
 Open access Proceedings Article DOI:10.1145/309847.310080

Robust FPGA intellectual property protection through multiple small watermarks
— Source link

John Lach, William H. Mangione-Smith, Miodrag Potkonjak

Institutions: University of California, Los Angeles

Published on: 01 Jun 1999 - Design Automation Conference

Topics: Digital watermarking, Copy protection and Hash function

Related papers:

 Signature hiding techniques for FPGA intellectual property protection

 Constraint-based watermarking techniques for design IP protection

 FPGA fingerprinting techniques for protecting intellectual property

 Watermarking techniques for intellectual property protection

 Zero overhead watermarking technique for FPGA designs

Share this paper:

View more about this paper here: https://typeset.io/papers/robust-fpga-intellectual-property-protection-through-
7ibb610xcc

https://typeset.io/
https://www.doi.org/10.1145/309847.310080
https://typeset.io/papers/robust-fpga-intellectual-property-protection-through-7ibb610xcc
https://typeset.io/authors/john-lach-4ry5ag36vo
https://typeset.io/authors/william-h-mangione-smith-coklaj5mlp
https://typeset.io/authors/miodrag-potkonjak-32uylfxkcs
https://typeset.io/institutions/university-of-california-los-angeles-3qypghuz
https://typeset.io/conferences/design-automation-conference-19lnn9ki
https://typeset.io/topics/digital-watermarking-3c1l00p4
https://typeset.io/topics/copy-protection-2jyi1vny
https://typeset.io/topics/hash-function-1rfatsyq
https://typeset.io/papers/signature-hiding-techniques-for-fpga-intellectual-property-2wqswt35pp
https://typeset.io/papers/constraint-based-watermarking-techniques-for-design-ip-2x3akvxzvg
https://typeset.io/papers/fpga-fingerprinting-techniques-for-protecting-intellectual-3kszsgs5pj
https://typeset.io/papers/watermarking-techniques-for-intellectual-property-protection-3m52gyng1x
https://typeset.io/papers/zero-overhead-watermarking-technique-for-fpga-designs-1q5xu3xqwr
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/robust-fpga-intellectual-property-protection-through-7ibb610xcc
https://twitter.com/intent/tweet?text=Robust%20FPGA%20intellectual%20property%20protection%20through%20multiple%20small%20watermarks&url=https://typeset.io/papers/robust-fpga-intellectual-property-protection-through-7ibb610xcc
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/robust-fpga-intellectual-property-protection-through-7ibb610xcc
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/robust-fpga-intellectual-property-protection-through-7ibb610xcc
https://typeset.io/papers/robust-fpga-intellectual-property-protection-through-7ibb610xcc

Robust FPGA Intellectual Property Protection Through

Multiple Small Watermarks
John Lach

UCLA EE Department

56-125B Engineering IV

Los Angeles, CA 90095

310-794-1630

jlach@icsl.ucla.edu

William H. Mangione-Smith
UCLA EE Department

56-125B Engineering IV

Los Angeles, CA 90095

310-206-4195

billms@ee.ucla.edu

Miodrag Potkonjak
UCLA CS Department

3532G Boelter Hall

Los Angeles, CA 90095

310-825-0790

miodrag@cs.ucla.edu

ABSTRACT

A number of researchers have proposed using digital marks to

provide ownership identification for intellectual property. Many

of these techniques share three specific weaknesses: complexity of

copy detection, vulnerability to mark removal after revelation for

ownership verification, and mark integrity issues due to partial

mark removal. This paper presents a method for watermarking

field programmable gate array (FPGA) intellectual property (IP)

that achieves robustness by responding to these three weaknesses.

The key technique involves using secure hash functions to

generate and embed multiple small marks that are more

detectable, verifiable, and secure than existing IP protection

techniques.

