
  

 

To link to this article : DOI : 10.1109/TCI.2017.2692645 
URL:  http://dx.doi.org/10.1109/TCI.2017.2692645 

To cite this version : Ferraris, Vinicius and Dobigeon, Nicolas and Wei, Qi 
and Chabert, Marie Robust fusion of multi-band images with different spatial 
and spectral resolutions for change detection. (2017) IEEE Transactions on 
Computational Imaging, vol. 3 (n° 2). pp. 175-186. ISSN 2333-9403  

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 19028 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



Robust Fusion of Multiband Images With Different

Spatial and Spectral Resolutions for

Change Detection
Vinicius Ferraris, Student Member, IEEE, Nicolas Dobigeon, Senior Member, IEEE, Qi Wei, Member, IEEE,

and Marie Chabert, Member, IEEE

Abstract—Archetypal scenarios for change detection generally
consider two images acquired through sensors of the same modal-
ity. However, in some specific cases such as emergency situations,
the only images available may be those acquired through different
kinds of sensors. More precisely, this paper addresses the prob-
lem of detecting changes between two multiband optical images
characterized by different spatial and spectral resolutions. This
sensor dissimilarity introduces additional issues in the context of
operational change detection. To alleviate these issues, classical
change detection methods are applied after independent prepro-
cessing steps (e.g., resampling) used to get the same spatial and
spectral resolutions for the pair of observed images. Nevertheless,
these preprocessing steps tend to throw away relevant informa-
tion. Conversely, in this paper, we propose a method that more
effectively uses the available information by modeling the two ob-
served images as spatial and spectral versions of two (unobserved)
latent images characterized by the same high spatial and high spec-
tral resolutions. As they cover the same scene, these latent images
are expected to be globally similar except for possible changes in
sparse spatial locations. Thus, the change detection task is envi-
sioned through a robust multiband image fusion method, which
enforces the differences between the estimated latent images to
be spatially sparse. This robust fusion problem is formulated as an
inverse problem, which is iteratively solved using an efficient block-
coordinate descent algorithm. The proposed method is applied to
real panchromatic, multispectral, and hyperspectral images with
simulated realistic and real changes. A comparison with state-of-
the-art change detection methods evidences the accuracy of the
proposed strategy.
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I. INTRODUCTION

R
EMOTE sensing is a reliable technique for Earth surface

monitoring and observation [2]. One of the most impor-

tant applications using remotely sensed data is the so-called

change detection (CD) problem. CD has many definitions and it

is generally considered as the ability of analyzing two or more

multi-date (i.e., acquired at different time instants) and possibly

multi-source (i.e., acquired by different sensors) images of the

same scene to detect areas where potential changes have oc-

curred [3], [4]. Because of the increasing number of satellites

and of new policies for data distribution, more multi-temporal

data becomes available. While this increases the amount of in-

formation on the present scene, it highlights some additional

issues when designing operational change detection techniques.

Each remotely sensed observation image is intimately con-

nected to the acquisition modality providing a particular excerpt

of the observed scene according to the sensor specifications.

For instance, optical images are generally well suited to map

horizontal structures, e.g., land-cover type at large scales [5].

More particularly, remote sensing images acquired by multi-

band optical sensors can be classified according to their spectral

and spatial resolutions. The spectral resolution is related to the

capability of sensing the electromagnetic spectrum. This term

can also refer to the number of spectral bands [2], [6], which

generally leads to a commonly adopted classification of these

images: panchromatic (PAN) images, characterized by a low

spectral resolution, multispectral (MS) and hyperspectral (HS)

images which sense part of the spectrum with higher precision.

Alternatively, multi-band optical images can be classified with

respect to (w.r.t.) their spatial resolution [2], [5]. The concept

of spatial resolution should be understood as the capability of

representing the smallest object that can be resolved up to a

specific pixel size. Images having fine resolution and finer de-

tails are generally identified as of high resolution (HR) in con-

trast to low resolution (LR) images where only coarse features

are observable. Because of the physical limitations of optical

passive sensors, multi-band optical images suffer from a trade-

off between spectral and spatial resolution [7], [8]. To ensure

that any sensor has sufficient amount of energy to guarantee

a proper acquisition (in terms of, e.g., signal-to-noise ratio),

one of the resolutions must be decreased allowing the other

to be increased. For this reason, PAN images are generally



characterized by higher spatial resolution and lower spectral

resolution than MS or HS images.

Optical images have been the most studied remote sensing

modality for CD since the widely admitted additive Gaussian

modeling of optical optical sensor noises allows CD techniques

to be implemented through a simple operation of image dif-

ferencing [3], [4]. Originally designed for single-band images,

CD differencing methods have been adapted to handle multi-

band images by considering spectral change vectors [9], [10]

and transform analysis [11], [12]. The possibility of detecting

changes by exploiting both spatial and spectral information is

one of the greatest advantages of these multi-band optical im-

ages. Nevertheless, images of same spatial and spectral resolu-

tions, are not always available. In some specific situations, for

instance consecutive to natural disasters, acquisitions must be

performed in emergency, with the available devices. In this case,

CD may require the comparison of images acquired by different

kinds of sensors. Such disadvantageous situations yet require

fast, flexible and accurate methods able to handle also the in-

compatibilities introduced by each sensor modality [13]–[16].

