
Journal of Machine Learning Research 12 (2011) 3227-3257 Submitted 6/11; Revised 10/11; Published 11/11

Robust Gaussian Process Regression with a Student-t Likelihood

Pasi Jylänki PASI.JYLANKI @AALTO .FI

Department of Biomedical Engineering and Computational Science
Aalto University School of Science
P.O. Box 12200
FI-00076 Aalto
Finland

Jarno Vanhatalo JARNO.VANHATALO @HELSINKI .FI

Department of Environmental Sciences
University of Helsinki
P.O. Box 65
FI-00014 Helsinki
Finland

Aki Vehtari AKI .VEHTARI@AALTO .FI

Department of Biomedical Engineering and Computational Science
Aalto University School of Science
P.O. Box 12200
FI-00076 Aalto
Finland

Editor: Neil Lawrence

Abstract

This paper considers the robust and efficient implementation of Gaussian process regression with
a Student-t observation model, which has a non-log-concave likelihood. The challenge with the
Student-t model is the analytically intractable inference which is why several approximative meth-
ods have been proposed. Expectation propagation (EP) has been found to be a very accurate method
in many empirical studies but the convergence of EP is known to be problematic with models con-
taining non-log-concave site functions. In this paper we illustrate the situations where standard EP
fails to converge and review different modifications and alternative algorithms for improving the
convergence. We demonstrate that convergence problems mayoccur during the type-II maximum
a posteriori (MAP) estimation of the hyperparameters and show that standard EP may not converge
in the MAP values with some difficult data sets. We present a robust implementation which relies
primarily on parallel EP updates and uses a moment-matching-based double-loop algorithm with
adaptively selected step size in difficult cases. The predictive performance of EP is compared with
Laplace, variational Bayes, and Markov chain Monte Carlo approximations.

Keywords: Gaussian process, robust regression, Student-t distribution, approximate inference,
expectation propagation

1. Introduction

In many regression problems observations may include outliers which deviatestrongly from the
other members of the sample. Such outliers may occur, for example, becauseof failures in the
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measurement process or absence of certain relevant explanatory variables in the model. In such
cases, a robust observation model is required.

Robust inference has been studied extensively. De Finetti (1961) described how Bayesian in-
ference on the mean of a random sample, assuming a suitable observation model, naturally leads to
giving less weight to outlying observations. However, in contrast to simple rejection of outliers, the
posterior depends on all data but in the limit, as the separation between the outliers and the rest of
the data increases, the effect of outliers becomes negligible. More theoretical results on this kind of
outlier rejection were presented by Dawid (1973) who gave sufficient conditions on the observation
modelp(y|θ) and the prior distributionp(θ) of an unknown location parameterθ, which ensure that
the posterior expectation of a given functionm(θ) tends to the prior asy→ ∞. He also stated that
the Student-t distribution combined with a normal prior has this property.

A more formal definition of robustness was given by O’Hagan (1979) in terms of an outlier-
prone observation model. The observation model is defined to be outlier-prone of ordern, if
p(θ|y1, ...,yn+1) → p(θ|y1, ...,yn) as yn+1 → ∞. That is, the effect of a single conflicting obser-
vation to the posterior becomes asymptotically negligible as the observation approaches infinity.
O’Hagan (1979) showed that the Student-t distribution is outlier prone of order 1, and that it can
reject up tom outliers if there are at least 2m observations altogether. This contrasts heavily with
the commonly used Gaussian observation model in which each observation influences the posterior
no matter how far it is from the others.

In nonlinear Gaussian process (GP) regression context the outlier rejection is more complicated
and one may consider the posterior distribution of the unknown function values fi = f (xi) locally
near some input locationsxi . Depending on the smoothness properties defined through the prior
on fi , m observations can be rejected locally if there are at least 2m data points nearby. However,
already two conflicting data points can render the posterior distribution multimodal making the
posterior inference challenging (these issues will be illustrated in the upcoming sections).

In this work, we adopt the Student-t observation model for GP regression because of its good
robustness properties which can be altered continuously from a very heavy tailed distribution to the
Gaussian model with the degrees of freedom parameter. This allows the extent of robustness to be
determined from the data through hyperparameter inference. The Student-t observation model was
studied in linear regression by West (1984) and Geweke (1993), and Neal (1997) introduced it for
GP regression. Other robust observation models which have been usedin GP regression include, for
example, mixtures of Gaussians (Kuss, 2006; Stegle et al., 2008), the Laplace distribution (Kuss,
2006), and input dependent observation models (Goldberg et al., 1998; Naish-Guzman and Holden,
2008).

