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Abstract

Bundle Adjustment is a widely adopted self-calibration

technique that allows to estimate scene structure and cam-

era parameters at once. Typically this happens by itera-

tively minimizing the reprojection error between a set of 2D

stereo correspondences and their predicted 3D positions.

This optimization is almost invariantly carried out by means

of the Levenberg-Marquardt algorithm, which is very sen-

sitive to the presence of outliers in the input data. For this

reason many structure-from-motion techniques adopt some

inlier selection algorithm. This usually happens both in the

initial feature matching step and by pruning matches with

larger reprojection error after an initial optimization. While

this works well in many scenarios, outliers that are not fil-

tered before the optimization can still lead to wrong param-

eter estimation or even prevent convergence. In this pa-

per we introduce a novel stereo correspondences selection

schema that exploits Game Theory in order to perform a ro-

bust inlier selection before any optimization step. The prac-

tical effectiveness of the proposed approach is confirmed by

an extensive set of experiments and comparisons with state-

of-the-art techniques.

1. Introduction

The selection of 2D point correspondences is arguably

the most important step in image based multi-view recon-

struction. As a matter of fact, differently from techniques

augmented by structured light or known markers, wrong

initial correspondences can lead to sub-optimal parameter

estimation or, in the worst cases, to the inability of the opti-

mization algorithm to obtain a feasible solution. For this

reason reconstruction approaches adopt several specially

crafted expedients to avoid as much as possible the inclu-

sion of outliers. In the first place correspondences are not

searched throughout all the image plane, but only points that

are both repeatable and well characterized are considered.

This selection is carried out by means of interest point de-

tectors and feature descriptors. Salient points are localized

with sub-pixel accuracy by general detectors, such as Harris

Operator [2] and Difference of Gaussians [7], or by using

techniques that are able to locate affine invariant regions,

such as Maximally Stable Extremal Regions (MSER) [8]

and Hessian-Affine [9]. The affine invariance property is

desirable since the change in appearance of a scene region

after a small camera motion can be locally approximated

with an affine transformation. Once interesting points are

found, they must be matched to form the candidate pairs

to be fed to the bundle adjustment algorithm. Most of the

currently used techniques for point matching are based on

the computation of some affine invariant feature descriptor.

Specifically, to each point is assigned a descriptor vector

with tens to hundreds of dimensions, a scale and a rotation

value. Among the most used feature descriptor algorithms

are the Scale-Invariant Feature Transform (SIFT) [6, 5], the

Speeded Up Robust Features (SURF) [3], the Gradient Lo-

cation and Orientation Histogram (GLOH) [10] and more

recently the Local Energy based Shape Histogram (LESH)

[11]. In all of these techniques, the descriptor vector itself

is robust with respect to affine trasformations: i.e., similar

image regions exhibit descriptor vectors with small mutual

Euclidean distance. This property is used to match each

point with the candidate that is associated to the nearest de-

scriptor vector. If the descriptor is not distinctive enough

this approach is prone to select many outliers. A common

optimization involves the definition of a maximum thresh-

old over the distance ratio between the first and the second

nearest neighbors. In addition, points that are matched mul-

tiple times are deemed as ambiguous and discarded (i.e.,

one-to-one matching is enforced). Another common heuris-

tic for the elimination of erroneous matches is to exclude

points that exhibit a large reprojection error after a first

round of Levenberg-Marquardt optimization [4] (see for in-

stance [14]). Unfortunately this afterthought is based upon

an error estimation that depends on the point pairs chosen

beforehand; this leads to a quandary that can only be solved

by avoiding wrong matches from the start. In this paper we

introduce a robust matching technique that allows to oper-

ate a very accurate inlier selection at an early stage of the

process and without any need to rely on 3D reprojection.

In the experimental section, to assess the advantages of our

approach, we present a comprehensive set of comparisons

between the results delivered by our technique and those
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obtained with a reference implementation of the structure-

from-motion system presented in [13] and [14].

2. Game-Theoretic Point Pairs Selection

The selection of matching points on behalf of the fea-

ture descriptor is only able to exploit local information.