Most of the CD classical methods do not support differences

in resolutions. Generally, each observed image is independently

preprocessed in order to get the same resolution and then classi-

cal CD techniques are applied. However, resampling operations

independently applied to each image do not take into account

their joint characteristics and thus crucial information may be

missed. To overcome this limitation, a general CD framework

has been recently proposed in [17] to deal with multi-band im-

ages with different spatial and spectral resolutions based on a

3-step procedure (fusion, prediction, detection). Instead of in-

dependently preprocessing each observed image, this approach

consists in recovering a latent (i.e., unobserved) high spatial and

spectral resolution image containing changed and unchanged re-

gions by fusing both observed images. Then, it predicts pseudo-

observed images by artificially degrading this estimated latent

image using the same forward models underlying the actually

observed images. As the pairs of predicted and observed ob-

servations have the same spatial and spectral resolutions, any

classical multi-band CD method can be finally applied to build

a change map. Albeit significantly improving detection perfor-

mance when compared to crude methods relying on independent

preprocessing, the 3-step sequential formulation appears to be

non-optimal for the following twofold reasons: i) any inaccura-

cies in the fusion step are propagated throughout the subsequent

degradation and detection steps, ii) relevant information regard-

ing the change may be lost during the prediction steps, since

it consists in spatially or spectrally degrading the latent images

to estimate the pseudo-observed images. Thus, significant im-

provements in terms of change detection performance may be

expected provided one is able to overcome both limitations.

In this paper, capitalizing on the general framework devel-

oped in [17], we show that the CD task can be formulated as

a particular instance of the multi-band image fusion problem.

However, contrary to the 3-step procedure in [17], the proposed

approach jointly estimates a couple of distinct latent images cor-

responding to the two acquisition times as well as the change

image. Since the two latent images of high spatial and spectral

resolutions are supposed to represent the same scene, they are

expected to share a high level of similarity or, equivalently, to

differ only in a few spatial locations. Thus, akin to numerous

robust factorizing models such as robust principal component

analysis [18] and robust nonnegative matrix factorization [19],

the two observed images are jointly approximated by a standard

linear decomposition model complemented with an outlier term

corresponding to the change image. This so-called CD-driven

robust fusion of multi-band images is formulated as an inverse

problem where, in particular, the outlier term is characterized

by a spatial sparsity-inducing regularization. The resulting ob-

jective function is solved through the use of a block coordinate

descent (BCD) algorithm, which iteratively optimizes w.r.t. one

latent image and the change image. Remarkably, optimizing

w.r.t. the latent image boils down to a classical multi-band im-

age fusion step and can be efficiently conducted following the

algorithmic solutions proposed in [20]. The CD map can be

finally generated from the recovered change image.

The paper is organized as follows. Section II-B formulates

the change detection problem for multi-band optical image.

Section III presents the solution for the formulated problem

based on robust fusion. Various experimental scenarios are con-

sidered in Section IV, based on realistic physically-motivated

experimental setups and a pair of real LANDSAT 8 images.

Section V concludes the paper.

II. FROM CHANGE DETECTION TO ROBUST FUSION

A. Generic Forward Model

Let us consider the image formation process as a sequence

of transformations, denoted T [·], of the original scene into an

output image. The output image of a particular sensor is referred

to as the observed image and denoted Y ∈ R
nλ×m where m

and nλ are the numbers of pixels and spectral bands in the

observed image, respectively. It provides a limited version of the

original scene with characteristics imposed by the image signal

processor (ISP) characterizing the sensor. The original scene

can be conveniently represented by an (unknown) latent image

of higher spatial and spectral resolutions, X ∈ R
m λ×n , where

n ≥ m and mλ ≥ nλ are the numbers of pixels and spectral

bands, respectively, related to the observed image following

Y = T [X] . (1)

The intrinsic sequence of transformations of the sensor over

the latent image X can be typically classified as spectral or

spatial degradations. On one hand, spatial degradations are re-

lated to the spatial characteristics of the sensor such as sampling

scheme and optical transfer function. On the other hand, spectral

degradations refer to the wavelength sensitivity and the spectral

sampling. There are many ways to represent the degradation

process. In this paper, it is considered as a sequence of lin-

ear operations leading to the following generic forward model

[21]–[23]

Y = LXR + N (2)

where

1) L ∈ R
nλ×m λ is the spectral degradation matrix,



2) R ∈ R
n×m is the spatial degradation matrix,

3) N is the additive term comprising sensor noise and mod-

eling errors.

In (2), the left-multiplying matrix L ∈ R
nλ×m λ degrades the

latent image by combination of some spectral bands for each

pixel while the right-multiplying matrix R ∈ R
n×m degrades

the latent image by linear combination of pixels within the same

spectral band. The former degradation corresponds to a spectral

resolution reduction with respect to the latent image X as in

[20], [22], [23]. In practice, this degradation models an intrinsic

characteristic of the sensor, namely the spectral response. It can

be either learned by cross-calibration or known a priori [23],

[24]. Conversely, the spatial degradation matrix R models the

combination of different transformations which are specific of

the sensor architecture taking into account external factors in-

cluding warp, blurring, translation and decimation [20], [24]. In

this work, since geometrical transformations such as warp and

translations can be corrected using image co-registration tech-

niques in pre-processing steps, only a spatially invariant blur-

ring and a decimation (i.e., subsampling) will be considered. A

space-invariant blur can be modeled by a symmetric convolu-

tion kernel associated with a sparse symmetric Toeplitz matrix

B ∈ R
n×n which operates a cyclic convolution on each individ-

ual band [25]. The decimation operation, denoted by the n × m
matrix S, corresponds to a uniform downsampling operator1 of

factor d = dr × dc with m = n/d ones on the block diagonal

and zeros elsewhere, such that ST
S = Im [20]. To summarize,

the overall spatial degradation process corresponds to the matrix

composition R = BS ∈ R
n×m .

The noise corrupting multi-band optical images is generally

modeled as additive and Gaussian [4], [8], [20], [26]. Thus the

noise matrix N in (2) is assumed to be distributed according to

the following matrix normal distribution2

N ∼ MNnλ,m (0nλ×m ,Λ,Π). (3)

The row covariance matrix Λ carries information regarding the

between-band spectral correlation. Following [20], in what fol-

lows, this covariance matrix Λ will be assumed to be diagonal,

which implies that the noise is independent from one band to

the other and characterized by a specific variance in each band.

Conversely, the column covariance matrix Π models the noise

correlation w.r.t. to the pixel locations. Following a widely ad-

mitted hypothesis of the literature, this matrix is assumed to be

identity, Π = Im , to reflect the fact the noise is spatially inde-

pendent. In real applications, both matrices Λ and Π can be

estimated by previous calibrations [24].