The challenge with the Student-t model is the analytically intractable inference. A common
approach has been to use the scale-mixture representation of the Student-t distribution (Geweke,
1993), which enables Gibbs sampling (Geweke, 1993; Neal, 1997), anda factorizing variational ap-
proximation (fVB) for the posterior inference (Tipping and Lawrence, 2005; Kuss, 2006). Recently
Vanhatalo et al. (2009) compared fVB with the Laplace approximation (see,e.g., Rasmussen and
Williams, 2006) and showed that Laplace’s method provided slightly better predictive performance
with less computational burden. They also showed that fVB tends to underestimate the posterior
uncertainties of the predictions because it assumes the scales and the unknown function values a
posteriori independent. Another variational approach called variational bounds (VB) is available
in the GPML software package (Rasmussen and Nickisch, 2010). The method is based on form-
ing an un-normalized Gaussian lower bound for each non-Gaussian likelihood term independently
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(see Nickisch and Rasmussen, 2008, for details and comparisons in GP classification). Yet an-
other related variational approach is described by Opper and Archambeau (2009) who studied the
Cauchy observation model (Student-t with degrees of freedom 1). This method is similar to the
KL-divergence minimization approach (KL) described by Nickisch and Rasmussen (2008) and the
VB approach can be regarded as a special case of KL. The extensive comparisons by Nickisch and
Rasmussen (2008) in GP classification suggest that VB provides better predictive performance than
the Laplace approximation but worse marginal likelihood estimates than KL or expectation propa-
gation (EP) (Minka, 2001a). According to the comparisons of Nickisch and Rasmussen (2008), EP
is the method of choice since it is much faster than KL, at least in GP classification. The problem
with EP, however, is that the Student-t likelihood is not log-concave which may lead to convergence
problems (Seeger, 2008).

In this paper, we focus on establishing a robust EP implementation for the Student-t observa-
tion model. We illustrate the convergence problems of standard EP with simple one-dimensional
regression examples and discuss how damping, fractional EP updates (or power EP) (Minka, 2004;
Seeger, 2005), and double-loop algorithms (Heskes and Zoeter, 2002) can be used to improve the
convergence. We present a robust implementation which relies primarily on parallel EP updates
(see, e.g., van Gerven et al., 2009) and uses a moment-matching-based double-loop algorithm with
adaptively selected step size to find stationary solutions in difficult cases. We show that the imple-
mentation enables a robust type-II maximum a posteriori (MAP) estimation of thehyperparameters
based on the approximative marginal likelihood. The proposed implementation isgeneral so that it
could be applied also to other models having non-log-concave likelihoods. The predictive perfor-
mance of EP is compared to the Laplace approximation, fVB, VB, and Markovchain Monte Carlo
(MCMC) using one simulated and three real-world data sets.

2. Gaussian Process Regression with the Student-t Observation Model

We will consider a regression problem, with scalar observationsyi = f (xi)+ εi , i = 1, ...,n at in-
put locationsX = {xi}n

i=1, and where the observation errorsε1, ...,εn are zero-mean exchangeable
random variables. The object of inference is the latent functionf (x) : ℜd → ℜ, which is given a
Gaussian process prior

f (x)|θ ∼ GP
(

m(x),k(x,x′|θ)
)

, (1)

wherem(x) andk(x,x′|θ) are the mean and covariance functions of the process controlled by hyper-
parametersθ. For notational simplicity we will assume a zero mean GP. By definition, a Gaussian
process prior implies that any finite subset of latent variables,f = { f (xi)}n

i=1, has a multivariate
Gaussian distribution. In particular, at the observed input locationsX the latent variables are dis-
tributed asp(f|X,θ) = N (f|0,K), whereK is the covariance matrix with entriesK i j = k(xi ,x j |θ).
The covariance function encodes the prior assumptions on the latent function, such as the smooth-
ness and scale of the variation, and can be chosen freely as long as the covariance matrices which it
produces are symmetric and positive semi-definite. An example of a stationary covariance function
is the squared exponential

kse(xi ,x j |θ) = σ2
seexp

(

−
d

∑
k=1

(xi,k−x j,k)
2

2l2
k

)

, (2)
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whereθ = {σ2
se, l1, ..., ld}, σ2

se is a magnitude parameter which scales the overall variation of the un-
known function, andlk is a length-scale parameter which governs how fast the correlation decreases
as the distance increases in the input dimensionk.

