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CEREMADE, Université Paris Dauphine and CREST-ENSAE

CONSTANTINOS KARDARAS

Department of Statistics, London School of Economics and Political Science

MARCEL NUTZ

Departments of Statistics and Mathematics, Columbia University, New York

We study a continuous-time financial market with continuous price processes under
model uncertainty, modeled via a family P of possible physical measures. A robust
notion NA1(P) of no-arbitrage of the first kind is introduced; it postulates that a
nonnegative, nonvanishing claim cannot be superhedged for free by using simple trad-
ing strategies. Our first main result is a version of the fundamental theorem of asset
pricing: NA1(P) holds if and only if every P ∈ P admits a martingale measure that is
equivalent up to a certain lifetime. The second main result provides the existence of
optimal superhedging strategies for general contingent claims and a representation of
the superhedging price in terms of martingale measures.
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1. INTRODUCTION

We consider a financial market where stocks are traded in continuous time. The (dis-
counted) stock price process S is assumed to be continuous, but its distribution in the
sense of a stochastic model is not necessarily known. Rather, the market is considered
under a family P of probability measures: each P ∈ P is understood as a possible model
for the real-world dynamics of S. Two fundamental questions are studied in this context:
the absence of arbitrage and its relation to linear pricing rules (fundamental theorem of
asset pricing), and the range of arbitrage-free prices (superhedging theorem).

We introduce a robust notion of market viability, called no-arbitrage of the first kind
and denoted by NA1(P). Given a contingent claim f ≥ 0 at maturity T, let v simp( f ) be
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the minimal initial capital necessary to superhedge f simultaneously under all models
P ∈ P ,

v simp( f ) := inf
{

x : ∃ H with x + H • ST ≥ f P-a.s. for all P ∈ P
}
.

In the above, we allow only simple trading strategies H, so that there are no limitations
related to defining the stochastic integral H • S—no semimartingale assumption is
made. Our condition NA1(P) then postulates that

v simp( f ) = 0 implies f = 0 P-a.s. for all P ∈ P.

To state the same in reverse, the price v simp( f ) should be strictly positive if P{ f > 0} > 0
holds for some P ∈ P . This condition corresponds to Kardaras (2010, definition 1.1)
when P is a singleton; it will turn out to be a notion of market viability that is well suited
for model uncertainty in continuous time.

The main goal of the fundamental theorem is to deduce the existence of martingale
measures, or linear pricing rules, from the absence of arbitrage opportunities. In the
classical case (Dalang, Morton, and Willinger 1990; Delbaen and Schachermayer 1994),
this measure is equivalent to the physical measure P. In the case of model uncertainty
in a discrete-time market, the fundamental theorem of Bouchard and Nutz (2015) yields
a family Q of martingale measures such that each P ∈ P is dominated by a martingale
measure; the families P and Q are equivalent in the sense that they have the same polar
sets. In the present setting with continuous processes, we find a result that is stronger in
the sense that each P admits an equivalent martingale measure Q. On the other hand,
equivalence needs to be defined in a weaker way: it is necessary to allow for a loss of mass
in our martingale deflators; thus, the measures Q may allocate mass outside the support
of P . As a result, the equivalence of measures holds only up to a random time ζ , and
so does the martingale property. More precisely, we suppose that our model is set on a
canonical space � of paths that are continuous before possibly jumping to a cemetery
state, and ζ is the time of this jump. This “lifetime” is infinite and thus invisible under all
P ∈ P , but may be finite under some Q ∈ Q. With these notions in place, our version of
the fundamental theorem then states that NA1(P) holds if and only if for every P ∈ P ,
there exists a local martingale measure Q such that Q and P are equivalent prior to ζ .
See Definition 3.3 and Theorem 3.4 for the precise statements.

A related setting is considered in Dolinsky and Soner (2014a) where S is the canonical
process in the space of continuous paths. Roughly speaking, the market model considered
there corresponds to declaring all paths to be possible for the stock price, or including
all measures in P . There is then no necessity for a definition of arbitrage; in some sense,
the absence of the latter is implicit in the fact that all paths are possible. Nevertheless, the
duality result stated in Dolinsky and Soner (2014a) implies a conclusion in the direction of
the fundamental theorem; namely, it follows that there must exist at least one martingale
measure under the conditions of that result. A similar result on Skorokhod space is
reported in Dolinsky and Soner (2015). We also refer to Davis and Hobson (2007) for a
discussion of different notions of arbitrage in the context of traded options. For versions
of the robust fundamental theorem for discrete-time frictionless markets, see Acciaio
et al. (2016), Bouchard and Nutz (2015), Burzoni, Frittelli, and Maggis (2016), and
Riedel (2015); for discrete-time markets with transaction costs, see Bayraktar and Zhang
(2016), Bayraktar, Zhang, and Zhou (2014), Bouchard and Nutz (2016), and Dolinsky
and Soner (2014b).
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The second main result of this paper is a superhedging theorem in our setting. Assume
that NA1(P) holds and let f ≥ 0 be a contingent claim, measurable at time T. Then, we
establish the duality

sup
Q∈Q

EQ[ f 1ζ>T] = inf
{

x : ∃ H with x + H • ST ≥ f P-a.s. for all P ∈ P
}
;

moreover, we construct an optimal superhedging strategy H—naturally, this necessitates
continuous trading. See Theorem 5.1 for the precise statement.

The line of argument in the proof is similar to Nutz (2015) where it is assumed that
P consists of martingale measures in the first place. In the present case, the martingale
property holds only prior to ζ which necessitates a number of additional considerations.
Generally speaking, the superhedging theorem is fairly well studied in the situation where
P consists of martingale measures; cf. Bouchard, Moreau, and Nutz (2014), Denis and
Martini (2006), Fernholz and Karatzas (2011), Neufeld and Nutz (2013), Nutz and Soner
(2012), Nutz and Zhang (2015), Peng (2010), Possamai, Royer, and Touzi (2013), Soner,
Touzi, and Zhang (2011), Soner, Touzi, and Zhang (2013), among others, or when all
paths are considered possible for the stock and options are also traded; see, e.g., Cox
and Obłój (2011), Davis and Hobson (2007), Dolinsky and Soner (2014a), Dolinsky and
Soner (2015), Galichon, Henry-Labordère, and Touzi (2014), and Hobson (1998). We
also refer to Acciaio et al. (2016), Bayraktar et al. (2014), Bouchard and Nutz (2015),
Dolinsky and Soner (2014b), and Nutz (2014) for discrete-time markets. Finally, in
the forthcoming independent work (Cheridito, Kupper, and Tangpi 2015), absence of a
duality gap will be established by functional analytic methods in a market more general
than ours, under a condition that is stronger than NA1(P).

The remainder of this paper is organized as follows. The setup is detailed in Section 2,
where we also define NA1(P). In Section 3, we discuss our version of the fundamental
theorem of asset pricing. Section 4 provides some technical results on prior-to-ζ equiva-
lent martingale measures; these are used in Section 5, where we study the superhedging
theorem. Finally, the Appendix collects auxiliary results on Föllmer’s exit measure and
the particular path space that are used in the body of this paper.

2. SETUP

2.1. Measurable Space and Model Uncertainty

We first construct the underlying measurable space (�,F) used throughout the paper.
Let E be a Polish space and let dE be a complete metric consistent with the topology of
E. Adjoining an isolated “cemetery” state �, we shall work with Ē := E ∪ {�}. It is easy
to see that Ē is again a Polish space under the metric

dĒ(x, y) := 1 ∧ dE(x, y)1{�/∈{x,y}} + 1{�∈{x,y}}∩{x
=y}, x, y ∈ Ē.

We then define � to be the space of all paths ω : R+ → Ē which start at a given point
x∗ ∈ E, are càdlàg on [0, ζ (ω)) and constant on [ζ (ω),∞), where

ζ (ω) := inf{t ≥ 0 : ωt = �}
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is the “lifetime” of ω. The function ζ takes values in (0,∞] as x∗ ∈ E and the paths are
right-continuous. It is shown in Lemma A.7 in the Appendix that � carries a natural
Polish topology.

We denote by B = (Bt)t∈R+ the canonical process, defined by Bt(ω) = ωt, and by
F = (Ft)t∈R+ its natural filtration, Ft = σ (Bs, s ≤ t), and finally F = σ (Bs, s ∈ R+).
The set of F-stopping times is denoted by T . The minimal right-continuous filtration
containing F is denoted by F+ = (Ft+)t∈R+ , while T+ is the set of all F+-stopping times.
With these notions in place, we observe that {ζ ≤ t} = {B(t) = �} ∈ Ft for all t ∈ R+
and hence that ζ ∈ T .

To represent model uncertainty, we shall work with a (nonempty) familyP of probabil-
ity measures on (�,F), rather than a single measure. Each element P ∈ P is interpreted
as a possible model for the real-world dynamics; no domination assumption is made. We
say that a property holds P-quasi-surely (or P-q.s.) if it holds P-a.s. for all P ∈ P . We
shall assume throughout that

ζ = ∞ P-q.s.

Thus, the cemetery state is actually invisible under the real-world models; its role will be
to absorb the residual mass of certain martingale measures.