1The corresponding operator S
T represents an upsampling transformation

by zero-interpolation from m to n.
2The probability density function p(X|M, Σr , Σr ) of a matrix normal dis-

tribution MNr,c (M, Σr , Σc ) is given by [27]

p (X|M, Σr , Σr ) =
exp

(

− 1
2 tr

[

Σ
−1
c (X − M)T

Σ
−1
r (X − M)

])

(2π)r c/2 |Σc |
r /2 |Σr |

c/2

where M ∈ Rr×c is the mean matrix, Σr ∈ Rr×r is the row covariance matrix
and Σc ∈ Rc×c is the column covariance matrix.

B. Problem Statement

Let us denote tj and ti the acquisition times of two co-

registered multi-band optical images. It is not assumed any spe-

cific information about time ordering, either ti < tj or ti > tj
are possible cases. Hence, without loss of generality, the HR

image acquired at time ti is assumed to be a low spectral res-

olution (e.g., PAN or MS) image of high spatial resolution de-

noted Y
ti

HR ∈ R
nλ×n . The image acquired at time tj is a LR

image (i.e., MS or HS) denoted Y
tj

LR ∈ R
m λ×m . The problem

addressed in this paper consists of detecting significant changes

between these two images. This is a challenging task mainly

due to the spatial and spectral resolution dissimilarity which

prevents any use of simple yet efficient differencing operation

[3], [4]. To alleviate this issue, this work proposes to generalize

the CD framework introduced in [17]. More precisely, following

the widely admitted forward model described in Section II-A

and adopting consistent notations, the observed images Y
ti

HR

and Y
tj

LR can be related to two HR latent images X
ti and X

tj ,

respectively, as follows

Y
ti

HR = LX
ti + NHR (4a)

Y
tj

LR = X
tj BS + NLR . (4b)

Note that (4a) and (4b) are a specific double instance of (2).

Indeed, the HR (resp., LR) image Y
ti

HR (resp., Y
tj

LR ) is assumed

to be only a spectrally (resp., spatially) degraded version of the

HR multi-band latent image X
ti (resp., Xti ) such that both la-

tent images X
ti ∈ R

m λ×n and X
tj ∈ R

m λ×n share the same

spectral and spatial resolutions which correspond to the highest

resolutions of both observed images. Thereby, provided these

two latent images can be efficiently inferred, any classical dif-

ferencing technique can be subsequently implemented on them

to detect changes, notably at a high spatial resolution. More

specifically, it would consist of evaluating an HR change image

denoted ∆X = [∆x1 , . . . ,∆xn ] that would gather information

related to any change between the two observed images

∆X = X
ti − X

tj (5)

where ∆xp ∈ R
m λ denotes the spectral change vector in the

pth pixel (p = 1, . . . , n). This spectral change image can be

exploited by conducting a pixel-wise change vector analysis

(CVA) [28] which exhibits the polar coordinates (i.e., magni-

tude and direction) of the spectral change vectors. To spatially

locate the changes, a natural approach consists of monitoring

the information contained in the magnitude part of this repre-

sentation [9], [10], [29], by considering the corresponding HR

spectral change energy image

e = [e1 , . . . , en ] ∈ R
n (6)

with

ep = ‖∆xp‖2 , p = 1, . . . , n. (7)

When the CD problem in the pth pixel is formulated as the

binary hypothesis testing
{

H0,p : no change occurs in the pth pixel

H1,p : a change occurs in the pth pixel
(8)



the pixel-wise statistical test can be written for a given threshold

τ as

ep

H1 , p

≷
H0 , p

τ. (9)

The final binary HR CD map denoted d = [d1 , . . . , dn ] ∈
{0, 1}n can be derived as

dp =

{

1 if ep ≥ τ (H1,p)

0 otherwise (H0,p).
(10)

When complementary information needs to be extracted from

the change image ∆X, e.g., to identify different types of

changes, the whole polar representation (i.e., both magnitude

and direction) can be fully exploited [9], [10]. As a consequence,

to solve the multi-band image CD problem, the key issue lies in

the joint estimation of the pair of HR latent images {Xti ,Xtj }
from the forward model (4) or, equivalently, the joint estima-

tion of one of this latent image and the difference image, e.g.,

{Xtj ,∆X}. The next paragraph shows that this problem can be

formulated as a particular instance of multi-band image fusion.

C. Robust Multiband Image Fusion

Linear forward models similar to (4) have been extensively

investigated in the image processing literature for various ap-

plications. When a unique LR image (e.g., MS or HS) Y
tj

LR

has been observed at time tj , recovering the HR latent image

X
tj from the direct model (4b) can be cast as a superresolu-

tion problem [30], [31]. Besides, when a complementary HR

image Y
ti

HR of lower spectral resolution (i.e., PAN or MS) has

been simultaneously acquired at time ti = tj under (4a), the two

corresponding latent images are expected to represent exactly

the same scene, i.e., ∆X = 0 or, equivalently, Xti = X
tj = X

where the time index can be omitted. In such scenario, esti-

mating the common HR latent image X from the two observed

images YHR and YLR is a multi-band image fusion problem

addressed in [20]–[23], [25], [32]–[34], also referred to as MS

or HS pansharpening when the available HR image Y
ti

HR is a

PAN image [26]. Whether the problem consists in increasing the

resolution of a single image or fusing multiple images of dif-

ferent spatial and spectral resolutions, the underlying objective

consists in compensating the energy trade-off of optical sensors

to get highly spatially and spectrally resolved images. Those

problems are often formulated as an inverse problem, which is

generally ill-posed or, at least, ill-conditioned. To overcome this

issue, a classical approach consists of penalizing the data fitting

terms derived from the linear models (4) and the noise statistics

(3) with additional regularizing terms exploiting any prior in-

formation on the latent image. Various penalizations have been

considered in the literature, including Tikhonov regularizations

expressed in the image domain [21], [35] or in a transformed

(e.g., gradient) domain [36], [37], dictionary- or patch-based

regularizations [25], [30], total variation (TV) [23], [38] or reg-

ularizations based on sparse wavelet representations [39], [40].

