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Abstract: The main purpose of this paper is to integrate fuzzy logic control and sliding mode control 
techniques based on backstepping approach to develop a robust fuzzy backstepping sliding mode 
controller (RFBSMC) for an under-actuated quadrotor UAV system under external disturbances and 
parameter uncertainties. First, a robust backstepping sliding mode control for quadrotor is introduced 
briefly. Moreover, a fuzzy logic inference mechanism is employed for implementing a fuzzy hitting 
control law to reduce the chattering phenomena on the conventional RBSMC. Lyapunov based stability 
analysis shows the main advantage of these control systems which are the trajectory tracking and the 
stability maintaining of the closed loop dynamics of quadrotor UAV even after occurrence of external 
disturbances and parameter uncertainties. The effectiveness of the complete system including the 
quadrotor, and the RFBSMC controller is demonstrated via some simulation results, and its advantages 
are indicated in comparison with the conventional RBSMC system. 
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

1. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) have been developed for 
performing various missions in the military and civil areas. 
Quadrotors are one of UAVs which consist of two rods and 
four actuators as shown in the Fig. 1. Even though its 
structure is simple, the quadrotor is a VTOL (Vertical Task-
off and Landing) and can perform most of missions that 
helicopters can do. In some aspects, the quadrotors have 
better maneuverability than helicopters because quadrotors 
have four rotors, which can increase the mobility and 
loadability. 

Quadrotors are classified as rotorcraft, as opposed to fixed-
wing aircraft, because their lift is derived from four rotors. 
The use of four rotors allows each individual rotor to have a 
smaller diameter than the equivalent single-rotor helicopter, 
allowing them to store less kinetic energy during flight and 
thus reduces the damage caused by the rotors hitting any 
objects. By enclosing the rotors within a frame, the rotors can 
be protected during collisions 

The dynamic model of quadrotor UAV has six degree-of-
freedom (DOF) with only four independent thrust forces 
generated by four rotors. It is difficult to control all these six 
outputs with only four control inputs. Moreover, uncertainties 
associate with dynamic model also bring more challenge for 
control design. To solve the quadrotor UAV tracking control 
problem, many techniques have been proposed. First of all, 
several backstepping and sliding mode controllers have been 
developed. (Bouabdallah et al., 2005) presented a backs-
tepping and sliding mode controllers in order to stabilize the 

complete system (i.e. translation and orientation). However, a 
full-state backstepping technique based on Lyapunov stability 
theory and a backstepping sliding mode control are studied in 
(Madani et al., 2006a, 2006b). Yet other Nonlinear control 
methods using backstepping and sliding mode approaches 
have been proposed in (Adigbli et al., 2007). Moreover, a 
backstepping control method, which allowed the tracking of 
the various desired trajectories along (x, y, z) axis and yaw 
angle is proposed in (Bouadi et al., 2007). Another 
backstepping controller, introducing the Frenet-Serret Theory 
(Backstepping+FST) is used for attitude stabilization 
(Colorado et al., 2010), that includes estimation of the 
desired angular acceleration as a function of the aircraft 
velocity. Furthermore, a modified backstepping approach, 
which reduce the number of control parameters by half 
compared with the classical backstepping approach used in 
the literature is developed and applied to control the 
quadrotor UAV in (Saif et al., 2012). A fuzzy integral sliding 
mode-backstepping controller for an autonomous quadrotor 
helicopter (X4-flayer) is proposed in (Meguenni et al., 2012), 
in which the integral action is replaced by an inference fuzzy 
system to eliminate the static error. Moreover, a boundary 
layer (“sat” function) is used to reduce the chattering 
phenomenon. However, the fuzzy logic inference mechanism 
is not employed in the stability analysis. 

