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Abstract. Recent experiments suggest that inhibitory networks of interneurons can synchronize

the neuronal discharge in in vitro hippocampal slices. Subsequent theoretical work has shown

that strong synchronization by mutual inhibition is only moderately robust against neuronal

heterogeneities in the current drive, provided by activation of metabotropic glutamate receptors. In

vivo neurons display greater variability in the interspike intervals due to the presence of synaptic

noise. Noise and heterogeneity affect synchronization properties differently. In this paper we study,

using model simulations, how robust synchronization can be in the presence of synaptic noise and

neuronal heterogeneity. We find that stochastic weak synchronization (SWS) (i.e. when neurons

spike within a short interval from each other, but not necessarily at each period) is produced with

at least a minimum amount of noise and that it is much more robust than strong synchronization

(i.e. when neurons spike at each period). The statistics produced by the SWS population discharge

are consistent with previous experimental data. We also find robust SWS in the gamma-frequency

range (20–80 Hz) for a stronger synaptic coupling compared with previous models and for networks

with 10–1000 neurons.

1. Introduction

One of the important properties of the behaviour of the nervous system is the synchronization

of neuronal discharges. It was discovered early on [1], and it has attracted a significant amount

of attention. In recent years the advent of improved experimental techniques has provided

vast amounts of new synchronization data. Concomitantly, there has been a resurgence

in interest and controversy concerning the functional relevance of synchronization. It has

been established that in vivo cortical neurons have noisy spike trains [2] (see also [3]),

and that groups of neurons discharge coherently, as found in population recordings (such

as EEGs, or by arrays of extracellular electrodes; for a review see [4]). These two facts

have sparked major controversies. Firstly, does noise (or precise timing) in neuronal spike

trains contain information [5, 6], or is information merely due to noisy processing of an

average firing rate [7–9]? Secondly, is synchronization functionally (or even statistically)

significant [10, 11], or just an epiphenomenon [9]? In this paper we focus on two different

aspects of synchronization that have received little attention so far. Can realistic neuronal

networks synchronize under the biological conditions of variable intrinsic neuronal properties,
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and the noise-induced neuronal unreliability? What kind of synchronization can be obtained,

and what are its pertinent statistical properties? It is necessary to resolve these two questions

to properly formulate the issues to be studied in experiment, and to analyse different ways

of probing the experimental data. Here we focus our attention on the extensively studied

synchronous gamma oscillations in hippocampus [12–17]. Theoretical and computational

work has shown that mutual inhibition is capable of synchronizing neuronal networks [18,19].

Subsequent in vitro experiments have convincingly established the role of GABA-ergic

hippocampal interneurons in gamma oscillations [12, 14]. Wang and Buzsáki studied the

effect of current heterogeneity and partial connectivity on the synchronization of the inhibitory

network [20]. They only found strong synchronization in the gamma-frequency range when

the current heterogeneities were small [20–22]. In strong synchronization all neurons in a local

circuit spike within a short interval of each other. This suggests that strong synchronization can

only be obtained when the intrinsic properties of the neurons are not too different. According

to [20] this would mean a less than 10% difference in current drive, or average firing rate. It

has been hard to pinpoint the amount of variability in intrinsic properties in the in vitro and

in vivo preparations of different brain areas. It is, however, not unreasonable to assume the

presence of more than 10% variability in these preparations. Strong synchronization is also

not robust against noise [22]. It would therefore seem unlikely for strong synchronization to be

present in hippocampus under physiological conditions. Indeed, here we show that stochastic

weak synchronization (SWS) is more prevalent in parameter space, and is also robust against

neuronal heterogeneities and synaptic noise. We conjecture that as a consequence it is much

more likely to occur in neuronal systems.

In SWS, neurons spike within a short interval from each other, but not necessarily at each

period [23–25]. The synchronization is called stochastic, because the particular cycle in which

the neurons fire is random. This makes the properties of this state different from the well known

cluster states studied by previous authors [26–29]. There each neuron always fires at the same

cycle with the same cluster. Both strong and stochastic weak synchronization yield periodic

population oscillations. The difference can then be ascertained using multi-unit recordings.

We use cross correlation analysis to show that noise and heterogeneity affect the

synchronization properties of our network in very different ways. Large enough noise

and heterogeneity will, however, stop strongly synchronized oscillations. We demonstrate

that increasing synaptic coupling does not significantly increase robustness of strong

synchronization. We then determine for what parameters robust self-induced 40 Hz

synchronous oscillations can be obtained. Finally, we compare the effects on synchronization

of weak and strong synaptic coupling in a single neuron driven by a simulated network input.

2. Methods

2.1. Neuron models

Our aim here is to establish physiological criteria for robust synchronization in the gamma-

frequency range. The use of a biophysically realistic model is therefore of pivotal importance,

trying to balance the amount of complexity versus practical simplicity [30]. We have therefore

not attempted to use the latest available data to construct the most detailed multi-compartmental

model. If we tried to do so, the computer requirements to sample the full relevant parameter

space, and perform our type of analysis, would be extremely demanding even using the

fastest computers. It has been shown, nonetheless, that one and two compartmental models

can accurately generate spike trains of the right shape and frequency [31–33]. Multi-

compartmental models may be necessary, however, to assess the synaptic integration of inputs
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located on different parts of the dendritic tree. This is currently an intensely studied area

in electrophysiology [34–36]. Here we study a model previously introduced by others [20].

The model has been shown to reproduce the salient features of the dynamics of hippocampal

interneurons. The neurons are modelled as a single compartment with Hodgkin–Huxley-type

sodium and potassium channels. In this work all the neurons are connected all to all, and to

themselves via inhibitory GABAA-synapses. The equation for the membrane potential of a

neuron is (the index i of the ith neuron is omitted)

Cm

dV

dt
= −INa − IK − IL − Isyn + I + Cmξ. (1)

Here we use the leak current IL = gL(V −EL) the sodium current INa = gNam
3
∞h(V −ENa),

the potassium current IK = gKn4(V − EK), and the synaptic current Isyn = gsyns(V − Esyn).

The Gaussian noise variable is denoted as ξ (see below), and I is the tonic drive. The channel

kinetics are given in terms of m, n, and h. They satisfy the following first-order kinetic

equations,

dx

dt
= ζ(αx(1 − x) − βxx). (2)

Here x labels the different kinetic variables m, n, and h, and ζ = 5 is a dimensionless timescale

that can be used to tune the temperature-dependent speed with which the channels open or

close. The rate constants are [20],

αm = −0.1(V + 35)

exp(−0.1(V + 35)) − 1
,

βm = 4 exp(−(V + 60)/18),

αh = 0.07 exp(−(V + 58)/20),

βh = 1

exp(−0.1(V + 28)) + 1
,

αn = −0.01(V + 34)

exp(−0.1(V + 34)) − 1
,

βn = 0.125 exp(−(V + 44)/80).