Given a σ -field G ⊆ F , we denote by L0
+(G) the set of all [0,∞]-valued, G-measurable

random variables that are P-q.s. finite.

2.2. Trading and Arbitrage

The tradable assets are modeled by an Rd -valued, F-adapted, and right-continuous
process S : R+ ×�→ Rd such that

the paths of S are P-q.s. continuous.

No other assumption is made on Sat this stage; in particular, no semimartingale property
is assumed. However, structural properties will follow later as a consequence of our no-
arbitrage condition.

A simple predictable1 strategy is a process H = ∑n
i=1 hi 1]]τi−1,τi ]], where hi = (h j

i ) j≤d is
Fτi−1+-measurable for all i ≤ n, and (τi )i≤n is a nondecreasing T+-valued sequence with
τ0 = 0. Given an initial capital x ∈ R+ and a simple predictable strategy H, we define the
associated wealth process

Xx,H = x + H • S = x +
n∑

i=1

d∑
j=1

h j
i

(
Sj
τi∧· − Sj

τi−1∧·
)
.

Moreover, we define Hsimp(x) as the class of all simple predictable processes H such
that Xx,H remains nonnegative P-q.s. (The superscript “simp” acts as a mnemonic for
“simple” in what follows.) Given T ∈ R+ and f ∈ L0

+(FT), let

v simp(T, f ) := inf
{

x ∈ R+ : ∃H ∈ Hsimp(x) with Xx,H
T ≥ f P-q.s.

}

1We define simple predictable strategies with respect to the filtration F+; however, we recall that the class
of predictable processes on (�,F) coincides with the class of predictable processes on (�,F+). The symbol
]]τi−1, τi ]] denotes the stochastic interval.
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be the superhedging price of the claim f over the class of simple strategies. We can then
introduce our notion of no-arbitrage of the first kind, stating that the superhedging price
is null if and only if the claim is null P-q.s.

DEFINITION 2.1. We say that NA1(P) holds if

∀T ∈ R+ and f ∈ L0
+(FT), v simp(T, f ) = 0 =⇒ f = 0 P-q.s.

This condition coincides with Kardaras (2010, definition 1.1) when P is a singleton.

3. FUNDAMENTAL THEOREM OF ASSET PRICING

In order to state our version of the fundamental theorem of asset pricing, we first need
to introduce the concept of prior-to-ζ equivalence.

DEFINITION 3.1. Given two measures P and Q on (�,F), we say that Q is prior-to-ζ
absolutely continuous with respect to P, if Q � P holds on the space ({t < ζ } ,Ft ∩
{t < ζ }) for all t ∈ R+. This relation is denoted by Q �ζ P. If Q �ζ P and P �ζ Q, we
say that P and Q are prior-to-ζ equivalent and denote this fact by Q ∼ζ P.

In this definition, equivalence is used in the sense of unnormalized measures. Namely,
even if the measures are probabilities on (�,F), they need not be probabilities on
({t < ζ } ,Ft ∩ {t < ζ }), and Q ∼ζ P does not mean that P(A) = 1 implies Q(A) = 1,
even if A ∈ Ft ∩ {t < ζ }. A second remark is that local (on Ft, for all t ∈ R+) equivalence
of two probabilities trivially implies prior-to-ζ equivalence, but the converse fails. The
following simple example demonstrates these phenomena.

EXAMPLE 3.2. Suppose that E is a singleton. Then, F is the smallest filtration that
makes ζ a stopping time and Ft ∩ {t < ζ } = {∅, {t < ζ }} holds for all t ∈ R+. It follows
that prior-to-ζ equivalence for any two probabilities P and Q on (�,F) is tantamount
to checking that P{ζ > t} > 0 if and only if Q{ζ > t} > 0, for all t ∈ R+. On (�,F),
one can prescribe probabilities endowing any given law to ζ ; letting P be such that
P{ζ <∞} = 0 and Q be such that Q{ζ > t} = exp(−t) for t ∈ R+, it follows that P is a
probability on ({t < ζ } ,Ft ∩ {t < ζ }) for all t ∈ (0,∞), while Q is a strict subprobability.
Also, note that the probabilities P and Q fail to be equivalent on Ft whenever t ∈ (0,∞);
indeed, P{ζ ≤ t} = 0 and Q{ζ ≤ t} > 0 hold for all t ∈ (0,∞).

We refer to Section 1.2 for further discussions on prior-to-ζ equivalence and proceed
with the relevant concept of a local martingale measure.

DEFINITION 3.3. Fix P ∈ P . A probability Q on (�,F) is a prior-to-ζ equivalent
local martingale measure corresponding to P if Q ∼ζ P and there exists a nondecreasing
sequence (τn)n∈N ⊂ T+ such that

(i) τn < ζ for all n ∈ N and limn→∞ τn = ζ hold Q-a.s.,
(ii) (St∧τn )t∈R+ is an (F+, Q)-martingale for all n ∈ N.

The class of all such probabilities Q will be denoted by QP.

What follows is the main result of this section, the fundamental theorem of asset
pricing. In the present incarnation, it states that the condition NA1(P) of Definition 2.1
holds if and only if we can find (at least) one prior-to-ζ equivalent local martingale
measure for each possible model P ∈ P .
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THEOREM 3.4. Condition NA1(P) holds if and only if QP 
= ∅ for all P ∈ P .

We emphasize that this result necessitates the continuity of S; it is to be compared to the
discrete-time case of Bouchard and Nutz (2015). The following is a direct consequence
of the theorem, but will actually be established in the course of its proof.

COROLLARY 3.5. Let NA1(P) hold. Then, S is a semimartingale under each P ∈ P .

To be precise, we should indicate a filtration in the above statement. In fact, the
P-semimartingale property holds equivalently in any of the filtrations F, F+, or FP

+ (the
P-augmentation of F+), or more generally in any intermediate filtration F ⊂ G ⊂ FP

+;
see, e.g., Neufeld and Nutz (2014, proposition 2.2). We shall use this fact in Section 5.

Proof of Theorem 3.4. Step 1.We first prove the easy implication; that is, we assume
that QP 
= ∅ for all P ∈ P . Fix T ∈ R+ and f ∈ L0

+(FT) with v simp(T, f ) = 0. Moreover,
let P ∈ P be arbitrary but fixed; we need to show that f = 0 P-a.s.

Indeed, let X simp be the class of all processes of the form Xx,H for x ∈ R+ and H ∈
Hsimp(x). By assumption, there exists some Q ∈ QP. Let (τn)n∈N be the localizing sequence
appearing in Definition 3.3. As the stopped process S·∧τn is a Q-martingale, it follows that
X·∧τn is a local Q-martingale for all X ∈ X simp and n ∈ N. A straightforward argument
then shows that X1[[0,ζ [[ is a Q-supermartingale for all X ∈ X simp.

Let Xn ∈ X simp be such that Xn
0 = 1/n and Xn

T ≥ f P-q.s., then the above supermartin-
gale property yields that

EQ[ f 1T<ζ ] ≤ EQ[Xn
T1T<ζ ] ≤ EQ[Xn

0 ] = 1/n, n ≥ 1.

Therefore, EQ[ f 1T<ζ ] = 0 which implies that Q{ f > 0,T < ζ } = 0. As Q ∼ζ P and ζ =
∞ P-a.s., it follows that P{ f > 0} = 0. This completes the proof of the “if” implication
in Theorem 3.4.

Step 2. The converse implication will be established through a third equivalent condi-
tion. To this end, consider NA1(P) := NA1({P}) for a fixed P ∈ P ; that is, the condition
that

∀T ∈ R+ and f ∈ L0
+(FT), v simp,P(T, f ) = 0 =⇒ f = 0 P-a.s.,

where

v simp,P(T, f ) = inf
{

x ∈ R+ : ∃H ∈ Hsimp,P(x) with Xx,H
T ≥ f P-a.s.

}
and Hsimp,P(x) is the class of all simple predictable processes H such that Xx,H is non-
negative P-a.s. We claim that

NA1(P) holds if and only if NA1(P) holds for all P ∈ P .(3.1)

Indeed, the observation that Hsimp(x) ⊆ Hsimp,P(x) shows that the validity of NA1(P) for
all P ∈ P implies NA1(P). To see the converse, suppose that there exists P ∈ P such that
NA1(P) fails. Then, there are T ∈ R+ and g ∈ L0

+(FT) such that v simp,P(T, g) = 0 and
P{g > 0} > 0. That is, for any n ∈ N, there exists Hn ∈ Hsimp,P(1/n) such that X1/n,Hn

T ≥ g
P-a.s. Define

τ n = inf
{
t ∈ R+ : X1/n,Hn

t < 0
} ∈ T+, Gn = Hn1]]0,τ n ]].

Then, τ n ∈ T+ as the paths of S are right-continuous, and thus Gn is a simple predictable
strategy. As τ n = ∞ P-a.s., we have Gn = Hn P-a.s.; in particular, Gn still satisfies
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X1/n,Gn

T ≥ g P-a.s. In addition, the definition of τ n guarantees that X1/n,Gn
is nonnegative

P-q.s.—the continuity of S is crucial in this step. Consider

f := inf
n∈N

X1/n,Gn

T ∈ L0
+(FT),

and note that v simp(T, f ) = 0 holds by definition. Moreover, we have f ≥ g P-a.s. and
thus P{ f > 0} > 0, contradicting NA1(P). Therefore, (3.1) has been established.

