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Abstract

We present a novel algorithm (which we call “Frag-
Track”) for tracking an object in a video sequence. The
template object is represented by multiple image fragments
or patches. The patches are arbitrary and are not based on
an object model (in contrast with traditional use of model-
based parts e.g. limbs and torso in human tracking). Every
patch votes on the possible positions and scales of the ob-
ject in the current frame, by comparing its histogram with
the corresponding image patch histogram. We then mini-
mize a robust statistic in order to combine the vote maps of
the multiple patches.

A key tool enabling the application of our algorithm to
tracking is the integral histogram data structure [18]. Its
use allows to extract histograms of multiple rectangular re-
gions in the image in a very efficient manner.

Our algorithm overcomes several difficulties which can-
not be handled by traditional histogram-based algorithms
[8, 6]. First, by robustly combining multiple patch votes, we
are able to handle partial occlusions or pose change. Sec-
ond, the geometric relations between the template patches
allow us to take into account the spatial distribution of the
pixel intensities - information which is lost in traditional
histogram-based algorithms. Third, as noted by [18], track-
ing large targets has the same computational cost as track-
ing small targets.

We present extensive experimental results on challenging
sequences, which demonstrate the robust tracking achieved
by our algorithm (even with the use of only gray-scale (non-
color) information).

1. Introduction

Tracking is an important subject in computer vision with
a wide range of applications - some of which are surveil-
lance, activity analysis, classification and recognition from
motion and human-computer interfaces. The three main

categories into which most algorithms fall are feature-based
tracking (e.g. [3]), contour-based tracking (e.g. [15]) and
region-based tracking (e.g [13]). In the region-based cate-
gory, modeling of the region’s content by a histogram or by
other non-parametric descriptions (e.g. kernel-density esti-
mate) have become very popular in recent years. In particu-
lar, one of the most influential approaches is the mean-shift
approach [8, 6].

With the experience gained by using histograms and the
mean shift approach, some difficulties have been studied in
recent years. One issue is the local basin of convergence
that the mean shift algorithm has. Recently in [22] the au-
thors describe a method for converging to the optimum from
far-away starting points.

A second issue, inherent in the use of histograms, is the
loss of spatial information. This issue has been addressed
by several works. In [26] the authors introduce a new sim-
ilarity measure between the template and image regions,
which replaces the original Bhattacharyya metric. This
measure takes into account both the intensities and their
position in the window. The measure is further computed
efficiently by using the Fast Gauss Transform. In [12], the
spatial information is taken into account by using “oriented
kernels” - this approach is additionally shown to be useful
for wide baseline matching. Recently, [4] has addressed this
issue by adding the spatial mean and covariance of the pixel
positions who contribute to a given bin in the histogram -
naming this approach as “spatiograms”.

A third issue which is not specifically addressed by these
previous approaches is occlusions. The template model is
global in nature and hence cannot handle well partial occlu-
sions.

In this work we address the latter two issues (spatial in-
formation and occlusion) by using parts or fragments to rep-
resent the template. The first issue is addressed by efficient
exhaustive search which will be discussed later on. Given
a template to be tracked, we represent it by multiple his-
tograms of multiple rectangular sub regions (patches) of the
template. By measuring histogram similarity with patches

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



of the target frame, we obtain a vote-map describing the
possible positions of each patch in the target frame. We
then combine the vote-maps in a robust manner. Spatial in-
formation is not lost due to the use of spatial relationships
between patches. Occlusions result in some of the patches
contributing outlier vote-maps. Due to our robust method
for combining the vote maps, the combined estimate of the
target’s position is still accurate.

The use of parts or components is a well known tech-
nique in the object recognition literature (see chapter 23 in
[11]). Examples of works which use the spatial relation-
ships between detections of object parts are [21, 17, 16, 2].
In [24] the issue of choosing informative parts which con-
tain the most information concerning the presence of an ob-
ject class is discussed. A novel application of detecting un-
usual events and salient features based on video and image
patches has recently been described in [5].