In this work, we propose to follow a similar route by address-

ing, in a first step, the CD problem as a linear inverse problem

derived from (4). However, the CD problem addressed here

differs from the computational imaging problems discussed

above by the fact that two distinct HR latent images X
ti and X

tj

need to be inferred, which makes the inverse problem highly ill-

posed. However, this particular applicative scenario of CD yields

a natural reparametrization where relevant prior knowledge can

be conveniently exploited. More precisely, since the two HR

latent images are related to the same scene observed at two time

instants, they are expected to share a high level of similarity, i.e.,

the change image ∆X is expected to be spatially sparse. Thus,

instead of jointly estimating the pair {Xti ,Xtj } of HR latent

images, we take benefit from this crucial information to rewrite

the joint observation model (4) as a function of {Xtj ,∆X}, i.e.,

Y
ti

HR = L
(

X
tj + ∆X

)

+ NHR (11a)

Y
tj

LR = X
tj BS + NLR . (11b)

It is worthy to note that this dual observation model

parametrized by the new pair {Xtj ,∆X} of images to be in-

ferred can be straightforwardly associated with a particular in-

stance of the multi-band image fusion discussed earlier. Indeed,

given the HR change image ∆X and the HR image observed

at time ti , an HR corrected image denoted Y
tj

cHR that would be

acquired by the HR sensor at time tj can be defined as

Y
tj

cHR = Y
ti

HR − L∆X. (12)

In such case, the HR forward model (11a) can be easily rewritten,

leading to

Y
tj

cHR = LX
tj + NHR (13a)

Y
tj

LR = X
tj BS + NLR . (13b)

This observation model (13) defines a standard multi-band

image fusion problem for the LR observed image Y
tj

LR and the

corrected HR image Y
tj

cHR . Consequently, since the change im-

age ∆X can be considered as an outlier term, akin to those

encountered in several robust factorizing models such as robust

principal component analysis (RPCA) [18] and robust nonneg-

ative factorization [19] which relies on a similar sparse outlier

term, the joint observation model (11) naturally defines a so-

called robust fusion scheme whose objective function is detailed

in the next paragraph.

D. Robust Fusion Objective Function

Because of the additive nature and the statistical properties of

the noise NHR and NLR , both observed images Y
ti

HR and Y
tj

LR

can be assumed matrix normally distributed

Y
ti

HR |X
tj ,∆X ∼ MNnλ,n (L (Xtj + ∆X) ,ΛHR , In )

Y
tj

LR |X
tj ∼ MNm λ,m (Xtj BS,ΛLR , Im ) .

Besides, since both observations are acquired by different

modality sensors, the noise, which is sensor-dependent, can

be assumed statistically independent. Thus, Yti

HR |X
tj ,∆X and

Y
tj

LR |X
tj are also statistically independent and the joint likeli-

hood function p(Yti

HR ,Y
tj

LR |X
tj ,∆X) can be written as a sim-

ple product of the conditional distributions p(Yti

HR |X
tj ,∆X)

and p(Y
tj

LR |X
tj ).



A Bayesian formulation of the robust multi-band image fusion

problem allows prior information to be introduced to regularize

the underlying estimation problem [41]. Bayesian estimators

can be derived from the joint posterior distribution

p(Xtj ,∆X|Yti

HR ,Y
tj

LR) ∝

p(Yti

HR ,Y
tj

LR |X
tj ,∆X)p(Xti )p(∆X) (14)

where p(Xti ) and p(∆X) correspond to the prior distributions

associated with the latent and change images, respectively, as-

sumed to be a priori independent. Under a maximum a posteriori

(MAP) paradigm, the joint MAP estimator {X̂
tj

MAP ,∆X̂MAP}
can be derived by minimizing the negative log-posterior, leading

to the following minimization problem

{

X̂
ti

MAP ,∆X̂MAP

}

∈ Argmin
X

t j ,∆X

J
(

X
tj ,∆X

)

(15)

with

J
(

X
tj ,∆X

)

=
1

2

∥

∥

∥
Λ

− 1
2

HR

(

Y
ti

HR − L
(

X
tj + ∆X

))

∥

∥

∥

2

F

+
1

2

∥

∥

∥
Λ

− 1
2

LR

(

Y
tj

LR − X
tj BS

)
∥

∥

∥

2

F

+ λφ1

(

X
tj

)

+ γφ2 (∆X) . (16)

The regularizing functions φ1(·) and φ2(·) can be related to the

negative log-prior distributions of the latent and change images,

respectively, and the parameters λ and γ tune the amount of

corresponding penalizations in the overall objective function

J (Xtj ,∆X). These functions should be carefully designed to

exploit any prior knowledge regarding the parameters of interest.

As discussed in Section II-C, numerous regularizations can be

advocated for the HR latent image X
tj . In this work, a Tikhonov

regularization proposed in [21] has been adopted

φ1

(

X
tj

)

=
∥

∥X
tj − X̄

tj
∥

∥

2

F
(17)

where X̄
tj refers to a crude estimate of X

tj , e.g., resulting

from a naive spatial interpolation of the observed LR-HS image

Y
tj

LR . This choice has been proven to maintain computational

efficiency while providing accurate results [26]. Additionally, a

subspace-based representation can also be adopted to enforce

X
tj to live in a previously identified subspace, as advocated in

[23] and [42].

Conversely and more critically, a specific attention should

be paid to the regularizing function φ2(·). This function should

reflect the fact that most of the pixels are expected to remain

unchanged in X
ti and X

tj , i.e., most of the columns of the

change image ∆X are expected to be null vectors. This notice-

able property can be easily translated by promoting the sparsity

of the spectral change energy image e defined by (6). As a

consequence, the regularizing function φ2(·) is chosen as the

sparsity-inducing ℓ1-norm of the change energy image e or,

equivalently, as the ℓ2,1-norm of the change image

φ2 (∆X) = ‖∆X‖2,1 =

n
∑

p=1

‖∆xp‖2 . (18)

This regularization is a specific instance of the non-overlapping

group-lasso penalization [43] which has been considered in var-

ious applications to promote structured sparsity [19], [44]–[49].