Keywords

Field programmable gate array (FPGA), intellectual property

protection, watermarking

1. INTRODUCTION

1.1 Motivation
Design reuse has grown due to the continual increase in digital IC

system complexity. While twenty years ago a 32-bit processor

would require several ICs, a 32-bit RISC core currently requires

approximately 25% of the StrongARM 110 device developed by

Digital Semiconductor in collaboration with ARM Limited

[7,17,22]. Design partitioning allows complex systems to be

assembled from smaller modules. Although this type of design

reuse has been employed for years, the boundaries of these

modules have recently moved inside IC packages. Reused

modules include parameterized memory systems, I/O channels,

ALUs, and complete processor cores.

Design reuse has led to the rise of Intellectual Property Protection

(IPP) concerns [8]. IP modules are often designed by one

company (e.g. Lexra, Altera, Xilinx, VA Research) and sold in a

non-physical form (e.g. HDL, netlist, layout) to others, and

therefore do not have a natural physical manifestation. The IP

blocks are modular and are designed to be integrated within other

systems, usually on the same chip. As a result of the flexible,

intangible nature of these modules, IP theft has become a

problem. A thief need only resell or reuse an IP module without

even reverse engineering the design, as proof of IP ownership is

difficult to assert due to its inherently abstract nature.

An existing FPGA design watermarking [15] technique attempts

to deter such direct theft and misappropriation of FPGA IP.

Digital marks are embedded in a design layout which identify the

design origin (watermarking and fingerprinting [14]) and specific

design instance recipient (fingerprinting only). This existing

FPGA IP protection technique focused more on embedding the

mark and keeping it secure. Little emphasis was placed on the

mark itself and the quality and complexity of its detection and

verification.

Our new technique enables efficient copy detection for identifying

stolen or misappropriated IP, even if it is embedded in a complex

system. The technique also provides simple mark extraction and

convincing design source verification, without threatening the

security of other designs. Finally, the embedded marks are more

secure against removal attacks and more robust against partial

mark removal. The new technique provides this greater

efficiency, verifiability, security, and robustness for protecting

FPGA IP without increasing the user design effort, CAD tool

effort, or area and timing overhead required by the existing FPGA

watermarking technique.

1.2 Existing FPGA Watermarking Technique
FPGA design watermarking embeds a digital mark in unused

lookup tables (LUTs) throughout the design [15]. These LUTs

are incorporated into the design with unused interconnect and

neighboring logic block “don’t care” inputs, further hiding the

signature. Watermarks have been shown to be secure against

removal unless the design can be reverse engineered to the netlist

level, thus protecting against direct IP theft.

1.3 Copy Detection
Scanning a large set of diverse FPGA designs for potentially

stolen or misappropriated copies can be a laborious process if

comparisons are based on functional similarities or widely

dispersed watermarks. Fortunately, the existing FPGA

watermarking technique restricts mark placement to logic block

LUTs, and it can be quickly established where LUTs are located

in an FPGA bitstream. (Bitstreams are attained by monitoring the

serial line between the FPGA and the bitstream storing EPROM

during configuration.) Therefore, LUTs can be scanned for

ownership marks, making copy detection reasonably efficient.

The new FPGA watermarking technique allows for even more

efficient copy detection than the existing technique provides by

allowing each design and every copy of each design to have the

same set of watermarks. Therefore, when a set of designs is being

searched, a constant, constrained set of marks is being compared

to the LUT configurations, greatly reducing the search

complexity. Mark security is maintained by the use of multiple

watermarks (the existing FPGA watermarking technique uses a

single large watermark) as discussed in Sections 1.4 and 1.5.

In addition, searching for multiple marks does not increase design

search complexity by a significant measure even if a single mark

were used in every design. This efficiency is achieved by using

small marks, specifically marks that fit in the target architecture’s

LUTs. Therefore, for each LUT examination, the set of marks is

iteratively compared to the LUT contents instead of successive

LUT-sized portions of the large single mark. For example, given

16-bit LUTs, comparing 20 successive 16-bit portions of a single

320-bit mark to LUT contents requires the same complexity as

comparing 20 16-bit marks.