Step 3. In view of (3.1), it remains to show that NA1(P) implies QP 
= ∅, for arbitrary
but fixed P ∈ P . Thus, we are essentially in the realm of classical stochastic analysis and
finance; in particular, we may use the tools in the Appendix as well as Kardaras (2010,
2013).

Define X simp,P as the class of all processes of the form Xx,H for x ∈ R+ and
H ∈ Hsimp,P(x). The set {X ∈ X simp,P : X0 = 1} has the essential properties of Kardaras
(2013, Definition 1.1) needed to conclude that X simp,P consists of P-semimartingales, see
Kardaras (2013, theorem 1.3), and that (the immediate extension of) condition NA1(P) is
also valid for the closure X P of X simp,P in the P-semimartingale topology; see Kardaras
(2013, remark 1.10). In particular, a standard localization and integration argument
(using local boundedness of S under P) shows that S is itself a P-semimartingale.

The set X P coincides with the class of all P-a.s. nonnegative stochastic integrals of
S under P, using general predictable and S-integrable integrands. This is seen by using
density (in the semimartingale topology) of simple stochastic integrals with respect to
general stochastic integrals, as well as a stopping argument that again uses that S has
continuous paths P-a.s. As a result, using condition NA1(P) forX P, we infer the existence
of a strictly positive (F+, P)-local martingale Y with Y0 = 1 such that YS is an (F+, P)-
local martingale; cf. Kardaras (2010, theorem 4). We can now use Theorem A.6 in the
Appendix to construct a probability Q ∼ζ P such that Y is the prior-to-ζ density of Q
with respect to P. Using the facts that YS is an (F+, P)-local martingale, ζ is foretellable
under Q (for the latter, see Definition A.4 and Theorem A.6 in the Appendix) and
Remark A.2, we can construct the required T+-valued sequence (τn)n∈N such that S·∧τn

is an (F+, Q)-martingale for all n ∈ N. The last fact translates to Q ∈ QP and concludes
the proof. �

4. DYNAMIC PROGRAMMING PROPERTIES OF PRIOR-TO-ζ
SUPERMARTINGALE MEASURES

For our proof of the superhedging theorem in Section 5, it will be crucial to know that the
set of (super-)martingale measures satisfies certain dynamic programming properties. In
this section, we impose assumptions on the set P that is the primary object of our model,
and show how these properties are inherited by the corresponding set of supermartingale
measures.

4.1. Additional Assumptions and Notation

From now on, we assume that the Polish space E is a topological vector space and
that the paths ω ∈ � start at the point x∗ = 0 ∈ E.

For x, y ∈ Ē, we use the convention x + y = � if x = � or y = �. Let t ≥ 0. Given
ω, ω̃ ∈ �, we set

(ω ⊗t ω̃)s = ωs1[0,t)(s) + (ωt + ω̃s−t)1[t,∞)(s).
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Given also a process Z, we define

Zt,ω
s (ω̃) := Zt+s(ω ⊗t ω̃), s ≥ 0;

note that a shift in the time variable is part of our definition. We view a random variable
ξ as a process that is constant in time, so that

ξ t,ω(ω̃) := ξ (ω ⊗t ω̃).

We denote by P(�) the collection of all probability measures on �, equipped with the
topology of weak convergence. Given a probability R ∈ P(�), we define Rt,ω by

Rt,ω(A) = Rωt {ω ⊗t ω̃ : ω̃ ∈ A}, A ∈ F,

where Rωt is a regular conditional distribution of R given Ft satisfying

Rωt {ω′ ∈ � : ω′ = ω on [0, t]} = 1, ω ∈ �.

The existence of Rωt is guaranteed by the fact that Ft is countably generated; cf.
Lemma A.7 and Stroock and Varadhan (1979, theorem 1.1.8 and p. 34). It then fol-
lows that

ERt,ω
[ξ t,ω] = ERωt [ξ ] = ER[ξ |Ft](ω) for R-a.e. ω ∈ �.(4.1)

We shall assume that our set P admits a family of (t, ω)-conditional models. More
precisely, we start with a family {Pt(ω) : t ∈ R+, ω ∈ �} of subsets of P(�) which is
adapted in the sense that Pt(ω) = Pt(ω̃) if ω|[0,t] = ω̃|[0,t]. In particular, P0 = P0(ω) is
independent ofω. We impose the following structural conditions—compare with Neufeld
and Nutz (2013) and Nutz and van Handel (2013) in the case ζ ≡ ∞.

DEFINITION 4.1. An adapted family {Rt(ω) : t ∈ R+, ω ∈ �} of subsets of P(�)
is analytic and stable prior to ζ if the following hold for all t ≥ s ≥ 0, ω̄ ∈ �, and
R ∈ Rs(ω̄).

(A1) {(R′, ω) : ω ∈ �, R′ ∈ Rt(ω)} ⊂ P(�) ×� is analytic.2

(A2) Rt−s,ω ∈ Rt(ω̄ ⊗s ω) for R-a.e. ω ∈ {ζ s,ω̄ > t}.
(A3) If ν : � �→ P(�) is an Ft−s-measurable kernel and ν(ω) ∈ Rt(ω̄ ⊗s ω) for

R-a.e. ω ∈ {ζ s,ω̄ > t}, then the measure defined by

R̄(A) :=
∫ ∫

(1A)t−s,ω(ω′) νR(dω′;ω) R(dω), A ∈ F,

where νR(ω) := ν(ω)1{ζ s,ω̄>t}(ω) + Rt−s,ω1{ζ s,ω̄≤t}(ω),

belongs to Rs(ω̄).

Condition (A1) is of technical nature; it will be used for measurable selection argu-
ments. Conditions (A2) and (A3) are natural consistency conditions, stating that the
family is stable under “conditioning” and “pasting.”

2The definition of an analytic set is recalled in Section 1.1 of the Appendix.
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ASSUMPTION 4.2. We have P = P0 for a family {Pt(ω) : t ∈ R+, ω ∈ �} which is
analytic and stable prior to ζ . Moreover, St,ω is Pt(ω)-q.s. continuous prior to ζ t,ω − t,
for all t ∈ R+ and ω ∈ �.

A canonical example of such a setP is the collection of all laws P of Itô semimartingales∫ ·
0 αu du + ∫ ·

0 σu dWu , each one situated on its own probability space with a Brownian
motion W, drift rate α valued in a given measurable set A ⊂ Rd , and volatility σ such that
σσ� is valued in a given measurable set 
 of (strictly) positive definite d × d matrices.
In this case, we can take Pt(ω) = P for all (t, ω) because the sets A and 
 are constant;
cf. Neufeld and Nutz (2017). The continuity condition is clearly satisfied for the canonical
choice S = B and then NA1(P) holds, for instance, when A and 
 are compact.

4.2. Prior-to-ζ Supermartingale Measures

For technical reasons, it will be convenient to work with supermartingale (rather than
local martingale) measures in what follows. The purpose of this section is to define a
specific family of supermartingale measures satisfying the conditions of Definition 4.1; it
will be used to construct the optimal strategy in the superhedging theorem (Theorem 5.1).
We first need to define a conditional notion of prior-to-ζ absolute continuity.

DEFINITION 4.3. Let (t, ω) ∈ R+ ×� and P, Q ∈ P(�). We write Q �ζ t,ω P (with
some abuse of notation) if

Q � P on Fs ∩ {s < ζ t,ω − t}, s ∈ R+.

We also need to consider wealth processes conditioned by (t, ω) ∈ R+ ×�. More
precisely, let

X simp
t (ω) := {

1 + (H • St,ω)τ
n
H,St,ω : H ∈ Hsimp, n ∈ N

}
,(4.2)

where Hsimp is the set of all simple predictable processes and

τ n
H,St,ω := inf

{
s ≥ 0 : (H • St,ω)s /∈ (−1, n)

}
.

Here, the stopping at −1 corresponds to the nonnegativity of the wealth process, whereas
the stopping at n is merely for technical convenience. The point in this specific definition
of X simp

t (ω) is to have a tractable dependence on ω; in this respect, we note that the set
Hsimp is independent of ω.

DEFINITION 4.4. Let (t, ω) ∈ R+ ×� and P ∈ P(�). We introduce the sets

Pζ t,ω (P) = {Q ∈ P(�) : Q �ζ t,ω P},

Yt(ω) = {
Q ∈ P(�) : X1[[0,ζ t,ω−t[[ is a Q-supermartingale ∀ X ∈ X simp

t (ω)
}
,

Qt(ω, P) = Pζ t,ω (P) ∩ Yt(ω),

Qt(ω) =
⋃

P∈Pt(ω)

Qt(ω, P).

The elements of Qt(ω) are called prior-to-ζ absolutely continuous supermartingale mea-
sures given (t, ω).
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We observe that the family {Qt(ω) : t ∈ R+, ω ∈ �} is adapted. Furthermore, we recall
from Theorem 3.4 that Q0 
= ∅ under NA1(P). In the rest of this subsection, we show
that the family {Qt(ω)} inherits from {Pt(ω)} the properties of Definition 4.1.