The next section describes an iterative algorithm which solves

the minimization problem in (15).

III. MINIMIZATION ALGORITHM

Computing the joint MAP estimator of the HR latent image

X
tj at time tj and of the change image ∆X can be achieved by

solving the minimization problem in (15). However, no closed-

form solution can be derived for this problem. Thus this section

presents a minimization algorithm which iteratively converges

to this solution. It consists in sequentially solving the problem

w.r.t. to each individual variables X
tj and ∆X. This block

coordinate descent algorithm is summarized in Algorithm 1

whose main steps (fusion and correction) are detailed in what

follows.

Algorithm 1: BCD Algorithm for Robust Multi-Band Im-

age Fusion.

Input: Y
tj

LR , Yti

HR , L, B, S, ΛHR , ΛLR .

1: Set ∆X1 .

2: for k = 1, . . . , K do

3: X
tj

k+1 = arg min
X

t j J (Xtj ,∆Xk )

4: ∆Xk+1 = arg min∆X
J (X

tj

k+1 ,∆X)
5: end for

Output: X̂
tj

MAP , X
tj

K +1 and ∆X̂MAP , ∆X̂K +1

A. Fusion: Optimization w.r.t Xtj

At the kth iteration of the BCD algorithm, let assume that the

current value of the change image is denoted ∆Xk . As suggested

in Section II-C, a corrected HR image Y
tj

cHR ,k that would be

observed at time tj given the HR image Y
ti

HR observed at time

ti and the HR change image ∆Xk can be introduced as

Y
tj

cHR ,k = Y
ti

HR − L∆Xk . (19)

Updating the current value of the HR latent image consists in

minimizing w.r.t. Xtj the partial function

J1

(

X
tj

)

, J
(

X
tj ,∆Xk

)

=
∥

∥

∥
Λ

− 1
2

LR

(

Y
tj

LR − X
tj BS

)∥

∥

∥

2

F

+
∥

∥

∥
Λ

− 1
2

HR

(

Y
tj

cHR ,k − LX
tj

)∥

∥

∥

2

F
+ λφ1

(

X
tj

)

.

(20)

As noticed earlier, this sub-problem boils down to the multi-

band image fusion which has received considerable attention in

the recent image processing and remote sensing literature [20],

[21], [23], [25], [26], [42]. The two difficulties arising from this

formulation lies in the high dimension of the optimization prob-

lem and in the fact that the sub-sampling operator S prevents any

fast resolution in the frequency domain by diagonalization of



the spatial degradation matrix R = BS. However, with the par-

ticular choice (17) of the regularization function φ1(·) adopted

in this paper, a closed-form solution can still be derived and ef-

ficiently implemented. It consists in solving a matrix Sylvester

equation [20] of the form

C1X
tj + X

tj C2 = C3 (21)

where the matrices C1 , C2 and C3 depend on the quantities

involved in the problem, i.e., the virtual and observed images,

the degradation operators, the noise covariance matrices and

the spatially interpolated image defined in (17) (see [20] for

more details). Note that when a more complex regularization

function φ1(·) is considered (e.g., TV or sparse representation

over a dictionary), iterative algorithmic strategies can be adopted

to approximate the minimizer of J1 (Xtj ).

B. Correction: Optimization w.r.t ∆X

Following the same strategy as in [17], let introduce the pre-

dicted HR image

Y
tj

pHR ,k = LX
tj

k (22)

that would be observed at time index tj by the HR sensor given

its spectral response L and the current state of the HR latent

image X
tj

k at the kth iteration of the BCD algorithm. Similarly

to (5), the predicted HR change image can thus be defined as

∆YpHR ,k = Y
ti

HR − Y
tj

pHR ,k . (23)

The objective function (16) w.r.t ∆X is then rewritten by com-

bining (22) and (23) with (16), leading to

J2(∆X) , J (X
tj

k ,∆X)

=
∥

∥

∥
Λ

− 1
2

HR (∆YpHR ,k − L∆X)
∥

∥

∥

2

F
+ γφ2 (∆X) .

(24)

With the specific CD-driven choice of φ2 (·) in (18), mini-

mizing J2(∆X) is an ℓ2,1-penalized least square problem. It

is characterized by the sum of a convex and differentiable data

fitting term with β-Lipschitz continuous gradient ∇f(·)

f (∆X) ,
∥

∥

∥
Λ

− 1
2

HR (∆YpHR ,k − L∆X)
∥

∥

∥

2

F
(25)

and a convex but non-smooth penalization

g (∆X) , γφ2 (∆X) = γ ‖∆X‖2,1 . (26)

Various algorithms have been proposed to solve such convex op-

timization problems including forward-backward splitting [50],

[51], Douglas-Rachford splitting [51], [52] and alternating di-

rection method of multipliers [53], [54]. Since the proximal op-

erator related to g (·) can be efficiently computed, in this work,

we propose to resort to an iterative forward-backward algorithm

which has shown to provide the fastest yet reliable results. This

algorithmic scheme is summarized in Algorithm 2. It relies on

a forward step which consists in conducting a gradient descent

using the data-fitting function f (·) in (25), and a backward step

relying on the proximal mapping associated with the penalizing

function g (·) in (26).

Algorithm 2: Correction Step: Forward-Backward Algo-

rithm.

Input: ∆Xk , ∆YpHR ,k , ΛHR , L, {ηj}
J
j=1

Set V1 , ∆Xk

2: for j = 1, . . . , J do

% forward step

4: Uj+1 = Vj − ηj∇f (Vj )
% backward step

6: Vj+1 = proxη j g (Uj+1)
end for

Output: ∆Xk+1 , VJ +1

Since the HR observed image has only a few spectral bands

(e.g., nλ ∼ 10), the spectral degradation matrix L ∈ R
nλ×m λ

is a fat (and generally full-row rank) matrix. Thus, the corre-

sponding gradient operator∇f (·) defining the forward step (see

line 2 of Algorithm 2) can be easily and efficiently computed.