The use of multiple small marks makes copy detection

significantly more efficient.

1.4 Mark Verification
Publicly verifying design ownership has previously presented a

risk to the design owners. Once a mark was publicly revealed for

verification, it increased the possibility that other design

recipients could find and remove the mark. This vulnerability is

especially crucial if the same mark is used for all of the owners’

IP including unrelated modules, which is necessary for efficient

copy detection.

The new technique eliminates this concern with the use of

multiple watermarks. A subset of the marks is revealed for public

verification, providing enough information for proof of ownership

yet not enough for other recipients to remove a significant amount

of marks in their copies. For example, an IP module may be

developed by one company and sold to 100 others. The module

designers could embed a set of small watermarks in each design.

If a theft or misappropriation is suspected, a subset of the

watermarks could be publicly provided by the designer for

ownership verification without risking that the other 99

companies (as well as the customers for all the other designs

created by the company that possess the same set of marks)

receive enough information to remove all, or even a large portion,

of the design ownership marks. The subset may be removed, but

the others will remain.

In addition, an important characteristic of any watermarking

approach involves the owner being able to precisely locate the

marks for ownership verification based on a predefined extraction

technique. If the owner tells an independent verification team that

a watermark is in locations F(seed), for some known algorithm F()

and an integer seed value, they will have more credibility than if

they tell the team to search the entire design until they find a

watermark. The specific approach to such an implementation for

watermarking verification is detailed in Section 4.4. Even without

mark location information (e.g. when the IP is merged into a

larger design) it is possible to detect and verify the mark due to

the searching efficiency the small and multiple mark approach

provides.

1.5 Mark Security and Robustness
Our new technique embeds multiple small marks, as opposed to a

single large mark, creating greater mark security and robustness

than the existing technique provides.

Smaller marks reduce the possibility that a mark may be partially

removed, thus increasing mark robustness for verification. For

example, if ten of twenty LUTs containing the mark were erased

by reverse engineering, one 320-bit mark with 50% of its bits

removed is less compelling for ownership verification than ten

intact 16-bit marks.

Multiple distinct marks also increase mark security by reducing

the possibility of repetition-based statistical attacks from the

repetition of a single small watermark. For example, a single 16-

bit mark repeated twenty times is susceptible to such an attack,

while ten to twenty distinct marks would be less apparent.

1.6 Contributions
We present a new FPGA design watermarking technique for IPP

that provides for more efficient copy detection, more convincing

ownership and recipient verification, and more secure and robust

marks without increasing user design effort, CAD tool effort, or

area and timing overhead.

1.7 Paper Organization
Sections 2 and 3 provide the technical background and related

work information necessary for understanding this new IPP

technique. Section 4 details the new approach to FPGA IPP, and

Section 5 evaluates the new approach. Section 6 concludes the

discussion with summarizing comments.

2. TECHNOLOGICAL ISSUES

2.1 Vulnerability to Reverse Engineering
The concern over mark removal through reverse engineering for

older methods still exists for the new technique. Marks can be

applied to any level in the design flow, including behavioral

hardware description language (HDL), synthesis to register

transfer language (RTL), technology mapping, and finally

physical layout involving place-and-route. A mark applied at one

level transfers down to lower levels, but because a mark is

nonfunctional, it may be removed by reverse engineering a design

to a higher level in the design flow than that where the mark was

applied. However, FPGA vendors generally believe that it is

difficult to reverse engineer their devices, and they promise their

customers that they will keep the bitstream specification

confidential in order to raise the bar for reverse engineering [S.