We make the approximation that m follows the asymptotic value m∞(V (t)) = αm/(αm + βm),

instantaneously. The synaptic gating variable s obeys the following equation [20, 37, 38]:

ds

dt
= αF(Vp)(1 − s) − βs, (3)

with α = 12 ms−1, β = 1/τsyn, F(Vp) = 1/(exp(−Vp/2) + 1), and Vp is the presynaptic

potential. The function F(Vp) is chosen such that when the presynaptic neuron fires, Vp > 0,

the synaptic channel opens. The decay time of the postsynaptic hyperpolarization is chosen

as τsyn = 1/β = 10 ms (or 20 ms in some instances). We use a reversal potential of

Esyn = −75 mV for the inhibitory (GABAA) synapses [39]. The standard set of values

for the conductances used in this work is gNa = 35, gK = 9, gL = 0.1, and gsyn = 0.1

(in mS cm−2), and we have taken ENa = 55 mV, EK = −90 mV, and EL = −65 mV. The

membrane capacitance is Cm = 1µF cm−2. Unless stated otherwise we will use the standard

set of parameters listed above. When no current value is specified we use I = 1 µA cm−2.

The network will then spike at approximately 39 Hz.

We chose the initial values for the membrane potential at the start of the simulations

uniformly random between −70 and −50 mV. The kinetic variables m, n, h, and s are set

to their asymptotic stationary values corresponding to that starting value of the membrane

potential.
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The resulting equations with noise are integrated using an adapted second-order Runge–

Kutta method [40], with time step dt = 0.01 ms. The accuracy of this integration method was

checked for the dynamical equations without noise (D = 0) by varying dt and comparing the

result with the one obtained with the standard fourth-order Runge–Kutta method [41] with a

time-step dt of 0.05 ms.

We normalize all quantities by the surface area of the neuron. This leads to the following

system of units: the membrane potential V in mV, time t in ms, firing rate f in Hz, membrane

capacitance Cm in µF cm−2, conductance gx in mS cm−2, voltage noise ξ in mV ms−1, strength

of neuroelectric noise D in mV−2 ms−1, the rate constants αx and βx in ms−1, and the current

I in µA cm−2. The kinetic variables m, n, h, s, and the timescale ζ are dimensionless. The

results in this paper are expressed in this system of units.

2.2. Heterogeneity and synaptic noise

We have included heterogeneity in the applied current. The current heterogeneity represents

the variation in the intrinsic properties of the neurons in the hippocampus. For each run

we draw the applied current for each neuron from a uniform probability distribution, with

average current I and with variance σ 2
I . Experimental measurements of quantities like the

input resistance Rin, the membrane timescale, the spontaneous spiking rate, the shape of the

somatic action potential (amplitude, width, rise and fall time), and the afterhyperpolarization,

show considerable variance [42–44]. It is hard to determine how much of the variance is

due to measurement errors, and how much it is actually due to intrinsic neuronal variability.

Here we assume that the main effect of the variability is to change the intrinsic frequency

of the neurons (which can be varied using the current drive in our model). Another source

of heterogeneity in in vitro experiments is the glutamate pressure ejection method [14]. It

can lead to an inhomogeneous activation of metabotropic glutamate receptors, and thus to a

variable current. In this paper we will consider σI as a free parameter.

At least three sources of noise can be identified [45]: (i) random inhibitory postsynaptic

potentials (IPSP) and excitatory postsynaptic potentials (EPSP), (ii) stochasticity of the

synaptic transmission, and the (iii) stochasticity of the channel dynamics. Here we assume

that the variability in the neuronal discharge is mainly due to synaptic noise [46]. We have

compared the effects of Poisson distributed spike trains of EPSPs and IPSPs with that of a

Gaussian noise current on interspike interval (ISI) variability. Poisson and Gaussian noises

do not yield identical results. The statistics obtained from both models, however, are similar

in the parameter regime studied here [47]. For the purpose of our studies we consider that

Poisson and Gaussian distributions are two alternate ways of producing noisy spike trains with

particular statistics. Therefore, we consider only Gaussian synaptic noise ξi in the current of

each neuron i, with 〈ξi(t)〉 = 0, and 〈ξi(t)ξj (t
′)〉 = 2Dδ(t − t ′)δij . The noise currents in

different neurons are assumed independent.

2.3. Calculated quantities

From our simulations we obtain the time trace for the membrane potential Vi(t) of each neuron.

We determine the spike-trace Xi from Vi as follows: Xi(t) = 1 when Vi(t) crosses 0 mV (i.e.

V (t−) 6 0 < V (t+)), and it is zero elsewhere. From Xi we obtain X(t) =
∑

i Xi(t). X is

proportional to the instantaneous firing rate of the network. We also calculate the coherence
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function κ [20]:

κ ≡
∑

i 6=j

〈X̂i(nτ)X̂j (nτ)〉
√

〈X̂i(nτ)〉〈X̂j (nτ)〉
. (4)

This function measures the amount of strong synchronization, and depends on the bin size τ

of the time discretization

X̂i(nτ) =
∑

(n−1)τ6s<nτ

Xi(s). (5)

In this expression we rebin the original Xi into larger bins τ . We use τ = 200 dt = 2 ms for

oscillations in the gamma-frequency range, or T/10 for periodic drives with period T .

We also calculate the time autocorrelation function

gx(t) = 〈x(t)x(0)〉 − 〈x〉2

(〈x2〉 − 〈x〉2)
, (6)

and the cross correlation function

gxy(t) = 〈x(t)y(0)〉 − 〈x(t)〉〈y(0)〉
√

〈x(t)2〉〈y(0)2〉
. (7)

Here x and y can be any of the variables Xi , Vi , and X. 〈 〉 is a shorthand notation for the time

average, in particular,

〈x(nτ)x(0)〉 = 1

N − nmax

N−nmax−1
∑

i=0

x(iτ)x((i + n)τ). (8)

Here x(nτ) is the discretized variable obtained from the simulations (τ = 20 dt = 0.2 ms),

nmax = 499 is the maximum difference for which the cross correlations are evaluated, N is

the number averaging steps. We evaluate these quantities since they yield further detailed

quantitative characterization of the network behaviour.