PROPOSITION 4.5. The family {Qt(ω)} satisfies (A1)–(A3).

The proof is split into the subsequent lemmas. For ease of reference, we first state the
following standard result.

LEMMA 4.6. Let A be a Borel space and let (a, ω) ∈ A×� �→ ξ (a, ω) ∈ R+ be Borel-
measurable. Then, (a, R) ∈ A× P(�) �→ ER[ξ (a, ·)] is Borel-measurable.

Proof. See, e.g., Step 1 in the proof of Nutz and van Handel (2013, theorem 2.3). �

LEMMA 4.7. There exist a countable set H̃ ⊂ Hsimp and a countable set T̃ ⊂ T of
bounded stopping times with the following property:

Given (t, ω) ∈ R+ ×� and Q ∈ P(�) such that St,ω is Q-a.s. continuous prior to ζ t,ω − t,
we have equivalence between

(i) X1[[0,ζ t,ω−t[[ is a Q-supermartingale for all X ∈ X simp
t (ω),

(ii) X1[[0,ζ t,ω−t[[ is a Q-supermartingale for all X ∈ X̃t(ω),
(iii) EQ[Xσ1σ<ζ t,ω−t] ≥ EQ[Xτ1τ<ζ t,ω−t] for X ∈ X̃t(ω) and σ ≤ τ in T̃ ,

where X̃t(ω) is defined like (4.2) but using only integrands H ∈ H̃. Moreover, if St,ω1[[0,ζ t,ω−t[[

is a semimartingale under Q, the above are equivalent to

(iv) X1[[0,ζ t,ω−t[[ is a Q-supermartingale for all X ∈ Xt(ω),

where Xt(ω) is defined like (4.2) but using arbitrary predictable integrands.

Proof. For each s ≥ 0, let F̃s be a countable algebra generating Fs ; cf. Lemma A.7.
Let T̃ be the set of all stopping times

τ =
n∑

j=1

tj 1Aj ,

where n ∈ N, tj ∈ Q+, and Aj ∈ F̃tj . Moreover, let H̃ ⊂ Hsimp be the set of all processes

H =
n∑

j=0

α j 1]tj ,tj+1],

where n ∈ N, 0 = t0 ≤ t1 ≤ · · · ≤ tn ∈ Q+ and each random variable α j is of the form

α j =
n∑

i=0

ai
j 1Ai

j

for some ai
j ∈ Qd and Ai

j ∈ F̃tj .
It is clear that (i)⇒(ii)⇒(iii). To see that (iii) implies (i), fix Q ∈ P(�) and X ∈ X simp

t (ω).
We first observe that it suffices to show that

(i’) EQ[Xσ1σ<ζ t,ω−t] ≥ EQ[Xτ1τ<ζ t,ω−t] for all X ∈ X simp
t (ω) and all σ ≤ τ in T̃ .

Indeed, as T̃ contains all stopping times of the form τ = u1A + v1Ac and σ = u, where
u ≤ v ∈ Q+ and A ∈ F̃u , it readily follows that (i’) implies the supermartingale property
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of X1[[0,ζ t,ω−t[[ at rational times, and then the supermartingale property on R+ follows by
right-continuity.

To show that (iii) implies (i’), fix σ ≤ τ and let T ∈ R+ be such that τ ≤ T. The claim
will follow by passing to suitable limits in the inequality

EQ[Xσ1σ<ζ t,ω−t] ≥ EQ[Xτ1τ<ζ t,ω−t];(4.3)

we confine ourselves to a sketch of the proof. Let X ∈ X simp
t (ω) be given and recall that

St,ω is (Q-a.s.) continuous prior to ζ t,ω − t.
Using a stopping argument and monotone convergence, we may reduce to the case

where X̄ := X1[[0,ζ t,ω−t[[ is uniformly bounded. Then, using dominated convergence and
another stopping argument, we may reduce to the case where X̄ is also uniformly bounded
away from zero prior to ζ t,ω − t. Using standard arguments, we can find a sequence (Hk)
of simple predictable integrands with deterministic jump times such that Xk := 1 + Hk •
St,ω → X uniformly on [[0, ζ t,ω − t[[ in Q-probability. Using that X is bounded and
bounded away from zero, it follows that

X̄k := 1 + (Hk • St,ω)τ
n
Hk,St,ω 1[[0,ζ t,ω−t[[ → X̄

uniformly on [0,T] in Q-probability, for a sufficiently large n ∈ N. After an additional
approximation, we may obtain the same property with Hk ∈ H̃, and we may show using
dominated convergence that the validity of (4.3) for each X̄k implies the validity for X̄.

If St,ω is a semimartingale under Q, one shows that (iii) implies (iv) by using similar
arguments as well as standard results about stochastic integrals, in particular Protter
(2005, theorems II.21 and IV.2). �

LEMMA 4.8. The family {Qt(ω)} satisfies (A1).

Proof. Fix t ≥ 0. It suffices to show that the set

� := {(ω, P, Q) : ω ∈ �, P ∈ Pt(ω), Q ∈ Qt(ω, P)} ⊂ �× P(�) × P(�)

is analytic. Indeed, once this is established, the graph of Qt(·) is analytic as a projection
of �; that is, (A1) is satisfied.

As a first step, we show that

graph(Pζ t,· (·)) := {(ω, P, Q) : ω ∈ �, P ∈ P(�), Q ∈ Pζ t,ω (P)}(4.4)

is Borel and in particular analytic. Indeed, it follows from Lemma A.1 that

Pζ t,ω (P) =
⋂

q∈Q+

Pζ t,ω (P, q),

where

Pζ t,ω (P, q) := {
Q ∈ P(�) : Q � P on Fq ∩ {q < ζ t,ω − t}}.

Hence, it suffices to show that

{(ω, P, Q) ∈ �× P(�) × P(�) : Q ∈ Pζ t,ω (P, q)}

is Borel for fixed q. As Fq is countably generated, cf. Lemma A.7, a standard argument
(see Dellacherie and Meyer 1978, theorem V.58, p. 52 and the subsequent remarks) shows
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that we can construct a Borel function Dq : �× P(�) × P(�) → R such that Dq (·, Q, P)
is a version of the Radon–Nikodym derivative of the absolutely continuous part of Q
with respect to P on Fq . Then, Q ∈ Pζ t,ω (P, q) if and only if EP[Dq (Q, P)1q<ζ t,ω−t] =
Q{q < ζ t,ω − t}. Using the fact that

(ω, P, Q) �→ EP[Dq (Q, P)1q<ζ t,ω−t] − Q{q < ζ t,ω − t}

is Borel by Lemmas 4.6 and A.7, we conclude that (4.4) holds.
Let σ, τ ∈ T and let X ∈ X simp

t (ω); recall that X = XH is of the form (4.2). Then, the
map

(ω, Q) ∈ �× P(�) �→ ψH,σ,τ (ω, Q) := EQ[Xτ1τ<ζ t,ω−t] − EQ[Xσ1σ<ζ t,ω−t]

is Borel as a consequence of Lemma 4.6. If (ω, Q) are such that St,ω is Q-a.s. continuous
prior to ζ t,ω − t, Lemma 4.7 shows that

Q ∈ Yt(ω) if and only if ψH,σ,τ (ω, Q) ≤ 0 ∀H ∈ H̃, σ ≤ τ ∈ T̃ .

Using the obvious embeddings of graph(Pt) and graph(Yt) into �× P(�) × P(�), it
follows that

� = graph(Pt) ∩ graph(Pζ t,· (·)) ∩ graph(Yt)

= graph(Pt) ∩ graph(Pζ t,· (·)) ∩
⋂

H∈H̃, σ≤τ∈T̃
{ψH,σ,τ ≤ 0}.

Here, we have used that if (ω, P, Q) belong to the first intersection, then St,ω is P-a.s. and
hence Q-a.s. continuous prior to ζ t,ω − t; cf. Assumption 4.2. The above representation
shows that � is analytic as a countable intersection of analytic sets. �

LEMMA 4.9. The family {Qt(ω)} satisfies (A2).

Proof. For simplicity of notation, we state the proof for s = 0; the extension to the
general case is immediate. Fix Q ∈ Q0; then, Q ∈ Q0(P) for some P ∈ P . We shall show
that

Qt,ω ∈ Pζ t,ω (Pt,ω) ∩ Yt(ω) for Q-a.e. ω ∈ {ζ > t};

this will imply the lemma because Pt,ω ∈ Pt(ω) holds for P-a.e.ω ∈ �, cf. Assumption 4.2,
and thus for Q-a.e. ω ∈ {ζ > t} as Q ∈ Q0(P).

Let Y be the prior-to-ζ density process of Q with respect to P (see Remark A.3 for
details on this notion) and set

Ỹ = 1[0,t) + (Y/Yt)1[t,∞),

where we use the convention 0/0 = 0. We first establish that given s ≥ 0, we have Qt,ω �
Pt,ω on Fs ∩ {ζ t,ω − t > s} and, in fact,

dQt,ω = Ỹt,ω
s dPt,ω on Fs ∩ {ζ t,ω − t > s},

for Q-a.e.ω ∈ {ζ > t}. Indeed, let g ≥ 0 be anFs-measurable random variable, then there
exists an Fs+t-measurable random variable ḡ such that ḡt,ω = g. Recalling (4.1), we have



ROBUST FUNDAMENTAL THEOREM FOR CONTINUOUS PROCESSES 975

for Q-a.e. ω ∈ {ζ > t} that

EQt,ω
[g1ζ t,ω−t>s ] = EQ[ḡ1ζ>s+t|Ft](ω)

= EP[(Ys+t/Yt)ḡ1ζ>s+t|Ft](ω)

= EP[Ỹs+t ḡ1ζ>s+t|Ft](ω)

= EPt,ω
[Ỹt,ω

s g1ζ t,ω−t>s ].