Trimberger, Xilinx Corporation, personal communication]. Ken

Hodor, product-marketing manager at Actel, claims that “antifuse-

based FPGAs are by far the hardest device to reverse engineer”

[8]. The SRAM-based Xilinx XC4000 devices follow a form of

Pareto’s rule: the first 80% of the configuration information can

be determined relatively easily by inspection, the next 16% is

much more difficult, etc. The irregular row and column pattern

due to the hierarchical interconnect network increases the

complexity.

2.2 Vulnerability to Statistical Analysis
Although the new IPP approach protects against mark removal

through repetition-based statistical analysis, other statistic

investigations could be launched. A naive approach to encoding a

watermark would involve making direct use of symbols from a

known alphabet or strings from a known language (e.g. ASCII

encoding of words from a romance language). This approach

would result in a frequency distribution of symbols that is likely

to be quite different from that typically found in LUTs that are

used to implement digital logic. An engineer could detect a

watermark through statistical analysis given a large enough

sample of typical digital designs. The degree of risk is directly

proportional to the size of the watermark (i.e. the sample size for

comparison). While this approach could be used to identify the

likely existence of a watermark, it cannot be used directly to

identify its location.

This problem can be attacked through three methods. First, the

number of symbols selected from the alphabet can be reduced –

the number of watermark bits can be made shorter. This

technique is in direct opposition to the goal of achieving high

confidence of verification by watermarking many bits, and thus

we rejected it. Second, a mapping function can be produced that

will translate the symbols in the watermark alphabet into

appropriate symbols from the typical design distribution – thus

giving the watermark a statistical signature closer to a typical

design. We do not currently have a large enough set of complete

designs to be able to characterize the typical distribution, and thus

producing such a mapping function is problematic. We have

chosen to implement a third approach, which whitens the

spectrum of the watermark making it not look like any particular

spectrum. Thus, while it will still be possible to find a mark by

asking “does this look like a typical design?” (given enough

information regarding typical design characteristics) it is not

possible to find the mark by asking “is there a mark in English?”

As mentioned earlier this spectral whitening primarily is achieved

through the application of secure hash functions.

2.3 Verifying Altered Designs
As discussed in Section 1.4, watermarking places ownership

marks in specific LUTs based on the design seed and desired

marks. Therefore, knowing the design seed and embedded marks,

the location of each mark is known to the owner. Verification

then only requires comparisons to be made between the presumed

mark and the LUT bits. However, if the design has been altered

(e.g. the bitstream reverse engineered to the physical design layout

level and rearranged using a design or floorplan editor) or merged

with other IP, the mark may have been moved to a different LUT

location. If such a case arises, mark extraction for ownership or

source verification involves blindly searching LUTs for the

multiple ownership watermarks. This is unfortunately more

complex and less convincing than extracting the marks from

known locations. However, it is important to note the position

independent nature of the watermark, as the complexity of blindly

searching the LUTs is greatly reduced by the use of small multiple

marks.

3. RELATED WORK
Many current IP protection techniques are based on encrypted

source files. For example, encrypted HDL modules disguise the

form and structure from IP users. This allows the IP users the

ability to incorporate soft modules and high performance

simulation models into their design using a CAD tool provided

with the decryption key, without exposing the IP to theft.

However, this approach has been routinely and successfully

attacked, often by directly attacking the CAD tool. Therefore,

there is no foreseeable IP protection technique based on encrypted

source files, despite stronger forms of encryption and more

thorough systems engineering.

Signature hiding techniques for image, video, and audio signals

have recently received a great deal of attention. Digital image

steganography has been especially well explored [4,20,24].

Although many mark security and verification issues have been

raised [5], several image watermarking techniques do exist that

have been shown to be robust against all known attacks [21].

Digital audio protection has proven to be even more difficult, but

many different techniques have nevertheless been proposed

[1,2,4]. Video stream protection techniques have also been

developed [9,19].