We also consider the more conventional interspike interval histogram (ISIH) [48], averaged

over all network neurons. From the ISIH one can obtain two statistics: the average ISI, τISI,

and the standard deviation of the ISI, σISI. The ratio σISI/τISI is known as the coefficient of

variation (CV). The average firing rate is f = 1/τISI, and the population standard deviation of

f is σf :

σf =
∑

j

f 2
j − f 2, (9)

where fj = 1/τ
j

ISI is the average firing rate of the j th neuron. In addition, we plot rastergrams,

with the action potential of each neuron plotted as a filled circle, with the y-coordinate given

by the neuron index and the x-coordinate by the spiking time.

To analyse the stochastic weak synchronization network dynamics we need to apply a

different method. In figure 1 we illustrate the various quantities that are introduced and

defined below. The population period τn is different from the population averaged ISI, and

to estimate it we proceed as follows. First we determine the firing rate X̂(t) as before in

1 ms bins. In the stochastic weak synchronization state X̂(t) will consist of a number of

approximately equidistant peaks of finite width. We use the position of the first maximum

at nonzero frequency in the Fourier transform, to obtain an estimate T for the period τn. We

calculate the weight or cluster size N i
c = 〈X̂(t)〉, the average position t ic = 〈tX̂(t)〉/N i

c , and

the width σ i
c =

√

〈t2X̂(t)〉/N i
c − (t ic)

2 of the ith peak. The time average 〈·〉 is taken over a

range [−0.35T , 0.35T ] about the estimated position t i−1
c + T of the peak. We calculated the
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0 2000

650 700 750 800

τ
n

i+1

σ
c

i

X(t)

rastergram

−

t
c

i

t
c

i+1

N
c

i

Figure 1. Definition of the parameters characterizing the SWS state. Here we show illustrative

results for the statistical quantities introduced in the methods section using data from an example

of a weakly synchronized state. From top to bottom we plot a rastergram, the corresponding

instantaneous firing rate and its close-up. A cluster in a given cycle i is characterized by the

average spike time t ic , the number of spikes N i
c , and the standard deviation, σ i

c , of spike times.

The instantaneous cycle period τ i+1
n is the difference in consecutive average spike times. As is

explained in the text, the average over all cycles of N i
c , σ i

c , and τ i
n are denoted as Nc , σc , and τn,

respectively.

number of spikes that fall outside this region. If the average number of missed spikes is more

than one per cycle we reject the cluster state. The instantaneous cycle length (the time between

two consecutive cluster firings) is defined as τ i+1
n = t i+1

c − t ic . We determine the average cluster

size Nc = 〈N i
c〉, its CV (Nc) =

√

〈(N i
c)

2〉 − N2
c /Nc, the average cycle length τn = 〈τ i

n〉, its

CV (τn) =
√

〈(τ i
n)

2〉 − τ 2
n /τn, and the average width σc = 〈σ i

c 〉. Here the average 〈·〉 is given

by the sum over all cycles in the run (after discarding a transient).

We characterize the strength of the synchronization using a modified κW and CVW (see

below), where W stands for weak. In the SWS state the ISIH has multiple peaks. The CV

of the ISI receives contributions from the variance within each peak, and also of the variance

between the multiple peaks. We are only interested in the former, and the conventional CV is

thus an overestimate. Instead we use

CVW = σc/τn, (10)

which is related to the average width of one peak in the ISIH. (Note that for a constant

instantaneous firing rate CVW = 1/
√

12 ≈ 0.29.) The coherence κ measures the number

of coincident spikes between two spike trains. Consider two neurons that do not spike at

each cycle, but when they both do, the spikes are coincident (that is in the same bin). If the

probability of spiking in a cycle is p = Nc/N , and both neurons fire statistically independent,

we obtain κ = p in (4). These neurons can be considered synchronous and we want κ = 1.

We therefore normalize κ by p, and denote it as κW to indicate this fact:

κW = κ
N

Nc

. (11)

There is a subtlety in the calculation of the average firing rate. In the deterministic noiseless

case one ISI is enough to determine the average value (after discarding the transient). (Note

that counting the number of spikes in a fixed interval is not an efficient way to determine
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the exact firing rate.) In the presence of noise, however, we need to have, say at least ten

ISIs to accurately determine the ensemble average properties of the random model, where the

randomness comes from the noise. In networks with large current heterogeneities there are

neurons with high and very low firing rates (figure 12). The average ISI for the low firing rate

is less accurate than for the high firing rate neurons in the network. However, it carries equal

weight in the conventional average τISI =
∑

j τ
j

ISI. We have therefore used a weighted average

τISI =
∑

j njτ
j

ISI/
∑

j nj (here nj is the number of intervals over which τ
j

ISI is calculated), and

the approximate identity Nc/τn ≈ Ns/τISI can be used as a check. Ns is the number of active

neurons, defined as the neurons that have more than two ISIs after the transient.

We have also studied the behaviour of a single neuron driven by a simulated network input

with period T . We define the phase of the nth output spike at time tn as φn = tn/T mod 1.

The average 〈·〉 over all spikes is then φ = 〈φn〉, and the standard deviation σφ =
√

〈φ2
n〉 − φ2.

σφ is the single neuron equivalent of CVW . The network input is applied at phase φ = 1
2
.

3. Results

3.1. Non-robustness of strong synchronization

In this section we describe the results of our simulations for a network of N = 100 interneurons,

connected all to all, with either synaptic noise (SN), or current heterogeneities (CH). In figure 2

we plot the coherence parameter κ (defined in (4)) versus the strength of the synaptic noise

D, and versus the standard deviation of the current heterogeneities σI . We find that strong

synchronization is lost for approximately D > 0.10 mV2 ms−1 and σI > 0.1 µA cm−2 (with

the standard set of parameters listed in the methods section). The mechanism by which strong

synchronization is lost, however, is different in the CH case compared with the mechanism

with SN. This difference shows up only if we study the whole state of the network using

cross correlation functions, instead of the average quantities shown in figure 2. Wang and

Buzsaki [20] (in what follows we refer to this reference as WB) have already analysed the

case with current heterogeneity. We have reproduced part of their work, and we will refer

to their corresponding figures. In both CH and SN cases the neuronal firing rate decreases

when the network desynchronizes. We have plotted the time-trace of the synaptic drive s(t)

in figures 2(c) and (d). The phasic part decreases, and the tonic part of s(t) increases with

increasing D and σI . The increased tonic part is responsible for the lower average firing rate.

The firing rate of the CH neurons saturates (when averaged over enough realizations of the

current heterogeneities†), whereas for the SN it increases steadily as a function of D for large

values of D. The single-neuron firing rate increases with D [47], but tonic inhibition saturates

to its highest value in the asynchronous network. The dispersion σf (see the methods section)

with CH is larger than the one in SN (not shown). In SN all neurons have identical intrinsic

properties, and the expectation value for the average frequency of each neuron is the same.