This limitation conflicts with the richness of information

that is embedded in the scene structure. For instance, un-

der the assumption of rigidity and small camera motion,

intuition suggests that features that are close in one view

cannot be too far apart in the other one. Further, if a pair

of features exhibit a certain difference of angles or ratio of

scales, this relation should be maintained among their re-

spective matches. Our basic idea is to formalize this intu-

itive notion of consistency between pairs of feature matches

into a real-valued utility function and to find a large set of

matches that express a high level of mutual compatibility.

Of course, the ability to define a meaningful pairwise util-

ity function and a reliable technique for finding a consistent

set as large as possible is paramount for the effectiveness

of the approach. Following [15, 1], we model the matching

process in a game-theoretic framework, where two players

extracted from a large population select a pair of matching

points from two images. The player then receives a pay-

off from the other players proportional to how compatible

his match is with respect to the other player’s choice, where

the compatibility derives from some utility function that re-

wards pairs of matches that are consistent. In Section 2.2

such a function will be proposed, but in practice many dif-

ferent choices can be made: for instance it is possible to

assign a high payoff to pairs of matches that preserve the

distance between source and destination points and a low

payoff otherwise. Clearly, it is in each player’s interest to

pick matches that are compatible with those the other play-

ers are likely to choose. In general, as the game is repeated,

players will adapt their behavior to prefer matchings that

yield larger payoffs, driving all inconsistent hypotheses to

extinction, and settling for an equilibrium where the pool

of matches from which the players are still actively select-

ing their associations forms a cohesive set with high mu-

tual support. Within this formulation, the solutions of the

matching problem correspond to evolutionary stable states

(ESS’s), a robust population-based generalization of the no-

tion of a Nash equilibrium. In a sense, this matching process

can be seen as a contextual voting system, where each time

the game is repeated the previous selections of the other

players affect the future vote of each player in an attempt

to reach consensus. This way the evolving context brings

global information into the selection process.

2.1. Noncooperative Games

Originated in the early 40’s, Game Theory was an at-

tempt to formalize a system characterized by the actions of

entities with competing objectives, which is thus hard to

characterize with a single objective function [16]. Accord-

ing to this view, the emphasis shifts from the search of a

local optimum to the definition of equilibria between op-

posing forces. In this setting multiple players have at their

disposal a set of strategies and their goal is to maximize a

payoff that depends also on the strategies adopted by other

players. Evolutionary game theory originated in the early

70’s as an attempt to apply the principles and tools of game

theory to biological contexts. Evolutionary game theory

considers an idealized scenario where pairs of individuals

are repeatedly drawn at random from a large population to

play a two-player game. In contrast to traditional game-

theoretic models, players are not supposed to behave ratio-

nally, but rather they act according to a pre-programmed be-

havior, or mixed strategy. It is supposed that some selection

process operates over time on the distribution of behaviors

favoring players that receive higher payoffs.

More formally, let O = {1, · · · , n} be the set of avail-

able strategies (pure strategies in the language of game the-

ory), and C = (cij) be a matrix specifying the payoff that

an individual playing strategy i receives against someone

playing strategy j. A mixed strategy is a probability dis-

tribution x = (x1, . . . , xn)T over the available strategies

O. Clearly, mixed strategies are constrained to lie in the

n-dimensional standard simplex

∆n =

{

x ∈ IRn : xi ≥ 0 for all i ∈ 1 . . . n,

n
∑

i=1

xi = 1

}

.

The support of a mixed strategy x ∈ ∆, denoted by σ(x),
is defined as the set of elements chosen with non-zero prob-

ability: σ(x) = {i ∈ O | xi > 0}. The expected payoff re-

ceived by a player choosing element i when playing against

a player adopting a mixed strategy x is (Cx)i =
∑

j cijxj ,

hence the expected payoff received by adopting the mixed

strategy y against x is y
T Cx. The best replies against

mixed strategy x is the set of mixed strategies

β(x) = {y ∈ ∆ | yT Cx = max
z

(zT Cx)} .

A strategy x is said to be a Nash equilibrium if it is the best

reply to itself, i.e., ∀y ∈ ∆, x
T Cx ≥ y

T Cx . This implies

that ∀i ∈ σ(x) we have (Cx)i = x
T Cx; that is, the payoff

of every strategy in the support of x is constant.