Techniques have arisen that provide general intellectual property

protection through watermarking. Marks are embedded at the

behavioral level down to the physical layout by imposing design

constraints [3,10,12,13]. A different set of synthesis and

optimization issues arises when applying marks at different design

phases (physical synthesis of FPGA-based design vs. behavioral

synthesis). Addressing the design at a lower level of abstraction

provides the advantage of a larger design space and greater

flexibility, making it possible to embed signatures that are

significantly more difficult to detect and remove.

Cryptography is used for selecting a subset of FPGA physical

design constraints for mark embedding, as it provides

probabilistic randomization and therefore protection from added

constraints. For this task, we use the standard cryptography tools

from the PGP-cryptography suite, the secure hash function MD5,

and the RSA/MIT stream cipher RC4 [18].

4. APPROACH

4.1 Global Flow
While the basic design flow for watermarking is no different than

described in [15], the technique introduced here creates new

approaches for three sub-functions: mark preparation, mark

embedding, and mark verification. The pseudo-code and

explanations below represent the global flow of the technique.

1. create initial non-watermarked design;
2. extract timing and area information;
3. prepare marks;
4. establish mark locations;
5. modify netlist and physical constraints for mark

locations;
6. execute vendor place-and-route tools on modified

netlist;
7. embed marks;
8. incorporate unused logic blocks into design;
9. if !(meet timing criteria) {
10. retry with fewer marks, else terminate with

success;
11. }

Steps 1 and 2 are a part of any digital design flow. The original

netlist is mapped, processed by the place-and-route tools, and

subjected to timing and area analysis. This timing and area

information is later used for calculating the overhead incurred due

to watermarking. Ownership mark preparation is then performed

in Step 3, and mark locations are defined by a design seed in Step

4. The physical constraints based on the established mark

locations are input to the netlist and CAD tool constraints file in

Step 5, allowing the modified design to be re-mapped and re-

processed by the place-and-route tool in Step 6. Steps 7 and 8

embed the marks in the appropriate LUTs which are incorporated

into the rest of the design by receiving dummy inputs and

outputting to neighboring “don’t care” inputs, further hiding the

marks. Timing analysis is done in Step 9, establishing the timing

overhead incurred due to watermarking. If the overhead is

deemed unacceptable, the process is repeated with fewer marks,

which also changes the mark locations determined in Step 4.

4.2 Mark Preparation
The improved method of mark preparation is the first major

diversion from the original watermarking technique. Mark

preparation now has the specific focus of creating small and

multiple marks. One such advancement in efficiency is that the

small and multiple marks make error-correction coding (ECC)

block interleaving unnecessary. The marks are small enough that

interleaving blocks would not add much value. However by

increasing the number of marks, verification (the original

motivation for interleaving due to the singular mark) will not be

affected.

The marks to be embedded originate as 7-bit ASCII strings that

can be printed using traditional I/O mechanisms. Their sizes are

limited by the subsequent hash function specifications. The mark

strings are given to the watermarking system for embedding in the

circuit and are later produced by the verification program. The

marks are transformed via a hash function (i.e. MD5), creating

marks each capable of fitting in a single LUT1, while still

incorporating the user-defined number of ECC bits as discussed

below. This step is crucial to the enhancements enabled by small

and multiple marks, as the original watermarking technique

prepared one large signature. As a consequence of the hash

function, the marks are whitened so as not to look like any

particular statistical spectrum, as described in Section 2.2. This

whitening of the signal does not mask its content but rather its

existence. By making the mark have a flat distribution, the marks

will be more difficult to detect.

Finally, mark preparation involves adding ECC, which helps

combat attempts to modify or remove the marks by changing LUT

bits. If the modification is small enough, ECC codes help

increase the possibility of retrieving the original marks and, if

successful, provide proof of design tampering. A tradeoff exists

between the number of bits allocated to each mark and to ECC, as

the sum must not exceed the size of the target architecture’s LUTs

while still providing enough tampering protection through ECC.