We have shown, in particular, that Qt,ω � Pt,ω on Fs ∩ {ζ t,ω − t > s} for all s ∈ Q+
holds for Q-a.e. ω ∈ {ζ > t}, which by Lemma A.1 implies that

Qt,ω ∈ Pζ t,ω (Pt,ω) for Q-a.e. ω ∈ {ζ > t}.
It remains to prove that

Qt,ω ∈ Yt(ω) for Q-a.e. ω ∈ {ζ > t}.(4.5)

Let X ∈ X simp
t (ω), then we observe that X = X̄t,ω for some X̄ ∈ X simp

0 . Moreover, let
σ ∈ T be bounded, then σ = σ̄ t,ω − t for some bounded σ̄ ∈ T satisfying σ̄ ≥ t (both X̄
and σ̄ do not depend on ω). We have Xσ = (X̄t,ω)σ̄ t,ω−t = (X̄σ̄ )t,ω (where X̄σ̄ is considered
as a random variable), and thus

EQt,ω
[Xσ1ζ t,ω−t>σ ] = EQt,ω

[(X̄σ̄ )t,ω1ζ t,ω>σ̄ t,ω ] = EQ[X̄σ̄1ζ>σ̄ |Ft](ω),

for Q-a.e. ω ∈ {ζ > t}. If τ ≥ σ ∈ T is bounded and τ̄ ≥ σ̄ has the obvious meaning, we
deduce from the supermartingale property of Q ∈ Y0 that

EQt,ω
[Xσ1ζ t,ω−t>σ ] = EQ[X̄σ̄1ζ>σ̄ |Ft](ω)

≥ EQ[X̄τ̄1ζ>τ̄ |Ft](ω)

= EQt,ω
[Xτ1ζ t,ω−t>τ ],

for Q-a.e. ω ∈ {ζ > t}. Now Lemma 4.7 implies (4.5) and the proof is complete. �

LEMMA 4.10. The family {Qt(ω)} satisfies (A3).

Proof. Again, we state the argument for the case s = 0. Let Q ∈ Q0, then Q ∈ Q0(P)
for some P ∈ P = P0. Moreover, let t ≥ 0 and let ν be an Ft-measurable kernel such that
ν(ω) ∈ Qt(ω) for Q-a.e. ω ∈ {ζ > t}. Using Assumption 4.2 and the measurability results
established in the proof of Lemma 4.8, it follows that the set

{(ω, P′, Q′) : ω ∈ �, P′ ∈ Pt(ω), Q′ = ν(ω), Q′ ∈ Qt(ω, P′)}

is analytic. Let F∗
t be the universal completion of Ft. Applying the measurable selection

theorem, cf. Bertsekas and Shreve (1978, proposition 7.49), we can find anF∗
t -measurable

kernel μ′ such that μ′(ω) ∈ Pt(ω) and ν(ω) ∈ Qt(ω,μ′(ω)) for all ω ∈ {ζ > t} outside the
F∗

t -measurable Q-nullset

N′ := {ν /∈ Qt} ∩ {ζ > t}
and, e.g., μ′(ω) = Pt,ω for ω ∈ N′. We can then find an Ft-measurable kernel μ and
a P-nullset N such that μ(ω) = μ′(ω) for all ω /∈ N; cf. Bertsekas and Shreve (1978,
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lemma 7.27). Using Assumption 4.2 and Q �ζ P, we have

μ(ω) ∈ Pt(ω)for P-a.e. ω ∈ {ζ > t};
ν(ω) ∈ Qt(ω,μ(ω))for Q-a.e. ω ∈ {ζ > t}.(4.6)

By Assumption 4.2, the measure

P̄(A) :=
∫ ∫

(1A)t,ω(ω′)μP(dω′;ω) P(dω), A ∈ F

is an element of P ; cf. Definition 4.1 for the notation. Set

Q̄(A) :=
∫ ∫

(1A)t,ω(ω′) νQ(dω′;ω) Q(dω), A ∈ F .

Next, we show that Q̄ �ζ P̄; i.e., that

Q̄ � P̄ on Fs ∩ {s < ζ }, s ≥ 0.

This is clear for s ≤ t as Q̄ = Q �ζ P = P̄ on Ft. Let s > t and let A ∈ Fs be such that
P̄(A∩ {s < ζ }) = 0. Then,

μ(ω){(A∩ {s < ζ })t,ω} = P̄t,ω{(A∩ {s < ζ })t,ω} = 0,

and thus

Q̄t,ω{(A∩ {s < ζ })t,ω} = ν(ω){(A∩ {s < ζ })t,ω} = 0,

for Q-a.e. ω ∈ {ζ > t}, by (4.6). It follows that

Q̄(A∩ {s < ζ }) = EQ[
EQ̄[1A∩{s<ζ }|Ft]

] = 0

as desired.
To see that Q̄ ∈ Y0, let X ∈ X̃0 (recall the notation from Lemma 4.7); then X1[[0,ζ [[

is a Q-supermartingale. Moreover, noting that Xt,ω is an element of the scaled space
Xt(ω)X simp

t (ω), we have that Xt,ω1[[0,ζ t,ω−t[[ is a ν(ω)-supermartingale for all ω such that
ν(ω) ∈ Qt(ω). Using Fubini’s theorem, it then follows that X1[[0,ζ [[ is a Q̄-supermartingale
as desired.

We have shown that Q̄ ∈ Pζ (P̄) ∩ Y0 ⊂ Q0 and the proof is complete. �

5. SUPERHEDGING DUALITY

In this section, we provide a superhedging duality and the existence of an optimal strategy.
To this end, we require an enlargement of the set of admissible strategies, allowing for
continuous trading. We first introduce the filtration G = (Gt)t≥0, where

Gt := F∗
t ∨NP ;

here, F∗
t is the universal completion of Ft and NP is the collection of sets that are

(F, P)-null for all P ∈ P . Moreover, Assumption 4.2 is in force throughout this section.
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Let NA1(P) hold, then Corollary 3.5 implies the (G, P)-semimartingale property of S
for each P ∈ P . Therefore, we may introduce the class L(P) of all predictable processes
on (�,G) that are S-integrable under every P ∈ P . Given H ∈ L(P) and P ∈ P , we can
construct the usual stochastic integral H • Sunder P (the dependence on P is suppressed
in the notation—but see also Nutz (2012)). For x ∈ R+, we denote by H(x) the collection
of all H ∈ L(P) such that x + H • S remains P-a.s. nonnegative for all P ∈ P .

To be consistent with the classical literature, the following superhedging theorem is
stated with the set

Q :=
⋃
P∈P

QP

of prior-to-ζ local martingale measures; cf. Definition 3.3. The subsequent Lemma 5.2
provides an equivalent version with the set Q0 of supermartingale measures.

THEOREM 5.1. Let NA1(P) hold, let T ∈ R+ and let f : �→ [0,∞] be an upper
semianalytic,3 GT-measurable function with supQ∈Q EQ[ f 1ζ>T] <∞. Then,

sup
Q∈Q

EQ[ f 1ζ>T] = min
{

x : ∃ H ∈ H(x) with x + (H • S)T ≥ f P-a.s. for all P ∈ P
}
.

In order to prove this theorem, we first show that Q can equivalently be replaced by
Q0 in its statement.

LEMMA 5.2. Let NA1(P) hold, let T ∈ R+ and let f : �→ [0,∞] be a GT-measurable
function. Then,

sup
Q∈Q

EQ[ f 1ζ>T] = sup
Q∈Q0

EQ[ f 1ζ>T].