The dispersion σf in this case represents the fluctuations in the average ISI due to the finite

averaging time. With CH the neurons have different intrinsic frequencies, and the dispersion

σf increases with σI (and does not go to zero after a long averaging time; see WB figure 5B). In

figures 3(I) and (II) we compare the correlation functions for the SN and CH cases, respectively.

In (a) we have the strongly synchronous network, in (c) the asynchronous network, and in (b)

a transition state. The difference between SN and CH becomes clear when one considers the

cross correlation functions. With CH the number of pairs that are phase locked drops gradually

(see WB figure 8E). The pairs that are phase locked, are tightly phase locked (figure 3I(b)1,

† This assumes
∫ Iav+σI

√
12

Iav−σI

√
12

f (I) dI ≈ f (Iav).
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Figure 2. Noise and heterogeneity destroy strong synchronization. Coherence parameter κ (dashed

curve, left-hand scale), and average network frequency f (continuous curve, right-hand scale)

versus (a) noise strength D (with σI = 0) and (b) current heterogeneity σI (with D = 0). After a

transient of 1 s, (a) time averages were computed over 3 s, and (b) 2 s. In (b) each point represents

the results of one independent value of the current heterogeneity. In (c), (d) we plot the synaptic

drive s(t), (c) for σI = 0 with D = 0, 0.01, 0.04, and 0.09 from top to bottom; whereas in

(d) D = 0 with σI = 0, 0.01, 0.04, and 0.09 from top to bottom. The curves are offset by multiples

of 1s = 1. We used the standard set of parameters described in the methods section.

4–5), and there is no dispersion in the cross correlations, only a relative phase. Even in the

asynchronous state the autocorrelation function gXi
for a single neuron is sharp, i.e. the neuron

fires regularly with a fixed frequency (figures 3I(c)1 and (c)8). The population average of gXi
,

however, is disordered (figure 3I(c)7), since each of the neurons has a different firing rate. In

the SN neurons case there is already dispersion due to the noise-induced jitter in the spike

time, in the autocorrelation figure 3II(a)1, and in the cross correlations (figures 3II(a)2–5).

The dispersion increases gradually with D. The difference between the CH and SN cases is

also evident in the distribution of κ values for each pair in the network (figure 4, WB figure 8E).

For SN there is a well defined peak, with the average shifting to lower values as D increases,

(figures 4(a)–(c)), whereas for CH there is a broad distribution for small σI (figure 4(d)), a peak

at low values of κ combined with a broad distribution for moderate values of σI (figure 4(e)).

For higher values of σI the network is in an asynchronous regime, and only the peak for low κ

values is present (figure 4(f )). We have compared the ISIH for a network neuron with the ISIH

of an isolated neuron (not shown), and also the values of τISI and σISI (figures 5(a) and (b)).

The CV of the network neuron is higher than the CV of an isolated neuron which in turn is

higher than the CV of an isolated neuron with autosynaptic feedback. The inhibitory coupling

in the network increases the effect of the noise compared with uncoupled neurons: the jitter

in the spike times reduces the phasic component of s(t) (figure 2(c)). This effect does not

take place in a neuron with autosynaptic feedback: the size of the phasic component does not

decrease with D, only the timing deteriorates.
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Figure 3. Noise and heterogeneity abolish strong synchronization in different ways: cross

correlations. (I) Loss of synchrony due to current heterogeneities: (a) σI = 0.02, (b) 0.07,

(c) 0.08, respectively. (II) Loss of synchrony due to synaptic noise: D = 0.01 (a), 0.04 (b),

0.09 (c), respectively. In 1 and 8 we plot the autocorrelation of X1 (spike train of neuron 1); in

2–5 we plot the cross correlation of X1 with X2, . . . , X5, respectively; in 6 we show the cross

correlations between Xi and Xj , averaged over all pairs i, j ; in 7 we plot the autocorrelation of Xi ,

averaged over all neurons, and in 9 the auto correlation of the total spiking rate X; in 10 we show

the rastergrams of the network, i.e. neuron number versus spiking time. The timescale bar, shown

in I(c)7, applies to curves 1–9, (a)–(c) in I and II. The y-axis is in arbitrary units, and the same

scale is used for the curves in 1–6, and 7–9, except for the curves II(a) 7,8 and II(b) 7,8, which are

rescaled by a factor of 10. After a transient of 1 s, the time averages are computed over 2 s (I), and

3 s (II). We used the standard set of parameters described in the methods section.

3.2. Effect of synaptic coupling strength on robustness of strong synchronization

We have also studied the effect of varying the synaptic coupling strength gsyn. For large enough

D the network will be asynchronous. We find that the network frequency in that case decreases

with increasing values of gsyn (figure 6). For an asynchronous network the synaptic drive has

a constant tonic hyperpolarizing conductance, decreasing the firing rate. The stronger the

coupling the larger the decrease. The synchronization measured by the parameter κ displays

a different behaviour. In figure 6(c) we plot the κ versus gsyn curve for one specific value

D = 0.02. We have chosen I for each gsyn such that the firing rate is approximately 39 Hz,

these current values are listed in the caption. It is interesting to note that in this case stronger

coupling does not necessarily mean a higher value of κ . The coherence κ has a local maximum

for gsyn = 0.1, for higher values of gsyn, κ decreases (see WB figure 12B). For gsyn > 0.3,

κ starts increasing again. We have studied the underlying dynamics of this non-monotonous

behaviour. In figures 7(c) and (d) we plot the ISIH for different values of gsyn. For gsyn > 0.2
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Figure 3. (Continued)

one finds more than one peak. In the rastergrams (figures 7(a) and (b)), one can see that the

dynamics corresponds to a population that has a well defined frequency, but individual neurons

sometimes miss, or skip, a period. Despite this small asynchrony when the neuron fires, it does

so in synchrony with the others. As a consequence the rastergrams look much more ordered

compared with the one for gsyn = 0.1 at the same noise strength D = 0.002.

3.3. Larger gsyn leads to robust stochastic weak synchronization

In this section we discuss the robust 40 Hz rhythms found for higher gsyn values. We have

doubled the synaptic decay constant to τsyn = 20. Here we will evaluate the modified CVW

(equation (10)) and κW (equation (11)), characterizing the weak synchronization, as mentioned

in the methods section.

In figure 8 we vary gsyn from 0.05 to 2.5 with a spacing of 0.05. The neuron number is

kept equal to N = 100, and we use I = 2.0, and σI = 0. For D = 0.0 and σI = 0 the

network is in a strongly synchronized state, with the network frequency fn the same as the

single-neuron firing rate f . The frequency is exactly the same as the one for a single neuron

with autosynaptic feedback, as one would expect. This coherent state can be arrived at from

many different random initial conditions.