4.3 Mark Embedding
Watermarking locations are determined by a secure function and a

seed, which leaves a different design with the same set of marks

still secure. This additional security is relevant to mark

verification efficiency discussed in Sections 1.4 and 4.4.

After the mark locations are determined, the process of mark

embedding begins. As in the previous watermarking technique,

the LUTs to be implanted with the marks are given arbitrary

inputs and outputs in order to further disguise the marks. The

inputs are simply taps off of passing signals, and the outputs are

1 If the target architecture possesses logic blocks with multiple

LUTs, a mark can transcend a single LUT to fit within a logic

block’s available LUTs.

routes to neighboring logic block “don’t care” inputs. This

incorporation helps to hide the marked LUTs without severely

impacting design performance, as the dummy outputs are not a

functional design component.

Finally, the marks themselves are embedded in the predefined

LUTs by reprogramming the respective bits in the bitstream.

Therefore, the final step of mark embedding is an entirely post-

processing step.

4.4 Mark Verification
When the suspicion of theft or misappropriation arises, an

unbiased verification team is presented the configuration in

question. The IP vendor must produce the design seed that they

claim was used to produce the block and upon which the mark

locations are based. The verification team uses the seed and

reverses the signature preparation and embedding process by first

identifying the LUTs used for hiding the marks. Once the marks

are extracted and, if necessary, the ECC is applied, the marks are

decrypted using a known key and hash function. Finally, the

original ASCII signature is revealed, and if the signature identifies

the IP vendor, ownership has been established. As discussed in

Section 1.4, ownership can also be publicly proven by revealing a

subset of the multiple watermarks found in the design without

creating the possibility that other design (the same design or other

designs containing the same mark set) recipients remove the

ownership information.

5. EXPERIMENTAL RESULTS

5.1 Objectives
Experiments have been used to evaluate the overhead (area and

timing) of the proposed watermarking approach. When

calculating area overhead, it must be noted that place-and-route

tools rarely pack utilized logic blocks, and therefore LUTs, into a

minimal area. Unused logic introduces flexibility into the place-

and-route step that may be essential for completion or good

performance. However, these unused LUTs can be used for

embedding marks, but should not be considered area overhead.

For example, an initial design may possess a region that contains

100 utilized logic blocks but also 15 unutilized logic blocks. Area

overhead should not include those 15 blocks. Rather, area

overhead must be calculated as the area used by the watermarked

design minus the total area of the original design, including

unused logic blocks and LUTs. In addition, the constraints

imposed on placement for mark embedding may also contribute to

timing overhead, as a marked LUT may require that a critical path

be lengthened.

The smaller and multiple marks technique does not have an

impact on the area, timing, or design effort overhead required for

the existing FPGA watermarking technique. A given number of

LUT bits and unused LUT locations are available, and all of the

bits may be used to encode several smaller marks where one large

watermark had been. For example, one 320-bit mark distributed

over twenty LUTs could be transformed to twenty 16-bit marks

without affecting the design.

5.2 Designs
To evaluate the area and timing overhead of the watermarking

approach, we conducted an experiment on three large real-world

designs: a MIPS R2000 processor core designed for FPGAs [11],

a reconfigurable Automatic Target Recognition (ATR) system

[23], and a digital encryption standard (DES) design [16]. The

MIPS core and the DES design were both implemented on the

Xilinx XC4028EX-3-PG299, and the ATR system was

implemented on the XC4062XL-3-PG475. For each design, the

smallest possible device was used. In Step 2 of the pseudo-code

in Section 4.1, the number of unused LUTs was calculated and the

circuit timing was noted. The original area and timing statistics

are displayed in Table 1.

design # used LBs # spare LBs min period (ns)

MIPS R2000 756 268 185.0

ATR 1876 214 424.5

DES 875 149 166.3

Table 1. Original physical layout statistics

5.3 Watermarking Results
Experimental results reveal that the new watermarking approach

does not require more area or timing overhead than the existing

FPGA watermarking technique. Due to the place-and-route tool

not packing the logic to maximum density, there is essentially no

area overhead required by the new approach. As expected, the

unused logic was used to embed the marks and therefore increased

the density of utilized logic blocks and LUTs. If place-and-route

tools packed logic to a higher density, a certain degree of area

overhead may become apparent.