There are also robust controllers designed for quadrotor 
systems. The authors in (Raffo et al., 2008) proposed a 
nonlinear H∞ controller in order to stabilize the rotational 
movements, whereas a control law based on backstepping 
approach was used to solve the path tracking problem of the 
quadrotor UAV. While in (Bouchoucha et al., 2008, 2011), a 
robust nonlinear PI, a classical and second order sliding mode 
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control techniques for attitude stabilization and attitude 
tracking under external disturbances have been proposed and 
successfully validated in simulation and real time. Moreover, 
an integral backstepping and an integral sliding mode 
controllers for the same objectives of previous authors have 
been also implemented  in  real  time  on  an  embedded  
system Based on a dsPIC μC (Seghour et al., 2011), a direct 
adaptive sliding mode controller for attitude stabilization and 
altitude trajectory tracking of the quadrotor in presence of 
parameter uncertainties is proposed in (Bouadi et al., 2011). 
A robust control approach denoted sliding control based on 
the output feedback linearization is developed for quadrotor 
system to attenuate the parametric uncertainties (Khelfi et al., 
2012). Another nonlinear control algorithms based on the 
super-twisting algorithm (STA) which are able to ensure 
robustness with respect to bounded external disturbances, has 
been designed for attitude stabilization and attitude tracking 
with an experimental implementations on a real quadrotor 
(Derafa et al., 2012), and combined with the block control 
(BC) technique for trajectory tracking of a quadrotor 
helicopter (Luque-Vega et al., 2012a, 2012b, 2012c).  

Yet other robust popular methods for handling unknown 
nonlinearities are to introduce neural networks tuned online, 
by using neural network observer with an output feedback 
controller (Dierks et al., 2010), by using adaptive control 
techniques (Das et al., 2009; Nicol et al., 2011), and by using 
sliding-mode under-actuated control (SMUC) to design a 
hybrid neural-network-based sliding-mode under-actuated 
control (HNNSMUC) (Hwang, 2012) for the under-actuated 
quadrotor system.  

The aim of this paper is to design a robust control scheme for 
a quadrotor UAV under bounded uncertainties. To accomp-
lish the mentioned motivation a RFBSMC system is develop-
ed for this system. First, a traditional RBSMC system is 
introduced, in which, its robustness toward uncertainties is 
demonstrated. However, the undesired chattering phenomen-
on may exist in inputs control of quadrotor. In order to 
remedy this phenomenon, a fuzzy hitting control laws are 
embedded into the RBSMC system, where the Lyapunov 
stability theorem is used to proofing the robustness of the 
RFBSMC system. This study is organized as follows. In 
Section 2, the nonlinear model of a quadrotor aircraft is 
presented. The proposed robust control algorithms are 
described in Section 3. Section 4 is devoted to the 
presentation and the discussion of simulation results, when 
the proposed scheme is applied to the quadrotor. Finally, 
conclusions and futures advances are provided in Section 5. 

2. DYNAMICAL MODEL 

2.1  Quadrotor dynamic model 

The quadrotor is composed of four rotors. Two diagonal 
motors (1 and 3) are running in the same direction whereas 
the others (2 and 4) in the other direction to eliminate the 
anti-torque. On varying the rotor speeds altogether with the 
same quantity the lift forces will change affecting in this case 
the altitude z of the system and enabling vertical take-off/on 
landing. Yaw angle ψ is obtained by speeding up/slowing  

down the diagonal motors depending on the desired direction. 
Roll angle ϕ axe allows the quadrotor to move towards y 
direction. Pitch angle θ axe allows the quadrotor to move 
towards x direction. The rotor is the primary source of control 
and propulsion for the UAV. The Euler angle orientation to 
the flow provides the forces and moments to control the 
altitude and position of the system (Fig. 1). 

 

Fig. 1. Quadrotor configuration. 

The absolute position is described by the three coordinates   
(x, y, z) and its attitude by the three Euler’s angles (ϕ, θ, ψ). 
under the conditions (−π/2 < ϕ < π/2 ) for roll, (−π/2 < θ < 
π/2 ) for pitch and (−π ≤ ψ < π) for yaw. The complete model 
(position and orientation dynamic) is given like in 
(Bouabdallah et al., 2004, 2005) by: 
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The system’s inputs are posed u1, u2, u3, u4 and Ωr a 
disturbance, obtaining: 
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where, I(x,y,z) is the body inertia, Jr is the rotor inertia, m is 
the total mass of the structure, g is the gravity constant, b is 
the thrust coefficient, d is the drag coefficient, l is the 
distance from the center of mass to the rotor shaft, and ωi is 
the angular speed of the rotor i.  
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2.2  Rotors dynamic model 

The rotors are driven by DC motors with the well known 
equations (Tayebi et al. 2006): 
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where, τi, i ϵ{1,…, 4} are the control inputs of the system, 
which represent the torques produced by the rotors, Qi is the 
reactive torque generated, in free air, by the rotor i due to 
rotor drag, which is given by Qi = dωi

2, Ra is the motor 
resistance, km is the motor torque constant, kg is the gear ratio, 
and vi is voltage of the motor i.  

