fields. Direct simulations of the evolution Eq. (8), written as
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cf. Eq. (11), have been performed by means of the commonly known split-step method. Marching forward in z at 
each step was split in two parts, according to the following equations:

Figure 17. �e same as in Fig. 16, but for vorticity =m 2.
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�e solutions were numerically constructed in the 2D spatial domain, |x, y| ≤ 9, which was covered by a dis-
crete grid of size × = ×N N 512 512x y . �e direct simulations were carried out with step ∆ = −z 10 5. �is small 
step was selected to provide su�cient accuracy of the numerical solutions obtained in the presence of the “ exotic” 
nonlinearity-modulation and gain-loss pro�les (9) and (3) or (4).

The stability analysis. �e stability of the stationary states against small perturbations were based, as usual, 
on the general expression for a perturbed solution,

ε= + +Γ Γ ⁎
⁎

u x y z e U x y e v x y e w x y( , , ) { ( , ) [ ( , ) ( , )]}, (31)ikz z z

where ε is an in�nitesimal perturbation amplitude, with eigenmodes {v(x, y), w(x, y)} and (complex) eigenvalue 
Γ, which should be found from the numerical solution of the respective linearized equations,
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subject to zero boundary conditions at | | → ∞x y,  (in fact, at borders of the solution domain). �ese equations 
were solved by means of the known spectral collocation method77.

Figure 18. �e blowup of an unstable vortex soliton with =m 2 and γ = .1 20 , β = .0 5, σ = 1, = − .k 2 4, in the 
model with imaginary potential (4). Panels display the �eld at =z 60 (a), =z 200 (b) and =z 300 (c). Note the 
di�erence in vertical scales between them.
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