Following the pseudo-code approach detailed in Section 4.1,

location constraints were placed on each design before place-and-

route. An iteratively larger number of marks (until all unused

LUTs were filled) were embedded, and the circuit timing was

noted and compared to the original design. The results are shown

in Tables 2-4.

For each table, the top two rows show the number of the 16-bit

(Xilinx 4000 LUT size) marks. The next two rows show the area

increase and timing degradation. As mentioned above, the area

overhead is nearly 0%, but the additional percentages of utilized

logic blocks are noted in the tables. For timing degradation,

positive percentages indicate a decrease in performance.

Therefore, some marked designs recorded a timing improvement.

This can be explained by the dramatically different placement and

corresponding timing that often results from relatively small

design changes. The timing impact of watermarking is below the

characteristic variance associated with such small changes.

Therefore, timing degradation is non-monotonic with the number

of marks.

Figures 1 and 2 represent two iterations of the watermark

experiment process. Figure 1 is the original layout of the DES

design with no watermarking constraints. The area and timing

statistics for the design are noted in Table 1. Note that optimal

logic density for the original placement does not exist, as many

unused logic blocks are dispersed throughout the design. The

experimental process continued until all unused LUTs contained a

mark. Figure 2 shows the final layout with 298 16-bit marks and,

therefore, the maximum amount of location constraints. The

location of each LUT containing a mark is hidden by the

incorporation of each LUT into the design. Inputs are taken from

passing signals, and the outputs are routed to neighboring logic

block “don’t care” inputs. Comparisons between Figures 1 and 2

reveal that area overhead is negligible (only logic density is

increased), and Table 4 indicates that the timing overhead is

actually negative for this iteration of mark embedding.

16-bit marks 50 98 162 200 242 288 338 392 450 512

% resources 3.31 6.48 10.71 13.23 16.01 19.05 22.35 25.93 29.76 33.86

% timing -1.04 -0.47 3.17 -7.15 -4.69 1.65 -11.53 2.47 11.95 -5.23

Table 2. MIPS R2000 – Impact of number of 16-bit marks on resources and speed

16-bit marks 2 50 98 184 288 374 428

% resources 0.05 1.33 2.61 4.90 7.68 9.97 11.41

% timing -10.74 3.46 -25.93 -7.99 -13.50 10.25 -1.57

Table 3. ATR - Impact of number of 16-bit marks on resources and speed

16-bit marks 2 50 98 158 200 242 298

% resources 0.11 2.86 5.60 9.03 11.43 13.83 17.03

% timing -22.98 -14.83 -5.07 -1.90 11.05 -11.93 -3.28

Table 4. DES - Impact of number of 16-bit marks on resources and speed

Figure 1. DES original layout Figure 2. DES with 298 16-bit marks

6. CONCLUSION
We have introduced new FPGA design watermarking technique

for IPP that is more efficient for copy detection, more convincing

for ownership and recipient verification, and more secure and

robust against mark removal than existing techniques. These

improvements are achieved without increasing user design effort,

CAD tool effort, or area and timing overhead.

ACKNOWLEDGEMENTS
This work was supported by the Air Force Research Laboratory of

the United States of America, under contract F30602-96-C-0350

and subcontract QS5200 from Sanders, a Lockheed Martin

company.

REFERENCES

[1] W. Bender et al., "Techniques for Data Hiding,” IBM

Systems Journal, vol. 35, no 3-4, 1996, 313-336.

[2] L. Boney et al., "Digital Watermarks for Audio

Signals,” International Conference on Multimedia

Computing and Systems, 1996.