Proof. As Q ⊆ Q0, we only have one nontrivial inequality to prove. Fix Q0 ∈ Q0, and
let P ∈ P be such that Q0 �ζ P. By Remark A.3 in the Appendix, one can construct a
càdlàg-adapted process Y0 ≥ 0 which is the prior-to-ζ density of Q0 with respect to P.
Then, the same arguments as in Larsen and Žitković (2007, proposition 3.2) show that
one may write Y0 = YD, where D is an F+-predictable nonincreasing process with D0 = 1
and Y is a P-a.s. strictly positive càdlàg (F+, P)-local martingale such that YS is also
an (F+, P)-local martingale. Applying Theorem A.6 from the Appendix, we construct
Q ∼ζ P whose prior-to-ζ density with respect to P is Y. Clearly,

EQ[ f 1ζ>T] = EP[YT f ] ≥ EP[Y0
T f ] = EQ0 [ f 1ζ>T]

as f ≥ 0. It remains to show that Q ∈ QP, which follows in a straightforward way from
the fact that YS is an (F+, P)-local martingale and that ζ is foretellable under Q; see
Definition A.4 and Theorem A.6 in the Appendix. �

The remainder of this section is devoted to the proof of Theorem 5.1. In the course of
this proof, T > 0 is fixed and f satisfies the assumptions stated in the theorem. We will
use Lemma 5.2 without further mention. To simplify the notation, we may assume that

S = S1[[0,ζ [[,

3The definition of an upper semianalytic function is recalled in Section 1.1 of the Appendix. In particular,
any Borel function is upper semianalytic.
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and moreover, we set

g := f 1ζ>T;

note that g is upper semianalytic like f .
We begin by proving the easy inequality of the theorem. Let x ∈ R and suppose

there exists H ∈ H(x) such that x + H • ST ≥ g P-a.s. for all P ∈ P . Fix Q ∈ Q; then
there exists P ∈ P such that Q ∼ζ P. Remark A.5 from the Appendix shows that ζ is a
predictable stopping time in the Q-augmentation G

Q
+ of G+. It follows that H′ := H1[[0,ζ [[

is predictable in G
Q
+ , and thus x + H′ • S is a nonnegative local martingale under Q;

in particular, a Q-supermartingale. Using that g = 0 on {ζ ≤ T}, we see that x + H′ •
ST ≥ g Q-a.s., and now taking expectations yields x ≥ EQ[g]. As Q ∈ Q was arbitrary,
the inequality “≥” of the theorem follows.

To complete the proof of the theorem, we shall construct in the remainder of this
section a strategy H satisfying

sup
Q∈Q

EQ[g] + H • ST ≥ g P-a.s. for all P ∈ P.(5.1)

Given t ≥ 0 and an upper semianalytic function h ≥ 0 on �, we define

Et(h)(ω) := sup
Q∈Qt(ω)

EQ[ht,ω], ω ∈ �.

Moreover, we denote F∗ = (F∗
t )t∈R+ .

LEMMA 5.3. The process {Et(g)}t∈[0,T] is a (Q,F∗)-supermartingale for all Q ∈ Q0, and
in particular for all Q ∈ Q.

Proof. Let s ≤ t. In view of Proposition 4.5 and Lemma A.7, we may adapt the proof
of Nutz and van Handel (2013, theorem 2.3) to establish that Et(g) is F∗

t -measurable and
upper semianalytic, that

Es(g1ζ>t)(ω) = Es(Et(g)1ζ>t)(ω) for all ω ∈ �,
and that

Es(g1ζ>t) = ess supQ

Q′∈QQ
s

EQ′
[Et(g)1ζ>t|Fs ] Q-a.s. for all Q ∈ Q,

whereQQ
s = {Q′ ∈ Q : Q′ = Q on Fs}. As {ζ > T} ⊆ {ζ > t} for t ≤ T, we have g1ζ>t =

f 1ζ>T1ζ>t = f 1ζ>T = g. Hence, the above simplifies to

Es(g) = Es(Et(g)), s ≤ t ≤ T(5.2)

and

Es(g) = ess supQ

Q′∈QQ
s

EQ′
[Et(g)|Fs ] Q-a.s. for all Q ∈ Q, s ≤ t ≤ T.(5.3)

Our assumption that E0(g) <∞ and (5.2) applied with s = 0 yield that
supQ∈Q EQ[Et(g)] <∞ for all t; in particular, Et(g) is integrable under all Q ∈ Q. More-
over, (5.3) yields that

Es(g) ≥ EQ[Et(g)|Fs ] = EQ[Et(g)|F∗
s ] Q-a.s. for all Q ∈ Q, s ≤ t ≤ T,
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which is the desired supermartingale property. �

LEMMA 5.4. Define

Z′
t := lim sup

r↓t, r∈Q

Er (g) for t < T and Z′
T := ET(g),

let N be the set of all ω ∈ � such that Z′(ω) is not càdlàg, and

Z := Z′1Nc .

Then, (Zt)t∈[0,T] is a càdlàg, G+-adapted process that is a Q-supermartingale for all Q ∈ Q.
Moreover,

Z0 ≤ sup
Q∈Q

EQ[g] and ZT = g P-a.s. for all P ∈ P.(5.4)

Proof. Recall Lemma 5.3. The modification theorem for supermartingales (Dellacherie
and Meyer 1982, theorem VI.2) yields that N is Q-polar, the limit superior in its def-
inition is actually a limit outside a Q-polar set, and moreover, that Z′ is a (G+, Q)-
supermartingale for all Q ∈ Q.

To see that N ∈ NP , we fix an arbitrary P ∈ P and show that N is P-null. Indeed, we
may decompose N as

N = (N ∩ {ζ ≤ T}) ∪ (N ∩ {ζ > T}).

The first set is P-null because {ζ <∞} was assumed to be P-polar. We know that there
exists Q ∈ Q such that P ∼ζ Q. As N is Q-null relative to F∗

T, there exists an FT-
measurable Q-nullset NQ such that N ⊆ NQ. Now P ∼ζ Q implies that NQ ∩ {ζ > T}
is P-null, and then so is N ∩ {ζ > T}. As a result, we have N ∈ NP and in particular
N ∈ G0. This implies that Z := Z′1Nc is still a (G+, Q)-supermartingale for all Q ∈ Q,
while in addition, all paths of Z are càdlàg. Moreover, for any P ∈ P , it follows from
GT = FT P-a.s. and (5.3) that ZT = Z′

T = ET(g) = g P-a.s.
It remains to show the first part of (5.4). As Z0 is G0+-measurable, G0+ is equal to F0+

up to P-nullsets for any P ∈ P , and any P ∈ P is dominated on F0+ by some Q ∈ Q, it
suffices to show that

Z0 ≤ sup
Q′∈Q

EQ′
[g] ≡ E0(g) Q-a.s.

for all Q ∈ Q. The proof of this fact is similar to the proof of Nutz (2015, inequality (3.3)).
Namely, it follows from Lemma 5.3 and the construction of Z that

sup
Q′∈Q

EQ′
[Z0] ≤ sup

Q′∈Q
EQ′

[g].

Then, one shows that supQ′∈Q EQ′
[Z0] dominates the Q-essential supremum of Z0 for

any Q ∈ Q by verifying that Q is stable under F0+-measurable, equivalent changes of
measure—see Theorem A.6. We omit the details. �

LEMMA 5.5. Let Q ∈ Q. Then, there exists a G
Q
+-predictable process HQ that is S-

integrable under Q such that

Z− HQ • S is nonincreasing Q-a.s. on [[0, ζ [[∩[[0,T]].
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Proof. Let σn be an announcing sequence for ζ associated with Q and set τn := σn ∧ T.
Let Q′ be a probability on FT that is equivalent to Q and such that Sτn is a Q′-local
martingale; we show that Zτn is a Q′-supermartingale. Indeed, let Y′ = (Y′

t )t∈[0,T] be
the density process of Q′ with respect to Q and the filtration G

Q
+ , a strictly positive

Q-martingale with unit expectation. Define

Y′′
t := Y′

t∧τn
, t ≥ 0;

then Y′′ is the density process of a probability Q′′ with respect to Q and it is elementary
to verify that Q′′ ∈ Q. Thus, Z is a Q′′-supermartingale by Lemma 5.4. As Q′′ = Q′ on
Gτn+, it follows that Zτn is a Q′-supermartingale as desired. As a result, we may apply the
classical optional decomposition theorem (see Föllmer and Kabanov 1998) to obtain an
integrand HQ,n such that

Zτn − HQ,n • Sτn is nonincreasing Q-a.s.

The result follows by a passage to the limit n → ∞. �

End of the Proof of Theorem 5.1. We can now construct H as in (5.1) by arguments
similar to the proof of Nutz (2015, Theorem 2.4). To this end, we recall that S = S1[[0,ζ [[.
Moreover, as we will be working in the filtration G andNP ⊂ G0, we may assume without
loss of generality that all paths of S are continuous prior to ζ .

The (d + 1)-dimensional process (S, Z) is essentially a G+-semimartingale under all
Q ∈ Q; that is, modulo the fact that S may fail to have a left limit at ζ . Following the
construction of Neufeld and Nutz (2014, proposition 6.6),4 there exists a G+-predictable
(and hence G-predictable) process C(S,Z) with values in Sd+1

+ (the set of nonnegative
definite symmetric matrices), having Q-q.s. continuous and nondecreasing paths prior
to ζ , and which coincides Q-a.s. with 〈(S, Z)c〉Q under each Q ∈ Q, prior to ζ . Here,
〈(S, Z)c〉Q denotes the usual second characteristic of (S, Z) under Q; i.e., the quadratic
covariation process of the continuous local martingale part of (S, Z).