3. ROBUST CONTROLLERS DESIGN  

The main object of the control algorithms developed in this 
paper is to design a robust output tracking controller which 
makes the output of the system {x(t), y(t), z(t), ψ(t)} to track 
the desired output {xd(t), yd(t), zd(t), ψd(t)}. 

The uncertain model resulting by adding of unknown terms 
which represent external disturbances and parameter uncert-
ainties in the model (1) can be written in a state-space form  
Ẋ = Γ(X)+g(X)U+d(X,U) = f(X,U)+d(X,U) with X state 
vector, U inputs vector, and d(X,U) uncertain vector, such as: 
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Where AT = (Aϕ, Aθ, Aψ)
T and AF = (Ax, Ay, Az)

T are the 
resulting aerodynamic forces and moments acting on the 
quadrotor, they are computed from the aerodynamic 
cefficients Ci as Ai = (1/2)ρairCiW

2 Where ρair is the air density 
and W is the velocity of the UAV with respect to air (Gessow 
et al., 1967; Benallegue et al., 2008). Moreover, (δϕ, δθ, δψ)

T 
and (δx, δy, δz)

T are the parameter uncertainties related to the 
quadrotor motions. 

Assumption 1: The model uncertainty is assumed to be 
bounded, as follows: 

 ( , ) ;  1,..., 6  and 2j id X U d i j i                           (8) 
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+, d2

+, d3
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+}are positive constants. 

3.1  Adopted control strategy of quadrotor 

It is worthwhile to note in the quadrotor system that the 
angles and their time derivatives do not depend on translation 
components. On the other hand, the translations depend on 
the angles. We can ideally imagine the overall system 
described by (5) as constituted of two subsystems, the 
angular rotations and the linear translations.  

From (7) it easy to show that:  
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         (9) 

The control scheme advocated for the overall system is then 
logically based on two loops (internal loop and external 
loop). The internal loop contains four control laws: control of 
roll, control of pitch, control of yaw and control of altitude. 
The external loop includes two control laws of positions x 
and y. The external control loop generates a desired reference 
of roll (ϕd) and pitch (θd) through the correction block. This 
block corrects the rotation of roll and pitch depending on the 
desired yaw (ψd) (illustrated by equation (9)). The synoptic 
scheme below shows this control strategy: 

 

Fig. 2.  Synoptic scheme of the proposed control strategy 
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3.2  Robust backstepping sliding mode control of Quadrotor 

The recursive nature of the proposed control design is similar 
to the standard backstepping methodology. However, the 
proposed control design uses backstepping to design 
controllers with a zero-order sliding surface at each step 
(Zhou et al., 2007). The benefit of this approach is that each 
actual controller can compensate the unknown bounded terms 
di(t); i ϵ [1,..., 6]. The design proceeds as follows: 

3.2.1  Attitude control 

Three separate controllers are designed to track the desired 
roll, pitch, and yaw angles. For the first step we consider 
zero-order sliding surface: 

1 1 ds x                                                                           (10) 
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In order to compensate the unknown term d1(t) related to roll 
motion, an auxiliary control effort is referred to as hitting 
control effort represented by (uh,1), it is given as follows: 

,1 ,1 2( )h hu k sign s                                                               (18) 

The stabilization of (s1, s2) can be obtained by introducing the 
following sliding mode actual control: 
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where {c2, kh,1} are positive constants with kh,1 > d1
+, sign(.) 

is the usual sign function. 

Similarly, pitch and yaw controls are: 
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where {c3, c4, c5, c6, kh,2, kh,3} are positive constants with          
kh,2 > d2

+, kh,3 > d3
+. 

3.2.2  Altitude control 

The altitude control u1 is obtained using the same approach 
described in the previous section. 





1 7 7 7 8 7 8 8
1 3

,4 8

( )
(cos( ) cos( ))

                                        ( )

d

h

m
u z c c s s s c s

x x

g k sign s

     

 



     

(23) 

with 

7 7

8 7 3 3

d

d

s x z

s x z c s

 
    

                                                         (24) 

where {c7, c8, kh,4}are positive constants with  kh,4 > δ4
+. 