In tracking, the use of parts has usually been in the con-
text of human body tracking where the parts are based on
a model of the human body - see [23] for example. Re-
cently, Hager, Dewan and Stewart [14] (followed by Fan et
al. [10]) analyzed the use of multiple kernels for tracking.
In these works the connection between the intensity struc-
ture of the target, the possible transformations it can expe-
rience between consecutive frames, and the kernel structure
used for kernel tracking was analyzed. This analysis gives
insight on the limitations of single-kernel tracking, and on
the advantages of multiple-kernel tracking. The parts-based
tracking algorithm described in this work differs from these
and other previous works in a number of important issues:

• Our algorithm is robust to partial occlusions - the
works in [14, 10] cannot handle occlusions due to the
non-robust nature of the objective function.

• Our algorithm allows the use of any metric for com-
paring two histograms, and not just analytically-
tractable ones such as the Bhattacharyya or the equiv-
alent Matusita metrics. Specifically, by using non-
componentwise metrics the effects of bin-quantization
are reduced (see section 2.1 and Fig. 3).

• The spatial constraints are handled automatically in
our algorithm by the voting mechanism. In contrast,
in [10] these constraints have to be coded in (e.g. the
fixed length constraint).

• The robust nature of our algorithm and the efficient use
of the integral histogram allows one to use the algo-
rithm without giving too much thought on the choice
of multiple patches/kernels. In contrast, in [14, 10] the
authors carefully chose a small number of multiple ker-
nels for each specific sequence.

• We present extensive experimental validation, on out-
of-the-lab real sequences. We demonstrate good track-
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Figure 1. Template patch PT and the corresponding image patch
PI;(x,y) for a hypothesized position (x, y)

ing performance on these challenging scenarios, ob-
tained with the use of only gray-scale information.

Our algorithm requires the extraction of intensity or
color histograms over a large number of sub-windows in
the target image and in the object template. Recently Pork-
ili [18] extended the integral image [25] data structure to
an “integral histogram” data structure. Our algorithm ex-
ploits this observation - a necessary step in order to be able
to apply the algorithm for real time tracking tasks. We ex-
tend the tracking application described in [18] by our use
of parts, which is crucial in order to achieve robustness to
occlusions.

2. Patch Tracking

Given an object O and the current frame I , we wish to
locate O in the image. Usually O is represented by a tem-
plate image T , and we wish to find the position and the scale
of a region in I which is closest to the template T in some
sense. Since we are dealing with tracking, we assume that
we have a previous estimate of the position and scale, and
we will search in the neighborhood of this estimate. For
clarity, we will consider in the following only the search in
position (x, y).

Let (x0, y0) be the object position estimate from the pre-
vious frame, and let r be our search radius. Let PT =
(dx, dy, h, w) be a rectangular patch in the template, whose
center is displaced (dx, dy) from the template center, and
whose half width and height are w and h respectively. Let
(x, y) be a hypothesis on the object’s position in the cur-
rent frame. Then the patch PT defines a corresponding
rectangular patch in the image PI;(x,y) whose center is at
(x+dx, y+dy) and whose half width and height are w and
h. Figure 1 describes this correspondence.

Given the patch PT and the corresponding image patch
PI;(x,y), the similarity between the patches is an indication
of the validity of the hypothesis that the object is indeed
located at (x, y). If d(Q, P ) is some measure of similarity
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between patch Q and patch P , then we define

VPT
(x, y) = d(PI;(x,y), PT ) (1)

When (x, y) runs on the range of hypotheses, we get
VPT

(·, ·) which is the vote map corresponding to the tem-
plate patch PT .

2.1. Patch Similarity Measures

We measure similarity between patches by comparing
their gray-level or color histograms. This allows more flexi-
bility than the standard normalized correlation or SSD mea-
sures. Although for a single patch we lose spatial informa-
tion by considering only the histogram, our use of multiple
patches and their spatial arrangement in the template com-
pensates for this loss.

There are a number of known methods for comparing
the similarity of two histograms [9]. The simplest methods
compare the histograms by comparing corresponding bins.
For example, one may use the chi-square statistic or sim-
ply the norm of the difference between the two histograms
when considered as two vectors.

The Kolmogorov-Smirnov statistic compares histograms
by building the cumulative distribution function (that is cu-
mulative sum) of each histogram, and comparing these two
functions. The advantage over bin-wise methods is smooth-
ing of nearby bin differences due to the quantization of mea-
surements into bins.