Let CS be the d × d submatrix corresponding to S and let CSZ be the d-dimensional
vector corresponding to the quadratic covariation of S and Z. Let At := trCS

t be the
trace of CS, then prior to ζ , CS � AQ-q.s. and CSZ � AQ-q.s. (i.e., absolute continuity
holds outside a polar set). Thus, we have dCS = cSd AQ-q.s. and dCSZ = cSZd AQ-q.s.
for the derivatives defined by

cS
t := c̃S

t 1{c̃S
t ∈Sd+}, c̃S

t := lim sup
n→∞

CS
t − CS

(t−1/n)∨0

At − A(t−1/n)∨0

and

cSZ
t := c̃SZ

t 1{c̃SZ
t ∈Rd }, c̃SZ

t := lim sup
n→∞

CSZ
t − CSZ

(t−1/n)∨0

At − A(t−1/n)∨0
,

where all operations are componentwise and 0/0 := 0. Let (cS)⊕ be the Moore–Penrose
pseudoinverse of cS and define the G-predictable process

H :=
{

cSZ(cS)⊕ on [[0, ζ [[∩[[0,T]],
0 otherwise;

4That proposition does not use the separability assumptions on the filtration that are imposed for the
main results of Neufeld and Nutz (2014).
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we show that H satisfies (5.1).
Fix Q ∈ Q. By Lemma 5.5, there exist an S-integrable process HQ and a nondecreasing

process K Q such that

Z = Z0 + HQ • S− K Q Q-a.s. on [[0, ζ [[∩[[0,T]].(5.5)

It follows that

d〈S, Z〉 = HQd〈S〉 Q-a.s.,

or equivalently

cSZ = HQcS Q × d A-a.e.

By Itô’s isometry, this implies that H is S-integrable under Q and

H • S = HQ • S Q-a.s. on [[0, ζ [[∩[[0,T]].

Now (5.5) implies that

Z− Z0 − H • S is nonincreasing and nonpositive Q-a.s. on [[0, ζ [[∩[[0,T]].

Noting that

Zt1ζ≤t = Et+( f 1ζ>T)1ζ≤t = Et+( f 1ζ>T1ζ≤t) = Et+(0) = 0 Q-a.s.,

we see that Z = 0 on [[0,T]] \ [[0, ζ [[. As H also vanishes on that set, we conclude that

Z− Z0 − H • S is nonincreasing and nonpositive Q-a.s. on [[0,T]].

In particular, Z0 + H • S ≥ 0 Q-a.s. As Q ∈ Q was arbitrary, it easily follows that Z0 +
H • S ≥ 0 P-a.s. and that

Z− Z0 − H • S is nonincreasing P-a.s. on [[0,T]]

for all P ∈ P . Thus, we have

sup
Q∈Q

EQ[g] + H • ST ≥ Z0 + H • ST ≥ ZT = g P-a.s. for all P ∈ P

and H ∈ H(x) for x = supQ∈Q EQ[g]. This completes the proof of (5.1) and thus of
Theorem 5.1. �

APPENDIX A

A.1. Notions from Measure Theory

Given a measurable space (�,A), let P(�) the set of all probability measures on A. The
universal completion of A is the σ -field ∩P∈P(�)AP, where AP denotes the P-completion
of A. When � is a topological space with Borel σ -field B(�), we endow P(�) with the
topology of weak convergence. Suppose that � is Polish, then P(�) is Polish as well. A
subset A ⊂ � is called analytic if it is the image of a Borel subset of another Polish space
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under a Borel-measurable mapping. Analytic sets are stable under countable union and
intersection, and under forward and inverse images of Borel functions. Any Borel set is
analytic, and any analytic set is universally measurable. A function f : �→ [−∞,∞] is
upper semianalytic if { f ≥ c} is analytic for every c ∈ R. In particular, any Borel function
is upper semianalytic. We refer to Bertsekas and Shreve (1978, chapter 7) for these results
and further background.

A.2. Föllmer’s Exit Measure

Important references on Föllmer’s exit measure are Föllmer (1972) and Meyer (1972);
see also Perkowski and Ruf (2015) and the references therein for recent developments.
The first result of this section provides an alternative, seemingly stronger characterization
of the notion of prior-to-ζ absolute continuity—compare with Definition 3.1.

LEMMA A.1. Let ξ be a random time and P, Q ∈ P(�). Then,

P(A∩ {τ < ξ}) = 0 ⇒ Q(A∩ {τ < ξ}) = 0 ∀ τ ∈ T+, A ∈ Fτ+(A.1)

holds if and only if

P(A∩ {q < ξ}) = 0 ⇒ Q(A∩ {q < ξ}) = 0 ∀ q ∈ Q+, A ∈ Fq .(A.2)

Proof. It is clear that (A.1) implies (A.2). For the converse, we first note that it suffices
to check (A.1) for F-stopping times taking finitely many values in Q+ ∪ {∞}. Indeed, let
τ ∈ T+ be given, then

τn := inf
{
(k + 1)2−n : 0 ≤ k ≤ n2n, τ ≤ k2−n}

(where inf ∅ = ∞) is a sequence of such stopping times and τn ↓ τ . Now A∩ {τn < ξ}
increases to A∩ {τ < ξ} for A ∈ Fτ+ ⊂ Fτn ; therefore, if (A.1) is valid for each τn , then
P(A∩ {τ < ξ}) = 0 implies P(A∩ {τn < ξ}) = 0 which, in turn, implies Q(A∩ {τn <

ξ}) = 0, and thus Q(A∩ {τ < ξ}) = 0 by monotone convergence.
Any F-stopping time τ with finitely many values in Q+ ∪ {∞} is of the form τ =∑n
i=1 ti 1Ai , where n ∈ N, ti ∈ Q+ ∪ {∞}, and Ai ∈ Fti are disjoint. Hence,

R(A∩ {τ < ξ}) =
n∑

i=1

R
(

A∩ {τ ≤ ti } ∩ Ai ∩ {ti < ξ}), R ∈ {P, Q},

and it follows that (A.2) implies (A.1). �

REMARK A.2. Let Q ∼ζ P. It is a consequence of Lemma A.1 that Q and P are
equivalent on Fτ+ ∩ {τ < ζ } for any τ ∈ T . Suppose now that (τn)n∈N is a nondecreasing
T -valued sequence such that τ := limn→∞ τn ≥ ζ holds in the Q-a.s. sense. As {τ < ζ } ∈
Fτ+ ∩ {τ < ζ } has zero Q-measure, we conclude that P{τ < ζ } = 0, i.e., that τ ≥ ζ also
holds in the P-a.s. sense. In particular, if ζ = ∞ P-a.s., it follows that τ = ∞ P-a.s.

REMARK A.3. Let P and Q be two probability measures on (�,F) with Q �ζ P and
ζ = ∞ P-a.s. By utilizing appropriate versions of the Radon–Nikodym theorem and a
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càdlàg modification procedure, one may establish the existence of a P-a.s. nonnegative
càdlàg adapted process Y such that

Q(Aτ ∩ {τ < ζ }) = EP [
Yτ1Aτ 1τ<ζ

]
for all τ ∈ T+ and Aτ ∈ Fτ+.(A.3)

The above process Y will be called the prior-to-ζ density process of Q with respect to P.
It is strictly positive under P when Q ∼ζ P. Note that (A.3) uniquely specifies Q, as the
class of sets AT ∩ {T < ζ },T ∈ R+, AT ∈ FT, generates Fζ− = F and is also a π -system.
Therefore, the specification of the prior-to-ζ density process of Q with respect to P is
uniquely defined up to P-evanescent sets.

Suppose that Q ∼ζ P and Y is the prior-to-ζ density process of Q with respect to
P. In particular, as Q and P are equivalent on F0+ and ζ > 0, (A.3) gives EP[Y0] = 1.
Furthermore, for 0 ≤ s < t <∞ and As ∈ Fs+, note that

EP[Yt1As ] = Q(As ∩ {t < ζ }) ≤ Q(As ∩ {s < ζ }) = EP[Ys1As ],

which implies that Y is an (F+, P)-supermartingale.

Theorem A.6 that follows, essentially due to Föllmer (1972), is a converse to the
previous observation: starting with a probability P and a candidate density process Y,
a probability Q is constructed that has Y as a prior-to-ζ density with respect to Q. The
statement requires the following notion.

DEFINITION A.4. We say that ζ is foretellable under a probability Q if there exists a
T+-valued sequence (τn)n∈N such that Q{τn < ζ } = 1 for all n and Q{limn→∞ τn = ζ } = 1.

It is clear that the above sequence of stopping times can be chosen to be nondecreasing.
Also, note that foretellability of ζ does not remain invariant under prior-to-ζ equivalent
probability changes.

REMARK A.5. By He, Wang, and Yan (1992, Theorem 4.16), ζ is foretellable under Q
if and only if ζ is Q-a.s. equal to a predictable stopping time on (�, F+).

THEOREM A.6. Let Y be a strictly positive (F+, P)-supermartingale with EP[Y0] = 1.
Then, there exists Q ∼ζ P such that Y is the prior-to-ζ density process of Q with respect
to P. Furthermore, if Y is actually an (F+, P)-local martingale, ζ is foretellable under Q.

Proof. Recall that for ξ ∈ T+, the σ -field Fξ− is generated by the collection
{As ∩ {s < ξ} : s ≥ 0, As ∈ Fs}. With this definition in place, we observe that F = Fζ−,
because Bt is Fζ−-measurable for all t ≥ 0. Indeed, Borel subsets of E ∪ {�} are of the
form A or A∪ {�}, where A ∈ B(E), and for any such A, we have {Bt ∈ A} = {Bt ∈
A} ∩ {t < ζ } ∈ Fζ− and {Bt ∈ A∪ {�}} = ({Bt ∈ A} ∩ {t < ζ }) ∪ {ζ ≤ t} ∈ Fζ−.