A strategy x is said to be an evolutionary stable strategy

(ESS) if it is a Nash equilibrium and

∀y ∈ ∆ x
T Cx = y

T Cx ⇒ x
T Cy > y

T Cy . (1)

This condition guarantees that any deviation from the stable

strategies does not pay.

2.2. Matching Strategies and Payoffs

Central to this framework is the definition of a matching

game, which implies the definition of the strategies avail-
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Figure 1. The payoff between two matching strategies is inversely

proportional to the maximum reprojection error obtained by ap-

plying the affine transformation estimated by a match to the other.

able to the players and of the payoffs related to these strate-

gies. Given a set M of feature points in a source image and

a set D of potentially corresponding features in a destina-

tion image, we call a matching strategy any pair (a1, a2)
with a1 ∈ M and a2 ∈ D. We call the set of all the match-

ing strategies S. In principle, all the features extracted by an

interest point detector could be used to build the matching

strategies set, thus leading to a size of the set S that grows

quadratically with the average number of features detected

in an image. In practice, however, in Section 2.3 we adopt

some heuristics that allow us to obtain good overall results

with a much smaller set. Once S has been selected, our goal

becomes to extract from it the largest subset that includes

only correctly matched points: that is, strategies that asso-

ciate a feature in the source image with the same feature in

the destination image. To this extent, it is necessary to de-

fine a payoff function Π : S × S → R
+ that exploits some

pairwise information available at this early stage (i.e. be-

fore estimating camera and scene parameters). Since scale

and rotation are associated to each feature, it seems natural

to try to use this information to enforce coherence between

matching strategies. Specifically, we are able to associate

to each matching strategy (a1, a2) one and only one sim-

ilarity transformation, that we call T (a1, a2). When this

transformation is applied to a1 it produces the point a2, but

when applied to the source point b1 of the matching strat-

egy (b1, b2) it does not need to produce b2. In fact it will

produce b2 if and only if T (a1, a2) = T (b1, b2), otherwise

it will give a point b′2 that is as near to b2 as the transforma-

tion T (a1, a2) is similar to T (b1, b2). Given two matching

strategies (a1, a2) and (b1, b2) and their respective associ-

ated similarities T (a1, a2) and T (b1, b2), we calculate their

reciprocal reprojected points as:

a′
2 = T (b1, b2)a1

b′2 = T (a1, a2)b1

That is, the virtual points obtained by applying to each

source point the similarity transformation associated to the

other match (see Fig. 1). Thus, given virtual points a′
2 and

b′2, the payoff between (a1, a2) and (b1, b2) is:

Π((a1, a2), (b1, b2)) = e−λmax(|a2−a′

2
|,|b2−b′

2
|) (2)

where λ is a selectivity parameter that allows to operate a

more or less strict inlier selection. If λ is small, then the

payoff function (and thus the matching) is more tolerant,

otherwise the evolutionary process becomes more selective

as λ grows. We define 2 as a similarity enforcing payoff

function and we call a matching game any symmetric non-

cooperative game that involves a matching strategies set S

and a similarity enforcing payoff function Π.

The rationale of the payoff function proposed in equa-

tion 2 is that, while by changing point of view the similarity

relationship between features is not maintained (as the ob-

ject is not planar and the transformation is projective), we

can expect the transformation to be a similarity at least “lo-

cally”. This means that we aim to extract clusters of feature

matches that belong to the same region of the object and

that tend to lie in the same level of depth. While this could

seem to be an unsound assumption for general camera mo-

tion, in the experimental section we will show that it holds

well with the typical disparity found in standard multiple

view and stereo data sets. Further it should be noted that

with large camera motion most, if not all, commonly used

feature detectors fail, thus any inlier selection attempt be-

comes meaningless. One final note should be made about

one-to-one matching. Since each source feature can corre-

spond with at most one destination point, it is desirable to

avoid any kind of multiple match. It is easy to show that

a pair of strategies with zero mutual payoff cannot belong

to the support of an ESS (see [1]), thus any payoff function

Π can be easily adapted to enforce one-to-one matching by

defining:

Π′ =

{

Π((a1, a2), (b1, b2)) if a1 6= b1 and a2 6= b2

0 otherwise

(3)

We can define 3 as a one-to-one similarity enforcing payoff

function.