A more appealing approach is the Earth Mover’s Dis-
tance (EMD) between two histograms, described in [20].
In this approach the actual dissimilarity between the bins
themselves is also taken into account. The idea is to com-
pute how much probability has to move between the various
bins in order to transform the first histogram into the second.
In doing so, bin dissimilarity is used: for example, in gray
scale it costs more to move 0.1 probability from the [16, 32)
bin to the [128, 144) bin, than to move it to the [32, 47)
bin. In the first case, the movement of probability is re-
quired because of a true difference in the distributions, and
in the second case it might be due simply to quantization
errors. This is exactly the transportation problem of linear
programming. In this problem the bases are always triangu-
lar and therefore the problem may be solved efficiently. See
[20] for more details and advantages of this approach.

We have experimented with two similarity measures.
The first is the naive measure which treats the histograms
as vectors and just computes the norm of their difference.
The second is the EMD measure. For gray scale images,
we used 16 bins. The EMD calculation is very fast and
poses no problem. For color images, the number of bins is
much larger (with only 8 bins per channel we get 512 bins).
Therefore when using the EMD we took the K = 10 bins
which obtained maximal counts, normalized them to unity

Figure 2. An example patch

Patch vote map − naive (dis)similarity Patch vote map − EMD (dis)similarity 

(a) (b)
Figure 3. Vote maps for the example patch using the the naive mea-
sure and the EMD measure. The lower (darker) the vote - the more
likely the position. Left (a) - naive measure. Right (b) - EMD. The
EMD surface has a less blurred minimum, and is smoother at the
same time.

and then used the EMD. We used the original EMD code
developed by Rubner [19].

Figure 2 shows an example patch (we use gray scale in
this example). We computed the patch vote map for all the
locations around the patch center which are up to 30 pixels
above or below and up to 20 pixels to the left or right. Fig-
ure 3 shows the resulting vote maps when using the naive
measure and the EMD measure. Note that in both measures
the lower the value (darker in the image), the more simi-
lar the histograms. The EMD surface is smoother and has
a more distinct minimum than the surface obtained when
using the naive measure.

3. Combining Vote Maps

In the last section we saw how to obtain a vote map
VPT

(·, ·) for every template patch PT . The vote map gives
a scalar score for every possible position (x, y) of the tar-
get in the current frame I , given the information from patch
PT . We now want to combine the vote maps obtained from
all template patches.

Basically we could sum the vote maps and look for the
position which obtained the minimal sum (recall that our
vote maps actually measure dissimilarity between patches).
The drawback of this approach is that an occlusion affecting
even a single patch may contribute a high value to the sum at
the correct position, resulting in a wrong estimate. In other
words, we would like to use a robust estimator which could
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handle outliers resulting from occluded patches or other rea-
sons (e.g. partial pose change - for example a person turns
his head).

One way to make the sum robust to outliers is to bound
the possible contribution of an outlier

C(x, y) =
∑
P

{
VP (x, y) VP (x, y) < T

T VP (x, y) >= T
(2)

by some threshold T . If we adopt a probabilistic view of
the measurement process - by transforming the vote map
to a likelihood map (e.g. by setting LP (x, y) = K ∗
exp−α∗VP (x,y)) - then this method is equivalent to adding
a uniform outlier density to the true (inlier) density. Min-
imizing the value of C(·, ·) is then equivalent to obtaining
a maximum likelihood estimate of the position, but without
letting an outlier take the likelihood down to 0.

However, we found that choosing the threshold T is
not very intuitive, and that the results are sensitive to this
choice. A different approach is to use a LMedS-type es-
timator. At each point (x, y) we order the obtained val-
ues {VP (x, y)| patches P} and we choose the Q’th smallest
score:

C(x, y) = Q′th value in the sorted set {VP (x, y)| patches P}
(3)

The parameter Q is much more intuitive: it should be the
maximal number of patches that we always expect to yield
inlier measurements. For example, if we think that we are
guaranteed that occlusions will always leave at least a quar-
ter of the target visible, than we will choose Q to be 25%
of the number of patches (to be precise - we assume that at
least a quarter of the patches will be visible).

The additional computational burden when using esti-
mate (3) instead of (2) is not significant (the number of
patches is less than 40).

4. Using the Integral Histogram

The algorithm that we have described requires multiple
extractions of histograms from multiple rectangular regions.
We extract histograms for each template patch, and then we
compare these histograms with those extracted from mul-
tiple regions in the target image. The tool enabling this to
be done in real time, as required by tracking, is the integral
histogram described in [18].