By Perkowski and Ruf (2015, Section 4.2), one can construct ξ ∈ T+ with P{ξ <∞} =
0 and a probability Q0 on (�,Fξ−), such that

Q0(Aτ ∩ {τ < ξ}) = EP [
Yτ1Aτ 1τ<ξ

]

holds for all τ ∈ T+ and Aτ ∈ Fτ+. In particular, Q0{ξ > 0} = EP[Y0] = 1. As Aτ ∩
{τ < ξ ∧ ζ } ∈ Fτ+ for all Aτ ∈ Fτ+, the above formula also holds for ξ ′ := (ξ ∧ ζ )1ξ>0 +
ζ1ξ=0. Thus, we may assume that ξ ∈ T+ satisfies 0 < ξ ≤ ζ and P{ξ = ζ } = 1, and that
Q0(Aτ ∩ {τ < ξ}) = EP[Yτ1Aτ 1τ<ξ ] holds for all τ ∈ T+ and Aτ ∈ Fτ+. We shall extend
Q0 to a probability Q on F = Fζ− such that Q{ξ = ζ } = 1 holds; this will immediately
establish (A.3). Define a map ψ : �→ � as follows: for ω ∈ �, set ψt(ω) = ωt when
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t < ξ (ω) and ψt(ω) = � when ξ (ω) ≤ t. As F is generated by the coordinate projections
and

{ψ ∈ �} = ({ω : ωt ∈ � ∩ E} ∩ {t < ξ}) ∪ {t ≥ ξ} ∈ Fξ−

holds for all t ∈ R+ and Borel subsets � of Ē = E ∪ {�}, it follows that ψ is (Fξ−/F)-
measurable. By construction, ζ ◦ ψ = ξ . We claim that ξ ≤ ξ ◦ ψ holds as well. Indeed,
as ξ ∧ t is Ft−-measurable for all t ∈ R+, Dellacherie and Meyer (1978, theorem 96,
chapter IV) imply that ξ ∧ t = (ξ ∧ t) ◦ kt, where k is the killing operator defined via
kt(ω) = ω1[0,t) +�1[t,∞) for ω ∈ �. As ξ (ω) ∧ t = ξ ◦ kt(ω) ∧ t holds for all (ω, t) ∈ �×
R+, plugging in t = ξ (ω) gives

ξ (ω) = ξ ◦ kξ (ω)(ω) ∧ ξ (ω) = ξ ◦ ψ(ω) ∧ ξ (ω), ω ∈ �,

where we have used that kξ (ω)(ω) = ψ(ω) holds for all ω ∈ �. Therefore, ξ ≤ ξ ◦ ψ . The
last inequality, combined with ξ ≤ ζ and ζ ◦ ψ = ξ , gives ζ ◦ ψ = ξ ◦ ψ . Define Q on
F via Q(A) = Q0(ψ−1(A)) for all A ∈ F . By construction, Q is an extension of Q0, and
(A.3) follows as

Q{ξ < ζ } = Q0{ξ (ψ) < ζ (ψ)} = Q0(∅) = 0.

Finally, if Y is an (F+, P)-local martingale, let (τn) be a localizing sequence and call
τ := limn→∞ τn . Note that τ = ∞ = ζ holds in the P-a.s. sense. By Remark A.2, τ ≥ ζ

holds in the Q-a.s. sense. Furthermore, from (A.3), we obtain Q{τn < τ } = EP[Yτn ] = 1
for all n ∈ N. Therefore, ζ is foretellable under Q. �

A.3. On the Path Space �

The goal of this section is to show that � carries a natural Polish topology, which
is required for the measurable selection arguments in Sections 4 and 5. To the best of
our knowledge, this result is not contained in the previous literature—only the Lusin
property is mentioned; see, e.g., Meyer (1972).

Let D = Dx∗ ([0,∞); E) be the usual Skorokhod space of E-valued càdlàg paths on
[0,∞) starting at the point x∗ ∈ E and let δ∞ be its usual metric, rendering D a Polish
space. We may think of a path ω ∈ � as consisting of a path ω̃ ∈ D and a lifetime z ∈
(0,∞]; in this context, it is useful to equip (0,∞] with the complete metric d(0,∞](z, z′) :=
|z−1 − z′−1|, where ∞−1 := 0. More precisely, given z ∈ (0,∞], let

ez(t) :=
{

t if z = ∞,

z(1 − e−t) if z <∞.

We note that ez : [0,∞) → [0, z) is a monotone bijection; thus, precomposition with ez

turns a pathω ∈ �with lifetime z = ζ (ω) into an element of D. As a result, we can define

δ�(ω,ω′) := d(0,∞]
(
ζ (ω), ζ (ω′)

) + δ∞(
ω ◦ eζ (ω), ω

′ ◦ eζ (ω′)
)
, ω, ω′ ∈ �.

LEMMA A.7. The space (�, δ�) is Polish and its Borel σ -field coincides withF . Moreover,
Fτ = σ (Bt∧τ , t ∈ R+) for any F-stopping time τ ; in particular, Fτ is countably generated.
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Proof. It is clear that δ� defines a metric on �. Moreover, the mapping

�→ D × (0,∞], ω �→ (
ω ◦ eζ (ω), ζ (ω)

)

admits the inverse

D × (0,∞] → �, (ω̃, z) �→ (ω̃ ◦ e−1
z ) 1[0,z) +� 1[z,∞).

By the definition of δ�, these mappings constitute an isometric isomorphism between �
and D × (0,∞]; in particular, � is Polish like D × (0,∞].

Let B(�) be the Borel σ -field on �. To prove that F ⊂ B(�), it suffices to show that
the evaluation Bt : ω �→ ωt is Borel-measurable for any fixed t ≥ 0. To this end, note that
the functions

ω �→ ζ (ω) ∈ (0,∞], ω �→ ω ◦ eζ (ω) ∈ D, ω �→ e−1
ζ (ω)(t) ∈ [0,∞)

are continuous on�. Let B̃ be the canonical process on D and recall that (t, ω̃) �→ B̃t(ω̃)
is jointly Borel-measurable. It then follows that

ω �→ Bt(ω) = B̃e−1
ζ (ω)(t)

(
ω ◦ eζ (ω)

)
1[0,ζ (ω))(t) +� 1[ζ (ω),∞)(t)

is Borel-measurable as well.
To prove the reverse inclusion B(�) ⊂ F , it suffices to show that any continuous

function f : �→ R is F-measurable. Indeed, the maps

ω �→ ζ (ω) ∈ (0,∞], ω �→ ω ◦ eζ (ω) ∈ D

are clearly F-measurable. Moreover, any function f on � induces a unique function f̃
on D × (0,∞] satisfying

f (ω) = f̃
(
ω ◦ eζ (ω), ζ (ω)

)
, ω ∈ �.

If f is continuous, it follows that f̃ is continuous and hence the compositionω �→ f (ω) =
f̃ (ω ◦ eζ (ω), ζ (ω)) is F-measurable. This completes the proof that F = B(�).

The last claim follows from the fact that Ē is Polish and standard arguments; see
Stroock and Varadhan (1979, lemma 1.3.3 and exercise 1.5.6). �
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COX, A. M. G., and J. OBŁÓJ (2011): Robust Pricing and Hedging of Double No-Touch Options,
Finance Stoch. 15(3), 573–605.

DALANG, R. C., A. MORTON, and W. WILLINGER (1990): Equivalent Martingale Measures and
No-Arbitrage in Stochastic Securities Market Models, Stoch. Stoch. Rep. 29(2), 185–201.

DAVIS, M. H. A., and D. HOBSON (2007): The Range of Traded Option Prices, Math. Finance
17(1), 1–14.

DELBAEN, F., and W. SCHACHERMAYER (1994): A General Version of the Fundamental Theorem
of Asset Pricing, Math. Ann. 300, 463–520.

DELLACHERIE, C., and P. A. MEYER (1978): Probabilities and Potential A, Amsterdam: North
Holland.

DELLACHERIE, C., and P. A. MEYER (1982): Probabilities and Potential B, Amsterdam: North
Holland.

DENIS, L., and C. MARTINI (2006): A Theoretical Framework for the Pricing of Contingent
Claims in the Presence of Model Uncertainty, Ann. Appl. Probab. 16(2), 827–852.

DOLINSKY, Y., and H. M. SONER (2014a): Martingale Optimal Transport and Robust Hedging
in Continuous Time, Probab. Theory Related Fields 160(1–2), 391–427.

DOLINSKY, Y., and H. M. SONER (2014b): Robust Hedging with Proportional Transaction Costs,
Finance Stoch. 18(2), 327–347.

DOLINSKY, Y., and H. M. SONER (2015): Martingale Optimal Transport in the Skorokhod Space,
Stoch. Process. Appl. 125(10), 3893–3931.

FERNHOLZ, D., and I. KARATZAS (2011): Optimal Arbitrage under Model Uncertainty, Ann.
Appl. Probab. 21(6), 2191–2225.

FÖLLMER, H. (1972): The Exit Measure of a Supermartingale, Z. Wahrscheinlichkeitstheorie und
Verw. Gebiete 21, 154–166.
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