Conversely, the proximal operator associated with g(·) in (26)

and required during the backward step (see line 2 of Algorithm

2) is defined as

proxηg (U) = arg min
Z

(

γ ‖Z‖2,1 +
1

2η
‖Z − U‖2

F

)

(27)

for some η > 0. The function g(U) in (26) can be split as
∑n

p=1 gp(up) with, for each column, gp(·) = γ ‖·‖2 . Based on

the separability property of proximal operators [54], the operator

(27) can be decomposed and computed for each pixel location

p (p = 1, . . . , n) as
[

proxηg (U)
]

p
= proxηgp

(up) (28)

where the notations [·]p stands for the pth column. Thus, only

the proximal operator associated with the Euclidean distance

induced by the ℓ2 -norm is necessary. The Moreau decomposition

[54]

up = proxηg (up) + ηproxη−1 g ∗
p

(

η−1
up

)

(29)

establishes a relationship between the proximal operators of the

function gp(·) and its conjugate g∗p(·). When the function g(·)
is a general norm, its conjugate corresponds to the indicator

function into the ball B defined by its dual norm [47], [54],

leading to

proxηg (up) = up − ηPB

(

up

η

)

(30)

where PB(·) denotes the projection. When g(·) is defined by

(26), since the ℓ2-norm is self-dual, this projection is

PB (up) =

{ γup

‖up‖2

if ‖up‖2 > γ

up otherwise.
(31)

Consequently, replacing (31) in (30), the proximal operator as-

sociated with the function gp(·) in (28) is

proxηgp
(up) =







(

1 −
ηγ

‖up‖2

)

up if ‖up‖2 > ηγ

0 otherwise.

(32)



To conclude, the correction procedure can be interpreted as a

gradient descent step for spectral deblurring of the HR change

image from the HR predicted change image (forward step), fol-

lowed by a soft-thresholding of the resulting HR change image

to promote spatial sparsity (backward step).

IV. EXPERIMENTS

A. Simulation Framework

Real dataset for assessing performance of CD algorithms is

rarely available. Indeed, this assessment requires couples of im-

ages acquired at two different dates, geometrically and radiomet-

rically pre-corrected, presenting changes and, for the scenario

considered in this paper, coming from two different optical sen-

sors. In addition, these pairs should be accompanied by a ground

truth (i.e., a binary CD mask locating the actual changes) to al-

low quantitative figures-of-merit to be computed. To alleviate

this issue, inspired by the well-known Wald’s evaluation pro-

tocol dedicated to pansharpening algorithms [55], a framework

has been proposed in [17] to assess the performance of CD al-

gorithms when dealing with optical images of different spatial

and spectral resolutions. This framework only requires a sin-

gle HR-HS reference image X
ref and generates a pair of latent

HR-HS images X
ti and X

tj resulting from a unmixing-mixing

process. This process allows synthetic yet realistic changes to

be incorporated within one of these latent images, w.r.t. a pre-

defined binary reference HR change mask dHR ∈ R
n locating

the pixels affected by these changes and further used to assess

the performance of the CD algorithms. This procedure allows

various physically-inspired changes to be considered, e.g., by

tuning the relative abundance of each endmember or replacing

one of them by another. This protocol is briefly described below

(see [17] for more details).

1) Reference image: The HR-HS reference image X
ref used

in the experiments reported in this paper is a 610 × 330 × 115
HS image of the Pavia University, Italy, acquired by the reflective

optics system imaging spectrometer (ROSIS) sensor. This im-

age has undergone a pre-precessing to smooth the atmospheric

effects of vapor water absorption by removing some bands. Thus

the final HR-HS reference image is of size 610 × 330 × 93.

2) Generating the Changes: Using the same procedure pro-

posed in [17], the HR-HS reference image X
ref ∈ R

m λ×n has

been linearly unmixed to define the reference matrix M
ref ∈

R
m λ×R of R endmember spectral signatures and the corre-

sponding reference abundance matrix A
ref ∈ R

R×n such that

X
ref ≈ M

ref
A

ref . The two latent HR-HS images X
ti and X

tj

are then computed as linear mixture of the endmembers in

M
ref with corresponding abundance matrices A

ti and A
tj ,

respectively, derived from the reference abundances A
ref and

the change mask dHR , i.e.,

X
ti = M

ref
A

ti and X
tj = M

ref
A

tj

A
ti = ϑti

(

A
ref ,dHR

)

and A
tj = ϑtj

(

A
ref ,dHR

)

where the two change-inducing functions ϑt · : R
R×n × R

n →
R

R×n are defined to simulate realistic changes in some pixels

of the HR-HS latent images. Three sets of 75 predefined change

masks have been designed according to three specific change

rules introduced in [17]. For each simulated pair {Xti ,Xtj },

one of the two functions ϑt ·(·,dHR ) is defined as a “no-change”

operator, i.e., ϑt ·(Aref ,dHR) = A
ref , which leads to an overall

set of 450 simulated pairs {Xti ,Xtj } of HR-HS latent images.

3) Generating the Observed Images: The observed images

are generated under 3 distinct scenarios involving 3 pairs of

images of different spatial and spectral resolutions, namely,

1) Scenario 1 considers HR-PAN and LR-HS images,

2) Scenario 2 considers HR-PAN and LR-MS images,

3) Scenario 3 considers HR-MS and LR-HS images.

The HR-PAN or HR-MS observed image Y
ti

HR is obtained

by spectrally degrading the corresponding HR-HS latent image

X
ti . In Scenarios 1 and 2, the degradation process consists in av-

eraging the first 43 bands of the HR-HS latent image to produce

an HR-PAN image. Conversely, in Scenario 3, the degradation

process consists in spectrally filtering the HR-HS latent image

X
ti with a 4-band LANDSAT-like spectral response.