3.2.3  Position control 

The zero-order sliding surfaces for x and y positions are 
defined as: 
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The control laws are derived using RBSMC technique as: 
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where {c9, c10, c11, c12, kh,5, kh,6} are positive constants with         
kh,5 > d5

+, kh,6 > d6
+. 

3.3 Robust fuzzy backstepping sliding mode control of 
Quadrotor 

The major advantage of control algorithms based on sliding 
mode techniques is its insensitivity to parameter variations 
and external load disturbances once on the switching surface. 
Unfortunately, such performances are obtained at price of 
extremely high control activity. As consequence, the 
chattering phenomenon always occurs in the sliding and 
steady state modes as high frequency oscillations about the 
desired equilibrium point of the system, and may excite 
unmodelled high frequency dynamics. Therefore, an 
RFBSMC system, in which a fuzzy logic inference 
mechanism is used to mimic the hitting control laws will be 
developed in this section.  

Let the sliding surfaces sj; j ϵ [2, 4, 6, 8, 10, 12] be the input 
linguistic variables of the fuzzy logic system, and the hitting 
control laws uf,j; j ϵ [1,..., 6] be the output linguistic variables. 
According to the spirit of the hitting control laws, one can 
systematically build the fuzzy control rule base involved in 
the RFBSMC system as follows (Wai, 2007): 

Rule1: If js  is N, then  ,f ju  is NE 

Rule2: If js  is Z, then  ,f ju  is ZE 

Rule3: If js  is P, then  ,f ju  is PE 

with the fuzzy labels for sj and uf, j ; Z: Zero, N: Negative, P: 
Positive, ZE: Zero effort , NE: Negative effort, PE: Positive 
effort. Each fuzzy label of the input variables sj is triangular 
membership function, fuzzy labels of the output variables uf, j 
are a singletons membership functions as shown in Fig. 3. 

 

 
 
 
 
 
 
 
Fig. 3. Membership functions of input js and outputs ,f ju . 

Then, the hitting control laws can be calculated by fuzzy 
logic inference mechanism as: 

 

3

, ,
1

, ,1 ,1 ,2 ,2 ,3 ,33

,
1

;   1,...,6
j i j i

i
f j j j j j j j

j i
i

u j
 

     






    



(27) 

where 0 ≤ μj,1 ≤ 1, 0 ≤ μj,2 ≤ 1 and 0 ≤ μj,3 ≤ 1 are the firing 
strengths of rules 1,2 and 3, respectively ; λj,1 = λj, λj,2 = 0 and  
λj,3 = -λj are the center of output membership functions (ZE, 
NE and PE). The relation μj,1 + μj,2 + μj,3 = 1 is valid according 
to the triangular membership functions. Moreover, the fuzzy 
hitting control efforts can be further analyzed as the 
following four conditions, and only one of four conditions 
will occur for any value of sj according to Fig .3. 

Condition 1: only rule 1 is triggered (sj > αj, μj,1 = 1, μj,2 =   
μj,3 = 0) 

 , ;   1,...,6f j ju j                                                       (28) 

Condition 2: rule 1 and 2 are triggered simultaneously          
(0 < sj  ≤ αj, 0 < μj,1, μj,2 ≤  1, μj,3 = 0) 

 , ,1 ,1 ,1;   1,...,6f j j j j ju j                                    (29) 

Condition 3: rule 2 and 3 are triggered simultaneously           
(-αj < sj ≤ 0, μj,1 = 0, 0 ≤ μj,2, μj,3 < 1) 

 , ,3 ,3 ,3;   1,...,6f j j j j ju j                                  (30) 

Condition 4: only rule 3 is triggered (sj  ≤ αj, μj,1 = μj,2 = 0,  
μj,3 = 1) 

 , ;   1,...,6f j ju j                                                     (31) 

According to (28)-(31), it can see that  ,1 ,3 0j j js     (Wai, 

2007). Totally, the RFBSMC laws can be represented as: 

 

  
   

 

  
   