2.3. Building the Matching Strategies Set

From a theoretical point of view the total number of

matching strategies can be as large as the Cartesian product

of the sets of features detected in the images. Since most

interest point detectors extract thousands of features from

an image and the size of the payoff matrix grows quadrat-

ically with the number of matching strategies, this leads

to problems too large to be managed in an efficient way.

While the feature descriptor has not been used to define the

payoff function Π, it could be useful to reduce the num-

ber of matching strategies considered. Specifically, for each

source feature we can generate k matching strategies that

connect it to the k destination features that are the nearest
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Figure 2. An example of the evolutionary process. Four feature points are extracted from two images and a total of six matching strategies

are selected as initial hypotheses. The matrix Π shows the compatibilities between pairs of matching strategies according to a one-

to-one similarity-enforcing payoff function. Each matching strategy got zero payoff with itself and with strategies that share the same

source or destination point (i.e., Π((b1, b2), (c1, b2)) = 0). Strategies that are coherent with respect to similarity transformation exhibit

high payoff values (i.e., Π((a1, a2), (b1, b2)) = 1 and π((a1, a2), (d1, d2)) = 0.9)), while less compatible pairs get lower scores (i.e.,

π((a1, a2), (c1, c2)) = 0.1). Initially (at T=0) the population is set to the barycenter of the simplex and slightly perturbed. After just one

iteration, (c1, b2) and (c1, c2) have lost a significant amount of support, while (d1, c2) and (d1, d2) are still played by a sizable amount of

population. After ten iterations (T=10) (d1, d2) has finally prevailed over (d1, c2) (note that the two are mutually exclusive). Note that in

the final population ((a1, a2), (b1, b2)) have a higher support than (d1, d2) since they are a little more coherent with respect to similarity.

in terms of descriptor distance. Since our game-theoretic

approach operates inlier selection regardless of the descrip-

tor, we do not need to set any threshold with respect to

the absolute descriptor distance or the distinctiveness be-

tween the first and the second nearest point. In this sense,

the only constraint that we need to impose over k is that it

should be high enough to allow the correct correspondence

to be among the candidates a significative percentage of the

times. In the experimental section we will analyze the in-

fluence of k over the quality of the matches obtained.

2.4. Evolving to an Optimal Solution

The search for a stable state is performed by simulat-

ing the evolution of a natural selection process. Under very

loose conditions, any dynamics that respect the payoffs is

guaranteed to converge to Nash equilibria [16] and (hope-

fully) to ESS’s; for this reason, the choice of an actual se-

lection process is not crucial and can be driven mostly by

considerations of efficiency and simplicity. We chose to use

the replicator dynamics, a well-known formalization of the

selection process governed by the following equation

xi(t + 1) = xi(t)
(Cx(t))i

x(t)T Cx(t)
(4)

where xi is the i-th element of the population and C the

payoff matrix. Once the population has reached a local

maximum, all the non-extincted mating strategies can be

considered valid (see Fig. 2). In practice strategies are ex-

tincted only after an infinite number of iterations. Since we

halt the evolution when the population ceases to change sig-

nificantly, it is necessary to introduce some criteria to dis-

tinguish correct from non-correct matches. To avoid a hard

threshold we chose to keep as valid all the strategies played

by a population amount exceeding a percentage of the most

popular strategy. We call this percentage quality threshold.

As mentioned in Section 2.2, each evolution process selects

a group of matching strategies that are coherent with respect

to a local similarity transformation. This means that if we

want to cover a large portion of the subject we need to iter-

ate many times and prune the previously selected matches

at each new start. Obviously, after all the depth levels have

been swept, small and not significant residual groups start to

emerge from the evolution. To avoid the selection of these

spurious matches we fixed a minimum cardinality for each

valid group. We call this cardinality group size.