The method is an extension of the integral image data
structure described in [25]. The integral image holds at the
point (x, y) in the image the sum of all the pixels contained
in the rectangular region defined by the top-left corner of
the image and the point (x, y). This image allows to com-
pute the sum of the pixels on arbitrary rectangular regions
by considering the 4 integral image values at the corners

Region R 

Region R
1
 

Region R
2
 

Figure 4. Giving less weight to contributions from the outer part
of the region

of the region - in other words in (very short) constant time
independent of the size of the region.

In order to extract histograms over arbitrary rectangu-
lar regions, in the integral histogram we build for each bin
of the histogram an integral image counting the cumula-
tive number of pixels falling into that bin. Then by access-
ing these integral images we can immediately compute the
number of pixels in a given region which fall into every bin,
and hence we obtain the histogram of that rectangular re-
gion.

Once the integral histogram data structure is computed
(with cost proportional to the image (or actually search re-
gion) size times the number of bins), extraction of a his-
togram over a region is very cheap. Therefore evaluating
a hypothesis on the current object’s position (and scale) is
relatively cheap - basically it is the cost of comparing two
histograms.

As noted previously, a tracking application of the integral
histogram was suggested in [18]. We extend that example
with the parts-based approach.

4.1. Weighting Pixel Contributions

An important feature in the traditional mean shift algo-
rithm is the use of a kernel function which assigns lower
weights to pixels which are further away from the target’s
center. These pixels are more likely to contain background
information or occluding objects, and hence their contribu-
tion to the histogram is diminished. However, when using
the integral histogram, it is not clear how one may include
this feature.

The following discrete approximation scheme may be
used instead of the more continuous kernel weighting (see
Figure 4). If we want to extract a weighted histogram in
the rectangular region R, we may define an inner rectangle
R1 and subtract the integral histogram counts of R1 from
those of R to obtain the counts in the ring R − R1. These
counts and the R1 counts may be weighted differently and
combined to give a weighted histogram on R. Of course, an
additional inner rectangle R2 may be used and so forth.

The additional cost is the access and arithmetic involved
with 4 additional pixels for every added inner rectangle. For
medium and large targets this cost is negligible when com-
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pared to trying to weigh the pixels in a straightforward man-
ner.

4.2. Scale

As noted in [25, 18], an advantage of the integral im-
age/histogram is that the computational cost for large re-
gions is not higher than the cost for small regions. This
makes our search for the proper scale of the target not harder
than our search for the proper location.

Just as a hypothesis on the position (x, y) of the object
defines a correspondence between a template patch PT and
an image patch PI;(x,y), if we add a scale s to the hypoth-
esis, it is straightforward to find the corresponding image
patch PI;(x,y,s): we just scale the displacement vector of
the patch and its height and width by s. The cost of extract-
ing the histogram for this larger (or smaller) image patch is
the same as for the same-size patch.

We have implemented the standard approach (suggested
in [8] and adopted by e.g. [4]) of enlarging and shrinking
the template by 10%, and choosing the position and scale
which give the lowest score in (3). The next section will
present some results obtained with this approach.

We remark that as noted in [7], this method has some
limitations. For example, if the object being tracked is
uniform in color, then there is a tendency for the target to
shrink. In the case of partial occlusions of the target, we are
faced with an additional dilemma: suppose that a uniform
colored target is partially occluded. We get a good score by
shrinking the target and locating it around the non-occluded
part. Due to our robust approach, we also get a reasonable
score by keeping the target at the correct size and locating it
at the correct position, which includes some occluded parts
of the target. However, there is no guarantee that the correct
explanation will yield a better score than the partial expla-
nation. A full treatment of this problem is out of the scope
of the current work.

5. Results

Note: The full video clips are available at the authors’
websites.

We now present our experimental results. The tracker
was run on gray scale images and the histograms we used
contained 16 bins. Note that the integral histogram data
structure requires an image for every bin in the histogram,
and therefore on color images the application can become
quite memory-consuming.

We used vertical and horizontal patches as shown in Fig-
ure 5. The vertical patches are of half the template height,
and about one tenth of the template’s width. The horizon-
tal patches are defined in a similar manner. Over all we had
around 36 patches (the number slightly varies with template
size because of rounding to integer sizes). We note that this

Figure 5. The patches we used

choice of patches was arbitrary - we just tried it and found it
was good enough. In the discussion we return to this issue.