,

,1 ,3

,
1

,1 ,3
1

1

; 2,3,4,1 ,  1,...,4

1   and 2   

; , and 5,6

   

i in f j
l

in j j j
l

n h j

n j j j

u u u
g i j

l ju
g

m
u u u

u
x y j

m
u

u

 



  


  

 
 

  

 

 
  

 (32) 

Thus, define a global Lyapunov function candidate as: 

 
12

2

1

1
;    1,...,12

2 i
i

V s i


                                               (33) 

the time derivative of this Lyapunov function gives:   

  

 

12 6
2

,1 ,3
1  1

12 6
2

,1 ,3
1 1

 ;  2

   ;  2

i i l j j j j
i j

i i l j j j j
i j

V c s s d l j

c s s d l j

  

  

 



 

     

     

 

 


   (34) 
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If the following inequality is satisfied: 

 
,1 ,3

 ;   1,...,6j
j

j j

d
j

 



 


                                     (35) 

then, 0V , it can be concluded that the RFBSMC controller 
given by (32) guarantees the stability of the controlled system 
under bounded uncertainties representing the external 
disturbances and the parameter uncertainties. 

4. SIMULATION RESULTS 

In order to verify the performance of the RFBSMC system 
developed in this paper, three simulations were made 
considering different flight conditions. First, an application 
without uncertainties. Second, a simulation with aerodynamic 
force and moment disturbances and finally, one considering a 
variation of model parameters (body inertia, rotor inertia and 
total mass of the system), with introducing the aerodynamic 
force and moment disturbances. 

The physical parameters of the used quadrotor are: m = 0,42 
kg, g = 9,806 m/s2, l = 20.5 cm, b = 2,9842  105 N/rad/s, d 
= 3,2320  107 N.m/rad/s, Jr = 2,8385  105 kg.m2, Ix = Iy = 
3,8278  103 kg.m2, Iz = 7,1345  103 kg.m2 (Derafa et al., 
2006, 2012). The motors parameters are: km,i = 4.  103 
N.m/A, kg,i = 5.6, Ri = 0.67 Ω, i = {1,…, 4} (Taybi et al. 
2006). The initial conditions for the helicopter are: xi(0) = 
col(0,0,0,0,0.5,0) with i = {1,…, 6} for rotational subsystem 
and xi(0)=0 with i = {7,…, 12} for translational one.  
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Fig. 4.  Tracking simulation results of all trajectories, Case a. 

The controllers parameters are:  

For RBSMC system: ci = col(2,5,2,5,2,5,5,10,2,5,2,5) with i = 
{1,…, 12}, and kh,j = 2.5 with  j = {1,…, 6}. For RFBSMC 
system: ci = col(2,5,2,5,2,5,5,10,2,5,2,5) with i = {1,…, 12}, 
αj = 0.5, λj = 4, with  j = {1,…, 6}. 
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Fig. 5.  Simulation results of all inputs control, Case a. 

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

1.5

2

2.5

Time[sec]

X
 p

os
iti

on
 [

m
]

 

 
X 

RBSMC

X 
RFBSMC

X 
d

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

1.5

2

2.5

Time[sec]
Y

 p
os

iti
on

 [
m

]

 

 
Y RBSMC

Y RFBSMC

Y d

(a) evolution of x position (b) evolution of y position 

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

1.5

2

2.5

Time[sec]

Z
 a

tt
itu

de
 [

m
]

 

 

Z RBSMC

Z RFBSMC

Z d

0 10 20 30 40 50 60 70 80 90 100
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time[sec]

Y
aw

 a
ng

le
[r

ad
]

 

 

 RBSMC

 RFBSMC

 d

(c) evolution of altitude position  (d) evolution of yaw angle 

0 10 20 30 40 50 60 70 80 90 100
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Time[sec]

R
ol

l a
ng

le
[r

ad
]

 

 

 RBSMC

d RBSMC

 RFBSMC

 d RFBSMC

0 10 20 30 40 50 60 70 80 90 100
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

Time[sec]

P
itc

h 
an

gl
e[

ra
d]

 

 

 RBSMC

 d RBSMC

 RFBSMC

 d RFBSMC

(e) evolution of roll angle  (f) evolution of pitch angle  
  

Fig. 6.  Tracking simulation results of all trajectories, Case b. 