3. Experimental Results

We conducted different sets of experiments. Our first

goal was to analyze the impact of the algorithm parameters,

namely λ, k, quality threshold and group size, over the qual-

ity of the results obtained. For this purpose we used a pair of
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Figure 3. Analysis of the performance of the approach with respect to variation of the parameters of the algorithm.

cameras previously calibrated through a standard procedure

and took stereo pictures of 20 different, isolated objects;

then, we investigated the influence of the four parameters

separately. For each test we evaluated three quality mea-

sures: the average reprojection error in pixels (ǫ) and the

differences in radians between the (calibrated) ground-truth

and respectively the estimated rotation angle (∆α) and rota-

tion axis (∆γ). In addition, each stereo pair was processed

with the keymatcher included in the structure-from-motion

suite Bundler [13, 14]. Finally, the correspondences pro-

duced by both the Bundler keymatcher and our technique

were given as an input to the bundle adjustment procedure

included in the suite. This allows to obtain a fair compar-

ison of the two approaches, whose quality parameters can

be directly compared, being the result of running the same

optimizer on different inputs. In Fig. 3 we reported the

results of these experiments. The first row shows the ef-

fect of the selectivity parameter λ. As expected both a too

low and a too high value lead to less satisfactory results,

mainly with respect to the estimation of the angle between

the two cameras. This is probably due respectively to a too

tight and a too relaxed enforcement of local coherence. The

three rows below show the impact of the number of can-

didate matches for each source point, the quality threshold

that a match must exceed to be considered feasible and the

minimum size of a valid group. Overall, these experiments

suggest that those parameters have little influence over the

quality of the result, notwithstanding the Game-Theoretic

approach achieves better results in nearly every case.

For the purpose of exploring further the differences be-

tween our technique and the Bundler keymatcher, we in-

vestigated in depth four cases. We will describe them here

in two separate sets. The first set of unordered images

comes from the ”DinoRing” and ”TempleRing” sequences

from the Middlebury Multi-View Stereo dataset [12]; for

these models, camera parameters are provided and used as

a ground-truth. The second set is composed of two cali-

brated stereo scenes selected from the previously acquired

collection, specifically a statue of Ganesha and a handful of

screws placed on a table. It should be noted however that

Bundler did not find a feasible matching for many stereo

pairs in the collection. Again, for all the sets of experi-

ments we evaluated both the rotation error of all the cam-

eras in terms of angular distance and axis discrepancy, and
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Dino sequence Temple sequence

Game-Theoretic Bundler Keymatcher Game-Theoretic Bundler Keymatcher

Matches 14573 9245 25785 22317

ǫ ≤ 1 pix 24.83 6.49406 22.6049 24.6729

≤ 5 pix 54.94 48.3659 62.7737 61.8957

≥ 5 pix 20.21 45.1401 14.6214 13.4314

Avg. 2.3086 4.5255 2.3577 2.3732

∆α Avg. 0.005751 0.005561 0.010514 0.009376

S. dev. 0.003242 0.003184 0.005282 0.004646

Max 0.012057 0.011475 0.021527 0.017016

∆γ Avg. 0.008313 0.009561 0.014050 0.014079

S. dev. 0.002948 0.006738 0.000511 0.000825

Max 0.013449 0.030661 0.014692 0.015442

Avg. levels 8.42 - 9.27 -

Figure 4. Results obtained with two multiple view data sets (image best viewed in color).

the reprojection error of the detected keypoints. The aver-

age number of matching groups is also given for the Game-

Theoretic method.

The “Dino” model is a difficult case in general, as it em-

bodies very few features; the upper part of Fig. 4 shows the

correspondences produced by our method (left column) in

comparison with the other matcher (right column). A set

of optimal parameters detected in the previous experiments

was used for configuring our matcher. This resulted as ex-

pected in the detection of many correct matches organized

in groups, each corresponding to a different level of depth,

and visualized with a unique color in the figure. As can be

seen, different levels of depth are properly estimated; this is

particularly evident throughout the arched back going from

the tail (in foreground) to the head of the model (in back-

ground), where clustered sets of keypoints follow one after

the other. Furthermore, these sets of interest points maintain

the right correspondences within the pair of images. The

Bundler keymatcher on the other hand, while still achieving

good results in the whole process, also outputs erroneous

correspondences (marked in the figure).