Besides, to generate a spatially degraded LR-HS image Y
tj

LR

in Scenarios 1 and 3, the corresponding latent image X
tj has

been blurred by a 5 × 5 Gaussian kernel and subsequently

equally down-sampled in the vertical and horizontal directions

with a down-sampling ratio d = 5. In Scenario 2, the LR-MS

image has been obtained by spectrally filtering the LR-HS im-

age used in Scenarios 1 and 3 with the 4-band LANDSAT-like

spectral response.

To illustrate, Fig. 1 shows one of the 450 simulation config-

urations used during the experiments to assess the performance

of the proposed CD technique. Note that, in this particular ex-

ample representative of Scenario 3, the induced changes are

visible in the HR-MS image Y
ti

HR since the change mask af-

fects the HR-HS latent image X
ti . However, among the 450

simulation configurations, half of them corresponds to changes

incorporated into the HR-HS latent image X
ti (thus visible in

the HR-MS image Y
ti

HR ) whereas the remaining half corre-

sponds to changes incorporated into the HR-HS latent image

X
tj (thus visible in the LR-HS image Y

tj

LR ).

B. Compared Methods

The proposed robust fusion-based CD technique has been

compared to four methods able to deal with optical images of

different spatial and spectral resolutions. The first one has been

proposed in [17] and also relies on a fusion-based approach.

Up to the authors’ knowledge, it was the first operational CD

technique able to operate with multi-band optical images of

different spatial and spectral images. Contrary to the model (4)

proposed in this paper, it consists in recovering a common latent

image by fusing the two observed images and then predicting

an HR (PAN or MS) image Ŷ
F ,ti

HR from the underlying forward

model. An HR change image ∆Y
F ,ti

HR has been then computed

as in (5) from the pair of HR observed and predicted images

{Yti

HR , ŶF ,ti

HR }. Finally, as recommended in [17], a spatially-

regularized CVA (sCVA) similar to the decision rule detailed

in Section II-B has been conducted on ∆Y
F ,ti

HR to produce an

estimated HR CD mask denoted d̂F .

The second method aims at producing an HR predicted image

by successive spatial superresolution and spectral degradation.



Fig. 1. One particular simulation configuration (Scenario 3). (a) The HR change mask dHR , (b) and (c) the HR-HS latent images X
t i and X

t j , and (d) and

(e) the spectrally degraded version HR-MS observed image Y
t i
HR and the spatially degraded LR-HS observed image Y

t j

LR . Note that, in this particular configuration,

the changes are visible in the HR-MS observed image Y
t i
HR . Indeed, the change-inducing function ϑt j (·, dHR ) is the identity operator (i.e., At j = A

ref ) since it

does not apply any change into the corresponding HR-HS latent image X
t j while the function ϑt i (·, dHR ) includes a triangular region of pixels in X

t i affected
by changes. Moreover, the HR observed image is here an MS image.

More precisely, an HR latent image is first recovered by con-

ducting a band-wise spatial superresolution of the observed LR

Y
tj

LR following the fast method in [31]. Then this latent image

is spectrally degraded according to produce an HR predicted

image Ŷ
SD ,tj

HR . Similarly to the previous fusion-based method,

sCVA has been finally conducted on the pair {Yti

HR , Ŷ
SD ,tj

HR } to

produce an HR CD mask denoted d̂SD . The third CD method

applies the same procedure with a reverse order of spatial su-

perresolution and spectral degradation, and produces produces

an HR change mask denoted d̂DS from the pair of HR im-

ages {Yti

HR , Ŷ
DS,tj

HR }. The fourth CD method, referred to as

the worst-case (WC) as in [17], build a LR change mask d̂WC

by crudely conducting a sCVA on a spatially degraded version

of the HR image and a spectrally degraded version of the LR

image.

C. Figures-of-Merit

The CD performances of these four methods, as well as the

performance of the proposed robust fusion-based method whose

HR change mask is denoted d̂RF , have been visually assessed

from empirical receiver operating characteristics (ROC), repre-

senting the estimated pixel-wise probability of detection (PD)

as a function of the probability of false alarm (PFA). Moreover,

two quantitative criteria derived from these ROC curves have

been computed, namely, i) the area under the curve (AUC), cor-

responding to the integral of the ROC curve and ii) the distance

between the no detection point (PFA = 1,PD = 0) and the

point at the interception of the ROC curve with the diagonal

line defined by PFA = 1 − PD. For both metrics, greater the

criterion, better the detection.

D. Results

1) Scenario 1 (HR-PAN and LR-HS): The ROC curves dis-

played in Fig. 2 with corresponding metrics in Table I (first

two rows) correspond to the CD results obtained from a pair of

Fig. 2. Scenario 1 (HR-PAN and LR-HS): ROC curves.

TABLE I
SCENARIOS 1 , 2, AND 3: QUANTITATIVE DETECTION PERFORMANCE (AUC

AND DISTANCE)

d̂R F d̂F d̂W C d̂D S d̂S D

Scenario 1 AUC 0.9936 0.9886 0.9762 0.8088 0.8000

Dist. 0.9896 0.9523 0.9297 0.7270 0.7187

Scenario 2 AUC 0.9948 0.9711 0.9783 0.8137 0.8070

Dist. 0.9915 0.9534 0.9296 0.7323 0.7247

Scenario 3 AUC 0.9974 0.9895 0.9775 0.8477 0.8521

Dist. 0.9944 0.9589 0.9268 0.7694 0.7741

HR-PAN and LR-HS observed images. Clearly, the proposed ro-

bust fusion-based CD technique outperforms the four other CD

techniques. More importantly, it provides almost perfect detec-

tions even for very low PFA, i.e., for very low energy changes.

Note that the CD mask dWC estimated by the worst-case method

is defined at a LR.