[3] E. Charbon, "Hierarchical Watermarking in IC

Design,” Custom Integrated Circuits Conference,

1998.

[4] I.J. Cox et al., "Secure Spread Spectrum Watermarking

for Images, Audio, and Video,” International

Conference on Image Processing, 1996.

[5] S. Craver et al., "Can Invisible Watermarks Resolve

Rightful Ownership?" Storage and Retrieval for Image

and Video Databases, Proceedings of the SPIE, vol.

3022, 1997, 310-321.

[6] W. Diffie and M. Hellman, "New Directions on

Cryptography," IEEE Transactions on Information

Theory, vol. IT-22, no. 6, Nov. 1976, 644-654.

[7] S. Furber, ARM System Architecture, Menlo Park:

Addison-Wesley, 1996, 329.

[8] R. Goering, “IP98 Forum Exposes Struggling Industry

– Undefined Business Models, Unstable Core Prices

Cited,” EE Times, Issue 1000, March 30, 1998.

[9] F. Hartung and B. Girod, "Copyright Protection in

Video Delivery Networks by Watermarking of Pre-

Compressed Video," ECMAST’97, Springer Lecture

Notes in Computer Science, vol. 1242, 1997, 423-436.

[10] I. Hong and M. Potkonjak, "Behavioral Synthesis

Techniques for Intellectual Property Protection,”

Design Automation Conference, 1999.

[11] B. Hutchings et al., BYUcore: A MIPS R2000

Processor for FPGAs, 1997.

[12] A.B. Kahng et al., "Robust IP Watermarking

Methodologies for Physical Design," Design

Automation Conference, 1998, 782-787.

[13] A.B. Kahng et al., “Watermarking Techniques for

Intellectual Property Protection,” Design Automation

Conference, 1998, 776-781.

[14] J. Lach, W. H. Mangione-Smith, and M. Potkonjak,

“Fingerprinting Digital Circuits on Programmable

Hardware,” International Workshop on Information

Hiding, 1998, 16-31.

[15] J. Lach, W. H. Mangione-Smith, and M. Potkonjak,

“Signature Hiding Techniques for FPGA Intellectual

Property Protection,” International Conference on

Computer-Aided Design, 1998.

[16] J. Leonard and W. H. Mangione-Smith, "A Case Study

of Partially Evaluated Hardware Circuits: Key-Specific

DES," Field Programmable Logic, 1997, 151-160.

[17] J. Montanaro et al., “A 160MHz 32b 0.5W CMOS

RISC Microprocessor,” IEEE Journal of Solid-State

Circuits, vol. 31, no. 11, Nov. 1996, 1703-1714.

[18] B. Schneier, 1963- Applied Cryptography: Protocols,

Algorithms, and Source Code in C, New York: John

Wiley & Sons, 1996.

[19] G.A. Spanos and T.B. Maples, "Performance Study of

a Selective Encryption Scheme for the Security of

Networked, Real-Time Video,” International

Conference on Computer Communications and

Networks, 1995.

[20] M.D. Swanson et al., "Transparent Robust Image

Watermarking," International Conference on Image

Processing, 1996.

[21] A.H. Tewfik and M. Swanson, "Data Hiding for

Multimedia Personalization, Interaction, and

Protection," IEEE Signal Processing Magazine, 1997,

41-44.

[22] J. Turley, “ARM Grabs Embedded Speed Lead,”

Microprocessor Report, vol. 10, 1996.

[23] J. Villasenor et al., "Configurable Computing Solutions

for Automatic Target Recognition," Proceedings of

IEEE Workshop on FPGAs for Custom Computing

Machines, 1996, 70-79.

[24] R.B. Wolfgang and E.J. Delp, "A Watermark for

Digital Images," Applications of Toral Automorphisms,

vol. 3, 1996, 219-222.

[25] Xilinx, The Programmable Logic Data Book, San Jose,

CA, 1996.