For reason of derivations of the virtual controls, the desired 
trajectories are chosen in a manner to avoid initial conditions 
problem. So the reference trajectories chosen for xd(t), yd(t), 
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zd(t) and ψd(t) are filtred with a six order filter defined by the 
transfer function 1/(s +1)6 where s is the Laplace variable to 
make it smooth in curve and zero initial conditions before 
exciting the system. The reference trajectories used in 
simulation are given like in (Luque-Vega et al., 2012a). 

Case a: Flight without disturbances 

In the first case, we have a free flight without any 
uncertainty. The obtained results are shown in Figs. 4-5. 
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Fig. 7.  Simulation results of all inputs control, Case b. 
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Fig. 8. Tracking simulation results of all trajectories, Case c. 
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Fig. 9.  Simulation results of all inputs control, Case c.  

Case b: Flight with bounded external disturbances 

Here, the aerodynamic force disturbances are Ax = 0.126, Ay = 
0.126 and Az = 0.126 occurring respectively at 25, 50 and 75s. 
Moreover, the aerodynamic moment disturbances are Aϕ = 
0.004  sin(0.1t), Aθ = 0.004  sin(0.1t), and Aψ = 0.008  
sin(0.1t) occurring also at 25, 50, and 75s respectively. The 
obtained results are depicted in Figs. 6-7. 
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Fig. 10.  Comparison between the RFBSMC system and the 
controller proposed by Bouabdallah et al. 2005, Case b. 
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Fig. 11.  Comparison between the RFBSMC system and the 
controller proposed by Bouabdallah et al. 2005, Case c. 

Case c: Flight with bounded external disturbances and 
parameter uncertainties 
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For this latest case, the aerodynamic force and moment 
disturbances are (Ax = 0.126, Aϕ = 0.004   sin(0.1t)), (Ay = 
0.126, Aθ = 0.004  sin(0.1t)), (Az = 0.126, Aψ = 0.008  
sin(0.1t)) occurring at 15, 30 and 45s, respectively. 
Moreover, we consider an uncertainty of 50% on (ai, bi) with 
(i; j) = (1,..., 5; 1,…, 3) for rotational subsystem, and 50% on 
(1/m) for translational one occurring at 60 and 75s, 
respectively. The obtained results are shown in Figs. 8-9. 

It is concluded from the simulations, made without 
disturbances (Case a), that the proposed controller systems 
gives satisfactory results of the quadrotor aircraft with regard 
to the desired trajectory, showing that the desired pitch and 
roll angles are bounded, with a strongly reducing of 
chattering phenomenon in RFBSMC system compared to the 
RBSMC system (see Figs. 4 (e,f) and 5). When aerodynamic 
force and moment disturbances are introduced (Case b), or 
even the appearance of parameter uncertainties with the 
presence of aerodynamic force and moment disturbances 
(Case c), the results in Figs. 6 and 8 reflect the robustness of 
the good performance of the proposed control algorithm. It is 
able to reject them thanks to the robustness properties of the 
fuzzy hitting control efforts in the RFBSMC system, without 
the need of any estimation procedure. It is worth noting that 
the obtained input control signals given by the proposed 
RFBSMC system are acceptable and physically realizable 
(see Figs. 7 and 9). On the other hand, Fig. 10 and Fig. 11 
shows a comparison between the 3D position along (x, y, z) 
axis obtained using the RFBSMC system and the one 
proposed by (Bouabdallah et al., 2005), where the good 
performance of the proposed algorithm scheme is highlighted 
and the importance of considering the bounded uncertainties 
summarized by external disturbances and parameter uncert-
ainties in the analysis is justified. 

5.  CONCLUSIONS AND FUTUR WORKS 

To realize a performing and robust control of the quadrotor 
aircraft, a robust fuzzy backstepping sliding mode controller 
(RFBSMC) is developed. Compared with RBSMC system, 
the RFBSMC system results in robust control performance 
with strongly reduced chattering control efforts. It can be 
concluded from all simulation results above that the both 
control systems work effectively. In spite of the occurring 
external disturbances and parameter uncertainties, the dynam-
ic behavior of quadrotor aircraft presents high performances 
in terms of stability, trajectory tracking and robustness with 
respect to external disturbances and parameter uncertainties. 
In the further work, the experimental implementation of the 
proposed control scheme will be addressed.  
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