For weak noise, D = 0.008, the network stays in a strongly synchronized state for

gsyn < 0.25. For higher gsyn skipping starts to occur, the fractional cluster size decreases

from values close to one to values below one-half at gsyn = 1.2. At that point the network
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methods section.
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with autosynaptic feedback (diamonds), isolated neuron without feedback (squares). For all curves

I = 1.0 except for the single neuron without feedback, there I = 0.61. The averaging times are

10 s (network), and 200 s (isolated neuron).

is in a real (albeit stochastic) cluster state, on average the neuron only fires once every two

cycles. We will refer to all states for which certain active neurons do not fire at each cycle

as a SWS network. The network frequency, fn, and the single-neuron firing rate, f , both

decrease with increasing gsyn. When the network settles in the SWS state f starts to differ

considerably from its value at the D = 0 state. The strength of synchronization increases with
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non-monotonously with coupling. (a) Network frequency, f , and

(b) synchronization parameter, κ , plotted versus noise strength D,

for different values of the synaptic coupling and applied current

(gsyn, I ) = (0.02, 0.6955), (0.1, 1.0), (0.3, 1.625), and (0.5, 2.15),

labelled by (1)–(4), respectively. The value of the applied current

is chosen such that the neuron network will fire at f ≈ 39.05 Hz

at D = 0. In (c) we plot κ versus gsyn for D = 0.02 at the

aforementioned current values. Time averages are computed over

10 s after a transient of 1 s.

gsyn, that is, CVW decreases and κW increases. For values gsyn > 2.0, CVW and κW slowly

saturate.

For stronger noise, say D = 0.04 and D = 0.20, the network is asynchronous for low

values of gsyn. We have therefore excluded these points based on the criteria discussed in the

methods section. The network frequency starts out at a higher value, and the neuronal firing

rate at a lower rate compared with the D = 0.008 case. The strength of synchronization, κW

and CVW , is reduced compared with the one for D = 0.008, but still increases with gsyn. Note

that all the neurons in the network still have a nonzero firing rate. We illustrate in figure 9, using

rastergrams and the firing rate, how increasing gsyn for D = 0.2 drives the network from an

asynchronous to a synchronized cluster state. It is thus possible to obtain weakly synchronized

oscillations in a network consisting of 100 neurons in the frequency range between 20 and

40 Hz.

We find that noise is necessary to obtain SWS (figure 10). We have studied SWS in the

presence of weak current heterogeneities, say for σI = 0.02. Without noise (D = 0) the

network is in an strongly synchronized state, and κ displays a maximum as a function of gsyn

(WB figure 12B). One also clearly notices the effect of suppression [21]: for larger gsyn the

inhibition of faster spiking neurons stops the firing of neurons driven by a smaller current.

As a result the total number Ns of active neurons gradually drops (figure 10(f )). For a small

amount of noise, D = 0.008, the situation changes dramatically. A SWS state is obtained,

and all neurons remain active (Ns/N = 1), while κ saturates for gsyn > 0.5, and the value

of κ for gsyn > 0.8 is even higher than without noise. Thus noise may actually improve the

coincidence. Of course noise does increase the width, CVW , of the peaks in the instantaneous

firing rate. The single neuron firing rate decreases significantly compared with that for D = 0,

whereas the network frequency is only weakly affected.
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Figure 7. Stronger synaptic coupling leads to skipping of cycles. Rastergrams comparison,

(a) gsyn = 0.1, I = 1.0, and (b) gsyn = 0.5, I = 2.15, with noise strength D = 0.002. We

also compare the ISIHs for different values of the synaptic coupling gsyn = 0.5 (1), 0.2 (2), and

0.05 (3), and for different values of the noise strength D equal to (c) 0.014, (d) 0.034. The values of

the applied currents are I = 2.15, 1.331, and 0.8145 for (1), (2), and (3), respectively. Timescale

bar is shown in (d)1, the y-scale is arbitrary but the same for all curves in (c), (d). For clarity the

top of (c)1 and (d)1 are cut off. An initial transient of 10 s in (a) and (b) was discarded. After a

transient of 1 s, time averages were taken over 10 s (c), (d).

We have performed numerical simulations for system sizes N = 10, 20, 50, 100, 200, and

1000 (figure 11). We have used the following parameters values: I = 5.0, D = 0.2, gsyn = 1,

τsyn = 20, and σI = 0.1. The network frequency increases with system size, whereas the firing

rate stays approximately constant with a dip around N = 50. The measures for coherence, κW

and CVW , are also only weakly dependent on the system size.

The cycle-to-cycle fluctuations in cluster size vary approximately as
√

N (figure 11(g)).

The strength of the inhibition is determined by the number of neurons that fired in the previous

cluster, and in turn it determines at what time the first neurons become disinhibited. One

therefore expects cluster size fluctuations and cycle length fluctuations to be intimately related.

Indeed, the standard deviation of cycle length varies as 1/
√

N with N the number of neurons

(figure 11(h)). This means that larger networks are better at generating a precise cycle length,

whereas size does not matter as much for the coincidence of spikes measured by κW and CVW .

In each simulation we randomly draw a set of driving currents Ij for each neuron j from a

uniform probability distribution. The results one obtains may critically depend on the particular

realization of driving currents. One expects that for larger systems this is less of a problem.

The population distribution of I is more likely to approach the original ensemble distribution

of currents for a given neuron. Here we have studied the range of values for the measured

quantities (fn, f , and so on) for ten different realizations. We find that for most quantities (for
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Figure 8. Properties of SWS as function of the synaptic coupling strength. We plot (a) network

frequencyfn, (b) single-neuron firing ratef , (c) cluster sizeNc normalized by system sizeN = 100,

(d) κW , (e) coefficient of variation CVW of ISI, and (f ) standard deviation of the network period

τn versus synaptic strength gsyn, for different values of D = 0.008 (dotted curves), D = 0.04

(dot-dashed curves) and D = 0.2 (solid curves). gsyn is varied from 0.05 to 2.5 in increments

of 0.05. For D = 0.04 (D = 0.2) the first 6 (14) points have been removed according to the

criterium given in the methods section. In (b) we have added the firing rate of a single neuron

with autosynaptic feedback (thick solid curve), and the network for D = 0 (open circles). Other

parameters are σI = 0, I = 2.0, τsyn = 20. A 500 ms transient is discarded, and averages are

taken over 2000 ms. To smooth (d)–(f ) we have performed running averages over five points, the

original points are denoted by dots.

these parameter values) the range of values decreases with N , and for N > 500 one realization

will give a result close to the expectation value.