The quality of reconstruction following the application

of both methods can be visually compared by looking at the

distribution of the reprojection error in the left half of Fig.

6. While most reprojections fall within 1-3 pixels of dis-

tance for the Game-Theoretic approach, the Bundler key-

matcher exhibits a long-tail trend, reaching an error spread

of 20 pixels. Differently from “Dino”, the “Temple” model

is quite rich of features; for visualization purposes we only

show a subset of the detected matches for both the tech-

niques. While the effectiveness of our approach is not neg-

atively impacted by the model characteristics, mismatches

are revealed with Bundler. In particular, the symmetric parts

of the object (mainly represented by the pillars) result in

very similar features and this causes the matcher to estab-

lish one-to-many pairings over them. However, it should be

noted that for both the “Dino” and “Temple” models the two

matchers deliver comparably good results when fed with a
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Ganesha stereo Screws stereo

Game-Theoretic Bundler Keymatcher Game-Theoretic Bundler Keymatcher

Matches 280 200 211 46

ǫ ≤ 1 pix 98.2824 20 0 0

≤ 5 pix 1.7175 80 34.7716 6.75676

≥ 5 pix 0 0 65.2284 93.2432

Avg. 0.321248 1.67583 5.86237 10.2208

∆α 0.001014 0.007424 0.020822 0.030995

∆γ 0.048076 0.078715 0.106485 0.117885

Levels 14 - 12 -

Figure 5. Results obtained with two stereo view data sets (image best viewed in color).

whole set of views of the object.

In the calibrated stereo scenario, ”Ganesha stereo” im-

ages are rich of distinctive features and should pose no dif-

ficulty to any of the methods. The Bundler keymatcher pro-

vides very good results, with only one evident false match

out of a total of 200 matches (see Fig. 5). The resulting

bundle adjustment is quite accurate, giving very small ro-

tation errors and reprojection distances. Nevertheless, our

method performs considerably better: reprojection errors

dramatically decrease, with around 98 percent of the key-

points falling below one pixel of reprojection distance.

The second calibrated stereo scene, ”Screws stereo”, is

an emblematic case and provides some meaningful insight.

The images depict a dozen of screws standing on a table,

placed by hand at different levels of depth. This configura-

tion, together with the abundance of features in the objects

themselves, should provide enough information for the two

algorithms to extract significant matches. Indeed, the scene

proves to be a difficult one due to the very nature of the

objects depicted, which are all identical and highly symmet-

ric, and diverse false matches are established by the Bundler

keymatcher (see the last column of Fig. 5). This matching

results nevertheless in a good estimation of the rigid trans-

formation linking the two cameras, since erroneous pairings

are removed a posteriori during the subsequent phases of

bundle adjustment. By contrast, the Game-Theoretic ap-

proach outputs large and accurate sets of matches, roughly

one per object, each corresponding to a level of depth; even

moderately difficult cases, such as the left-right “swaps”

due to the change of viewpoint taking place at the borders,

are correctly dealt with. Again, a histogram of the reprojec-

tion error for this object is shown in Fig. 6.

Execution times for the matching steps of our technique

are plotted in Fig. 7; the scatter plot shows a substantially

linear growth of convergence time as the number of match-

ing strategies increases, staying below half a second even

with a large number of players.

4. Conclusions

In this paper we introduced a novel game-theoretic tech-

nique that performs an accurate feature matching between

multiple views of the same subject as a preliminary step for

bundle adjustment. Differently from other approaches, we

do not rely on a first estimation of scene and camera param-
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Figure 6. Distribution of the reprojection error on one multiple view (left) and one stereo pair (right) example.

eters in order to obtain a robust inlier selection. Rather, we

enforce local compatibility of groups of features with re-

spect to a common similarity transformation. By extracting

one group at a time by means of an evolutive process, we

are able to cover the entire subject. Experimental compar-

isons with a widely used technique show the ability of our

approach to obtain a tighter inlier selection and thus a more

accurate estimation of the scene parameters.
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