2) Scenario 2 (HR-PAN and LR-MS): Applying the same

procedure as for Scenario 1 but now considering an LR-MS

observed image instead of the LR-HS observed image leads to

very similar overall performance. The ROC plot is displayed in



Fig. 3. Scenario 2 (HR-PAN and LR-MS): ROC curves.

Fig. 4. Scenario 3 (HR-MS and LR-HS): ROC curves.

Fig. 3 with corresponding metrics in Table I (3rd and 4th rows).

As in Scenario 1, comparing curves in Fig. 2 shows that the

proposed method offers a higher precision even when analyzing

a lower spectral resolution HR observed image.

3) Scenario 3 (HR-MS and LR-HS): Following the same

strategy, as for Scenario 1 but now considering an HR-MS ob-

served image instead of the HR-PAN observed image, the re-

sults lead to very similar overall performance. The ROC plot

is displayed in Fig. 4 with corresponding metrics in Table I

(last two rows). As in Scenarios 1 and 2, comparing curves in

Fig. 4 shows that the proposed method still offers outstanding

detection accuracy.

As an additional result, for Scenario 3, Fig. 5 compares the

abilities of detecting changes of decreasing size of the proposed

method against the fusion-based CD method [17] and the worst-

case CD method. Fig. 5(a) and (b) shows a particular example of

observed image pair Yti

HR and Y
tj

LR containing multiple changes

with size varying from 1 × 1-pixel to 61 × 61-pixels, with the

corresponding change maskdHR presented in Fig. 5(c). Fig. 5(d)

and (e) present the change masks d̂F and d̂WC recovered by

the two competing methods, respectively, while the CD mask

d̂RF recovered by the proposed robust fusion-based method is

reported in Fig. 5(f) shows the proposed CD. For each technique,

the decision threshold τ required in the CVA in (10) has been

Fig. 5. CD precision for Scenario 2 (HR-MS and LR-HS). (a) HR-MS

observed image Y
t i
HR , (b) LR-HS observed image Y

t j

LR , (c) actual change

mask dHR , (d) change mask d̂F estimated by the fusion-based approach [17],

(e) change mask d̂WC estimated by the worst-case approach, and (f) change

mask d̂RF estimated by the proposed robust fusion-based approach.

tuned to reach the higher distance value in the corresponding

ROC curves. The first advantage of the proposed method is a

significant decrease of the number of false alarm which are due

to propagated errors when implementing the two other meth-

ods. Moreover, these results prove once again that the proposed

method achieves a better detection rate with a higher resolution,

even when considering extremely localized change regions. Re-

maining false alarms only occur near edges between change and



Fig. 6. Real scenario (LR-MS and HR-PAN). (a) LR-MS observed image Y
t1
LR , (b) HR-PAN observed image Y

t2
HR , (c) change mask d̂F estimated by the

fusion-based approach [17], (d) change mask d̂WC estimated by the worst-case approach, and (e) change mask d̂RF estimated by the proposed robust fusion-based
approach. From (f) to (j): zoomed versions of the regions delineated in red in (a)–(e).

no-change regions of small size due to the difference of spatial

resolutions and the width of the blur kernel. Note also that the

CD mask estimated by the worst-case method is of coarse scale

since based on the comparison of two LR-MS images.

E. Application to Two Real Multidate LANDSAT Images

Finally, to emphasize the reliability of the proposed CD

method, a pair of real LR-MS and HR-PAN images, acquired

at different dates has been considered. These images Y
t1

LR and

Y
t2

HR have been acquired by LANDSAT 8 over the Lake Tahoe

region (CA, USA), respectively, on April 15th and September

22th, 2015 [56]. The LR-MS image Y
t1

LR is of size 175 × 180
characterized by a spatial resolution of 30m. According to the

spectral response of the LANDSAT 8 sensor, the HR-PAN image

Y
t2

HR is of size 350 × 360 with a spatial resolution of 15m and

has a spectral range from 0.5 µm to 0.68 µm covering 3 bands

of the LR-MS image. Fig. 6(a) and (b) shows the two multidate

LR-MS and HR-PAN images that have been manually geo-

graphically aligned. The resulting CD binary masks recovered

by the fusion-based approach in [17], the worst-case approach

and the proposed robust fusion-based CD method are depicted

in Fig. 6(c)–(e). For this pair of images, the ground truth infor-

mation (i.e., in term of a binary map of actual changes) is not

available. However, a visual inspection reveals that all methods

succeeds in recovering the most significant changes between

the pair of images, namely, the pixels corresponding to the lake

drought. Nevertheless, the proposed and the fusion approaches

have the advantage of providing CD binary masks at HR, which

helps to detect finer details than the worst-case method, as

illustrated by the zoomed regions in Fig. 6(f)–(j). Moreover,

the proposed method seems to lead to a significantly lower

of false alarms when compared to the two other methods, which,

again, confirms its overall higher accuracy. Note that this low

number of false alarms in spite of a manual geographical align-

ment demonstrates the robustness against misalignment.

V. CONCLUSION

This paper proposed a robust fusion-based change detec-

tion technique to handle two multi-band optical observed im-

ages of different spatial and spectral resolutions. The technique

was based on the definition of two high resolution hyperspec-

tral latent images related to the observed images via a dou-

ble physically-inspired forward model. The difference between

these two latent images was assumed to be spatially sparse, im-

plicitly locating the changes at a high resolution scale. Inferring

these two latent images was formulated as an inverse problem

which was solved within a 2-step iterative scheme. This algo-

rithmic strategy amounted to solve a standard fusion problem

and an ℓ2,1-penalized spectral deblurring step. Contrary to the

methods already proposed in the literature, modeling errors were

not anymore propagate in-between steps. A simulation protocol

allowed the performance of the proposed technique in terms of

detection and precision to be assessed and compared with the

performance of various algorithms. Future works include the as-

sessment of the robustness of the proposed technique w.r.t. non-

linear effects (e.g., due to atmospheric effects, geometric and

radiometric distortions) and the problem of detecting changes

between optical and non-optical data.
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