We now vary σI and D for the following fixed parameter set N = 1000, gsyn = 2,

τsyn = 20, and I = 3.5 (figures 12, 13). For D = 0 and σI = 0 the network is strongly

synchronized at 20 Hz. The instantaneous firing rate consists of a sequence of regularly

spaced delta functions (figure 12(e)), the ISIH has a single delta peak at 50 ms (figure 12(b)),

and all neurons spike at the same frequency (figure 12(a)). Increasing D increases the network

frequency, but decreases the single-neuron firing rate (figure 13). The population activity is

still periodic (figure 12(f )), but the peaks have a finite width (as well as the ISIH), and the ISIH

becomes multimodal. This process continues with the ISIH spreading out more and more,

with the CVW increasing, and κW decreasing.

As mentioned before we need some noise to generate an SWS state. Here we use D = 0.2,

while at the same time varying σI . For finite σI there is still a coherent population activity

(figure 12(g)), despite the fact that neurons have different firing rates (figure 12(c)). Increasing

σI will reduce coherence, κW decreases and CVW increases. At the same time both fn and f

increase (figure 13(d)). This is different from the effect of increasing D. Higher σI leads to

suppression, with fast spiking neurons preventing slower ones from firing, and as a result part

of the inhibition disappears, while further increasing the firing rate and its average (calculated
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Figure 11. Most network properties saturate for N > 100. We plot (a) network frequency fn,

(b) single-neuron firing rate f , (c) coefficient of variation CVW of ISI, (d) κW , (e) cluster size Nc

normalized by system size N , (f ) number of active neurons Ns normalized by N , (g) coefficient of

variation of Nc , (h) standard deviation of the network period τn versus system size N (N = 10, 20,

50, 100, 200, 500, 1000). We show results for ten different realizations of the current distribution

(open circles), and their average (solid curves). Other parameters are σI = 0.10, D = 0.2, I = 5.0,

gsyn = 1.0, and τsyn = 20. A 500 ms transient is discarded, and averages are over at least 2000 ms.

from the active neurons). (Note that the suppression here is different from that at D = 0,

the fast spiking neurons still produce a periodic population oscillation.) On the other hand,

noise increases the tonic inhibition for each neuron, and thus leads to a reduced firing rate.

In addition, the progression of the asynchronous state is different. The first peak in the ISIH

becomes broader, and the higher order ones have a reduced prominence (figure 12(d)). For

increasing D the peaks just wash out.

3.4. A single neuron driven by a simulated network input

A neuron in a network of neurons is driven by other neurons by a spike train of IPSPs (with

unitary conductance gsyn/N ). The statistics of the spike trains are given by the instantaneous

firing rate X̂(t), which in turn can be characterized by a period τn, cluster size Nc, and jitter

σc (see the methods section and figure 1). We have investigated the dynamics of a single

neuron driven by a simulated network input (figure 14). We generate spike trains as a Poisson

process from a realistic X̂(t), with parameters τn = 25, N = 100, Nc = 62.5, σc = 0.5

(CVW = 0.02), and inject these into the neuron. The input corresponds to that of a weakly

synchronized network, Nc < N . However, since the inputs are independent, it may also

be interpreted as a strongly synchronized network with a synaptic strength gsynNc/N and

consisting of Nc neurons. The neuron is weakly synchronized to the network’s input when its

average phase φ is close to the phase of the input, 1
2
, and the output jitter σφ is not much larger

than CVW . (Note that σφ averaged over all network neurons would be equal to CVW .) Strong

synchronization requires that all neurons also fire with the same period, that is f = 40 Hz.

In figure 14 we compare the weak coupling case, gsyn = 0.1, to the strong coupling case,
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spiking rates. We plot in (a), (c) the interspike intervals (ISI) of the network neurons sorted from

the lowest to highest value, and (b), (d) the ISIHs. In (a), (c) we used different values of the noise

strength, from top to bottom D = 0.0, 0.04, 0.08, 0.36, and 0.56, with σI = 0. In (c), (d) from

top to bottom σI = 0 (1), 0.173 (2), 0.346 (3), 0.520 (4), and 0.693 (5), with D = 0.2. After a

transient of 500 ms, the time average is computed over 2 s. We plot the instantaneous firing rate as

a function of time for (e) D = 0, σI = 0, (f ) D = 0.56, σI = 0, and (g) D = 0.2, σI = 0.35. The

scale bars are (e) 500 imp s−1, (f ), (g) 50 imp s−1. We used I = 3.5, τsyn = 20, N = 1000, and

gsyn = 2.0.

gsyn = 1.0. In both cases the firing rate of the neuron increases with increasing current drive

(figures 14(c) and (f )). A prominent feature here is the presence of an entrainment step. On an

entrainment step the firing rate is constant for a range of current values, and equal to a fraction

of the driving frequency, n
m

fdrive (the neuron fires n action potentials during m cycles of the

external drive). In this case n = m = 1. For weak coupling the jitter σφ is only small on

the entrainment step itself (figure 14(b)). However, on the step, φ varies with the value of the

current drive (figure 14(a)). The phase φ will only be close to 1
2

for a small current range. This

generic feature of entrainment steps explains why strong synchronization is not robust against

current heterogeneity. We have also studied the effect of a noise current with D = 0.04. The

jitter increases dramatically, σφ > 0.2, even for current values on the D = 0 entrainment step.

In other words, strong synchronization is also not very robust against noise.

We now discuss the strong coupling case. For current values below the entrainment step

there is a large current range where φ is close to 1
2
, and σφ < 0.05. Here one would obtain

weak synchronization in the network case. This state is thus more robust against current

heterogeneity. We note that it is hard to distinguish the D = 0 from the D = 0.04 curves

(figures 14(d)–(f )). The dynamics here is therefore also more robust against noise.
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Figure 13. Variation of SWS properties as a function of noise and as a function of heterogeneity.

We plot in (a), (d) the network frequency fn (solid curve, left-hand scale) and single neuron firing

rate f (dashed curve, right-hand scale); (b), (e) coherence κW (solid curve) and the CVW (dashed

curve); (c), (f ) cluster size Nc and number of active neurons Ns divided by N ; as function of (a)–(c)

noise variance D, and (d)–(f ) current heterogeneity σI . We used the following parameters I = 3.5,

τsyn = 20, gsyn = 0, and N = 1000, for (a)–(c) with σI = 0, and for (d)–(f ) the same parameters

with D = 0.2.