The search radius was set to 7 pixels from the previous
target position. The template was fixed at the first frame
and not updated during the sequence (more on this in the
discussion). We used the 25’th percent quantile for the value
of Q in (3).

These settings of the algorithm’s parameters were fixed
for all the sequences.

The first two sequences (“face” and “woman”) show the
robustness to occlusions. For these sequences we manually
marked the ground truth (every fifth frame), and plotted the
position error of our tracker and of the mean-shift tracker.
In both cases our tracker was not affected by the occlusions,
while the mean-shift tracker did drift away. Figures 6 and
7 show the errors with respect to the ground truth. Figure 8
shows the initial templates and a few frames from these se-
quences. Note the last frame of the woman sequence (sec-
ond row) where one can see an example of the use of spatial
information (see figure caption also).

We additionally note that we ran our tracker on these ex-
amples with only a single patch containing the whole tem-
plate, and it failed (this is actually the example tracker de-
scribed in [18]).

The next sequence - “living room” in Figure 9 - shows
performance under partial pose change. When the tracked
woman turns her head the mean shift tracker drifts, and then
together with an occlusion it gets lost. Our tracker is robust
to these interferences.

In Figure 10 we present more samples from three more
sequences. In these frames we marked only our tracker. The
first two sequences are from the CAVIAR database [1]. The
first is an occlusion clip and the second shows target scale
changes. The third sequence is again an occlusion clip. We
bring it to demonstrate how our tracker uses spatial informa-
tion (which is generally lost in histogram-based methods).
Both persons have globally similar histograms (half dark
and half bright). Our tracker “knows” that the bright pixels
should be in the upper part of the target and therefore does
not drift to the left person when the two persons are close.

6. Discussion and Conclusions

In this work we present a novel approach (“FragTrack”)
to tracking. Our approach combines fragments-based repre-
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initial template frame 222 frame 539 frame 849

initial template frame 66 frame 134 frame 456
Figure 8. Occlusions - frames from “face” and “woman” sequences. Our tracker - solid red. Mean-shift tracker - dashed blue. Note in
frame 456 how the spatial information - bright in the upper part, dark in the lower part - helps our tracker. The mean-shift tracker which
does not have this information chooses a region with a dark upper part and a bright lower part.

initial template frame 29 frame 141 frame 209
Figure 9. Pose change and occlusions - frames from “living room” sequence. Our tracker - solid red. Mean-shift tracker - dashed blue.
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Figure 6. Face sequence - error with respect to manually marked
ground truth. Our tracker - solid red. Mean shift - dashed blue.
Please see videos for additional impression

sentation and voting known from the recognition literature,
with the integral histogram tool. The result is a real time
tracking algorithm which is robust to partial occlusions and
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Figure 7. Woman sequence - error with respect to manually
marked ground truth. Our tracker - solid red. Mean shift - dashed
blue. Please see videos for additional impression

pose changes.
In contrast with other tracking works, our parts or frag-

ments approach is model-free: the fragments are chosen
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initial template frame 48 frame 82 frame 110

initial template frame 30 frame 100 frame 180

initial template frame 35 frame 65 frame 90
Figure 10. Additional examples. The first two rows are from the CAVIAR database. No background subtraction/frame differencing was
used. In the last row note again the use of spatial information - both persons have the same global histogram.

arbitrarily and not by reference to a pre-determined parts-
based description of the target (say limbs and torso in hu-
man tracking, or eyes and nose in face tracking).

Without the integral histogram’s efficient data structure
it would not have been possible to compute each fragment’s
votes map. On the other hand, without using a fragments-
based algorithm, robustness to partial occlusions or pose
changes would not have been possible.

We demonstrate the validity of our approach by accu-
rate tracking of targets under partial occlusions and pose
changes in several video clips. The tracking is achieved
without any use of color information.

There are several interesting issues for current and fu-
ture work. The first is the question of template updating.
We want to avoid introduction of occluding objects into
the template. The use of the various fragments’ similarity
scores may be useful towards meeting this goal.

A second issue is the partial versus full explanation
dilemma described earlier and in [7] when choosing scale.
This dilemma is even more significant under partial occlu-
sions.

Lastly, we may also consider disconnected rectangular

fragments. It would be interesting to find a way to choose
the most informative fragments [24] with respect to the
tracking task.
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