4. Discussion

Previous authors have recognized that strong synchronization is only moderately robust against

neuronal heterogeneity [20, 21]. We have previously shown that the same holds if we include

synaptic noise [22]. The basic premise of synchronization by mutual inhibition is clear, for the

network consists of intrinsically periodically spiking neurons. Their output produces a periodic

synaptic drive, which in turn is fed back into the network. Inhibition thus allows a phase lock at

zero relative phase with this drive. Heterogeneity and noise reduces the phasic, and increases

the tonic part of the synaptic drive, leading to a reduction in synchronization, and eventually

leading to an asynchronous state (figures 2(c) and (d)). The synchronization behaviour of

networks of physiological realistic neurons, however, is by no means fully understood. In

this work we showed that the loss of synchronization proceeds via different mechanisms

in the presence of synaptic noise compared with the presence of current heterogeneity.

This is evident from the cross correlations shown in figures 3 and 4. We also found that

the noise-induced precision loss in the uncoupled neuron is exacerbated by the inhibitory

coupling. All of these could seem obvious based on previous work on heterogeneity [20, 21].

However, its consequences for real-life biological networks had not been fully appreciated

before. Our results, combined with previous results, show that there is a problem with strong

synchronization by mutual inhibition, since it is unlikely to occur in in vitro or in vivo systems.

(There are exceptions, such as for example the pacemaker nucleus in electric fish [49], where

the neurons are coupled via gap junctions.) The aim of this paper was to treat the problem

of how one can obtain robust synchronization in the presence of synaptic noise and neuronal

heterogeneity. Our results are twofold. First, methods to increase the robustness of strong

synchronization have been ineffective. Second, we showed that robust SWS can be obtained

for biophysically realistic parameter values. SWS is consistent with previous experimental

data. In what follows we discuss these two results in more detail.
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Figure 14. Response of single neuron to simulated network input. We plot in (a), (d) the average

phase φ, (b), (e) the phase jitter σφ , and (c), (f ) the firing rate f . The coupling strength in (a)–(c)

is gsyn = 0.1, and in (d)–(f ) 1.0. The noise strengths are D = 0 (solid curves), and D = 0.04

(dot-dashed curves). In (d), (e) the lines represent running averages over five points, the actual

data are denoted by dots. The network input consists of N = 100 neurons of which Nc = 62.5 fire

each cycle, τn = 25, σc = 0.5 (i.e. CVW = 0.02), and the unitary conductance is gsyn/100 (see

the methods section for details). The input phase is defined as φ = 1
2

. A transient of 500 ms was

discarded, and averages were calculated over 5 × 104 ms.

From the results stated above, we believe that strong synchronization is not robust enough.

To make sure that we do not prematurely discard strong synchronization by mutual inhibition

we made an effort to increase its robustness. In this paper we tried two simple methods to

increase robustness of strong synchronization. One was to increase the synaptic coupling

gsyn, since inhibition is responsible for synchronization. It is then quite natural to expect that

increasing the strength of inhibition increases robustness. The fact that this does not happen is

surprising. For current heterogeneity this is in part due to suppression [20, 21]. We have also

studied this effect for synaptic noise in more detail. We found that neurons skip periods for

higher values of gsyn (see figure 7). In other words, the strongly synchronized state becomes

unstable, and a weakly synchronized state emerges. This weakly synchronized state looked

more coherent (figures 7(a) and (b)), and it provided the impetus for our further studies of the

robustness of the SWS states.

Recent experimental work shows that the CV of neurons on an entrainment step is reduced

compared with the CV outside the step [50]. A clear physiological correlate in hippocampus of

this drive, however, is lacking at present time. Since we tried to reject our conjecture, this lack

of physiological realism is not a problem. We did find a moderate increase in robustness with a

periodic drive, that is not as effective as one would have intuited, however (Tiesinga and José,
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unpublished observations). In fact the inhibitory connections reduce the increase in robustness

compared with the increase in the single uncoupled neuron. If we add a subthreshold periodic

drive with noise to a quiescent neuron we obtain weak synchronization. This is known as

stochastic resonance in excitable systems [51]. To summarize: our attempts to significantly

increase robustness of strong synchronization failed. Instead we found weak synchronization,

which turned out to be easier to find in parameter space than strong synchronization.

If one accepts the fact, however, that strong synchronization is not robust against noise and

heterogeneity, and that periodic population oscillations are found in experiments, then one has

to carefully consider the possible relevance of weak synchronization. Weak synchronization

as well as strong synchronization lead to a periodic population discharge, and specifically to

an inhibitory synaptic drive indistinguishable from the one found in pyramidal neurons in [14].

Moreover, the clusters that form in stochastic weak synchronization bear a resemblance to the

neuronal assemblies found in some experiments [52], and that are thought to play a role in

putative binding [53]. The question then is: is SWS more robust, and can it be found for the

gamma-frequency range for biophysically realistic parameters? What is needed is a higher total

synaptic conductance, and noise. The necessary amount of noise is very small, i.e. D > 0.004

is sufficient. The noise prevents the occurrence of suppression (figure 10). In suppression the

faster neurons prevent the slower ones from firing. This reduces the inhibition of the faster ones,

and allows them to fire at different frequencies and at a random relative phases. Suppression is

thus detrimental to synchronization. Noise-induced jitter helps suppressed neurons to escape.

(Note: for strong heterogeneities suppression can also occur at non-zero noise, see figure 13

and the corresponding text. However, there is still a periodic discharge in that case.) A higher

total synaptic conductance is necessary for two reasons. The inhibition generated by a cluster,

i.e. only part of the network, should be strong enough to prevent the other neurons from firing

out of sync. In addition this effective inhibition should be stronger than that necessary one

for the strong synchronization we obtained here. This becomes clear when considering a

single neuron driven by a simulated network input. For strong synchronization one can choose

a current value on the entrainment step (see figure 14). An entrainment step exists for any

value of gsyn. Of course, the current range for which the step occurs, varies. However, weak

synchronization occurs below the entrainment step. For weak coupling, gsyn = 0.1, the output

jitter σφ is too high to allow for a synchronized state. The jitter will only be low enough for

significantly stronger coupling, e.g. gsyn = 1.0 (figure 14(e)).

We obtained SWS for different system sizes (we studied networks from 10 to 1000

neurons). The coincidence properties (κW , and CVW ) did not vary much with size. The

temporal precision of the population oscillation, however, increases approximately as 1/
√

N

(figure 11(h)). Large networks can thus produce precise pacemaker rhythms. In addition, the

statistical quantities in a small networks show more variation with different realizations of the

current drive.

It is of considerable interest to understand why weak synchronization is so much more

robust and prevalent compared with strong synchronization. In strong synchronization one

requires an equal firing rate for each neuron, while weak synchronization requires only close

coincident spikes. By definition, then, weak synchronization is easier to generate. Strong

synchronization is only possible (depending on intrinsic properties) for a small difference

in driving currents. There is a price to pay, for there will be a phase difference between the

firings of each neuron. Pairs with a large phase difference are less stable against the influence of

noise. Strong synchronization can thus only occur if all neurons have roughly the same intrinsic

spiking frequency, or when there is a gap junction coupling between them. In section 3.3 we

found network parameters for which coincidence could be maintained, despite highly variable

and noisy firing rates of the neuronal populations. The allowable levels of σI and D for which



Robust gamma oscillations in networks 21

one still obtains SWS are much higher than the σI < 0.10 and D < 0.10 for which strong

synchronization was obtained by Wang and Buzsáki [20].

Our work, and also a recent study [21], is to a large extent based on the recent contributions

by Wang and Buzsáki [20]. It is therefore important to briefly reiterate, and spell out how our

work extends the work of Wang and Buzsáki, and how it differs from the work of White

et al [21]. Here we have included the effect of synaptic noise, that was not considered

by Wang and Buzsáki. We have shown that for the purposes of our modelling work a

Gaussian white noise current can adequately reproduce experimental ranges of CV [47]. We

found that biophysically realistic amounts of noise do affect the synchronization we have

studied. As we discussed above, the noise effects are also different from those of current

heterogeneity. Another important difference is that previous works [20,21] only studied strong

synchronization. Here we have proposed that stochastic weak synchronization underlies the

synchronized population oscillations in the hippocampus. For this reason our robust 40 Hz

population rhythms were obtained for different values of the coupling parameters gsyn, τsyn,

the driving current I , and the system size N , as compared with previous work [20]. In our

computational work we actually needed a small amount of noise to be able to generate weak

synchronization.

The synchronization properties of large networks may be of some mathematical interest.

Our networks are small, and probably the behaviour can change quantitatively when increasing

the network size significantly. However, in this paper we only addressed the question as to

whether networks of physiologically realistic size and connectivity can robustly synchronize.

Recent experimental work suggests that interneurons contact on the order of 60 other

interneurons [54]. For this reason we only vary our network size between N = 10 and

1000.

In the introduction we mentioned recent in vivo work and the controversies on the

functional relevance and role played by synchronization. Our work obviously does not

contribute to the understanding of the function of synchronization. An important question

is what kind of synchronization can be sustained in biophysically realistic networks. Traub

and co-workers [12–15] looked for physiological correlates of the gamma rhythms using in vitro

experiments and computational modelling. Their results show the crucial role of inhibition,

and have provided much of the impetus for our work. The nervous system produces, for

some unknown reason, periodic population activity using circuitry consisting of noisy and

heterogeneous neurons. Our results establish that it is possible for inhibitory neurons to be the

driving force for synchronization under these conditions. In future work we will investigate

what role these interneurons play in generating gamma-oscillations in full networks consisting

of inhibitory interneurons and excitatory pyramidal cells [55].
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References

[1] Adrian E D 1950 The electrical activity of the mammalian olfactory bulb Electroencephalogr. Clin. Neurophysiol.

2 377–88

[2] Softky W R and Koch C 1993 The highly irregular firing of cortical cells is inconsistent with temporal integration

of random EPSPs J. Neurosci. 13 334–50

[3] Gur M, Beylin A and Snodderly D M 1997 Response variability of neurons in primary visual cortex (V1) of

alert monkeys J. Neurosci. 17 2914–20

[4] Aertsen A and Arndt M 1993 Response synchronization in the visual cortex Curr. Opin. Neurobiol. 3 586–94

[5] Rieke F, Warland D, de Ruyter van Steveninck R R and Bialek W 1997 Spikes: Exploring the Neural Code

(Cambridge, MA: MIT Press)

[6] Softky W R 1995 Simple codes versus efficient codes Curr. Opin. Neurobiol. 5 239–47

[7] Shadlen M N and Newsome W T 1994 Noise, neural codes, and cortical organization Curr. Opin. Neurobiol. 4

569–79

[8] Shadlen M N and Newsome W 1995 Is there signal in the noise (comment)? Curr. Opin. Neurobiol. 5 248–50

[9] Shadlen M N and Newsome W T 1998 The variable discharge of cortical neurons: implications for connectivity,

computation, and information coding J. Neurosci. 18 3870–96

[10] Stopfer M, Bhagavan S, Smith B H and Laurent G 1997 Impaired odor discrimination on desynchronization of

odor-encoding neural assemblies Nature 390 70–4

[11] Prut Y, Vaadia E, Bergman H, Haalman I, Slovin H and Abeles M 1998 Spatiotemporal structure of cortical

activity: properties and behavioural relevance J. Neurophysiol. 79 2857–74

[12] Traub R D, Whittington M A, Colling S B, Buzsaki G and Jeffreys J G R 1996 Analysis of gamma rhythms in

the rat hippocampus in vitro and in vivo J. Physiol. 493 471–84

[13] Whittington M A, Traub R D, Faulkner H J, Jefferys J G R and Chettiar K 1998 Morphine disrupts long-range

synchrony of gamma oscillations in hippocampal slices Proc. Natl Acad. Sci. USA 95 5807–11

[14] Whittington M A, Traub R D and Jeffreys J G R 1995 Synchronized oscillations in interneuron networks driven

by metabotropic glutamate receptor activation Nature 373 612–5

[15] Traub R D, Whittington M A, Stanford I M and Jeffreys J G R 1996 A mechanism for generation of long-range

synchronous fast oscillations in the cortex Nature 383 621–4

[16] Fisahn A, Pike F G, Buhl E H and Paulsen O 1998 Cholinergic induction of network oscillations at 40 Hz in the

hippocampus in vitro Nature 394 186–9

[17] Fellous J-M and Sejnowski T J 2000 Cholinergic induction of oscillations in the hippocampal slice in the slow

(0.5–2 Hz), theta (5–12 Hz) and gamma (35–70 Hz) bands Hippocampus at press

[18] van Vreeswijk C, Abbott L F and Ermentrout G B 1994 When inhibition not excitation synchronizes neural

firing J. Comput. Neurosci. 1 313–22

[19] Wang X-J 1993 Ionic basis for intrinsic 40 Hz neuronal oscillations Neuroreport 5 221–4
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[54] Sik A, Penttonen M, Ylinen A and Buzsáki G 1995 Hippocampal CA1 interneurons: An in vivo intracellular

labelling study J. Neurosci. 15 6651–65
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