The traditional assumption is that givenf the error termsεi are i.i.d. Gaussian:εi ∼N (0,σ2). In
this case, the marginal likelihoodp(y|X,θ,σ2) and the conditional posterior of the latent variables
p(f|D,θ,σ2), whereD = {y,X}, have an analytical solution. This is computationally convenient
since approximate methods are needed only for the inference on the hyperparametersθ andσ2. The
robust Student-t observation model

p(yi | fi ,σ2,ν) =
Γ((ν+1)/2)

Γ(ν/2)
√

νπσ

(

1+
(yi − fi)2

νσ2

)−(ν+1)/2

,

where fi = f (xi), ν is the degrees of freedom andσ the scale parameter (Gelman et al., 2004), is
computationally challenging. The marginal likelihood and the conditional posterior p(f|D,θ,σ2,ν)
are not anymore analytically tractable but require some method for approximate inference.

3. Approximate Inference

In this section, we review the approximate inference methods considered in this paper. First we give
a short description of MCMC and the Laplace approximation, as well as two variational methods,
fVB and VB. Then we give a more detailed description of the EP algorithm andreview ways to
improve the convergence in more difficult problems.

3.1 Markov Chain Monte Carlo

The MCMC approach is based on drawing samples fromp(f,θ,σ2,ν|D) and using these samples to
represent the posterior distribution and to numerically approximate integrals over the latent variables
and the hyperparameters. Instead of implementing a Markov chain sampler directly for the Student-t
model, a more common approach is to use the Gibbs sampling based on the followingscale mixture
representation of the Student-t distribution

yi | fi ,Vi ∼N ( fi ,Vi),

Vi |ν,σ2 ∼ Inv-χ2(ν,σ2), (3)

where each observation has its own Inv-χ2-distributed noise varianceVi (Neal, 1997; Gelman et al.,
2004). Sampling of the hyperparametersθ can be done with any general sampling algorithm, such
as the Slice sampling or the hybrid Monte Carlo (HMC) (see, e.g., Gelman et al., 2004). The
Gibbs sampler on the scale mixture (3) converges often slowly and may get stuck for long times
in small values ofσ2 because of the dependence betweenVi andσ2. This can be avoided by re-
parameterizationVi = α2Ui , whereUi ∼ Inv-χ2(ν,τ2), p(τ2) ∝ 1/τ2, and p(α2) ∝ 1/α2 (Gelman
et al., 2004). This improves mixing of the chains and reduces the autocorrelations but introduces
an implicit prior for the scale parameterσ2 = α2τ2 of the Student-t model. An alternative param-
eterization proposed by Liu and Rubin (1995), whereVi = σ2/γi andγi ∼ Gamma(ν/2,ν/2), also
decouplesσ2 andVi but does not introduce the additional scale parameterτ. It could also lead to
better mixing without the implicit scale prior but in the experiments we used the decomposition of
Gelman et al. (2004) because the results were not sensitive to the choice of prior on σ2.
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3.2 Laplace Approximation (LA)

The Laplace approximation for the conditional posterior of the latent function is constructed from
the second order Taylor expansion of logp(f|D,θ,σ2,ν) around the modêf, which gives a Gaussian
approximation to the conditional posterior

p(f|D,θ,σ2,ν)≈ q(f|D,θ,σ2,ν) =N (f|f̂,ΣLA ),

where f̂ = argmaxf p(f|D,θ,σ2,ν) (Rasmussen and Williams, 2006).Σ−1
LA is the Hessian of the

negative log conditional posterior at the mode, that is,

Σ
−1
LA =−∇∇ logp(f|D,θ,σ2,ν)|f=f̂ = K−1+W, (4)

whereW is a diagonal matrix with entriesW ii = ∇ fi ∇ fi logp(y| fi ,σ2,ν)| fi= f̂i
.

The inference in the hyperparameters is done by approximating the conditional marginal likeli-
hoodp(y|X,θ,σ2,ν) with Laplace’s method and searching for the approximate maximum a poste-
rior estimate for the hyperparameters

{θ̂, σ̂2, ν̂}= argmax
θ,σ2,ν

[

logq(θ,σ2,ν|D)
]

= argmax
θ,σ2,ν

[

logq(y|X,θ,σ2,ν)+ logp(θ,σ2,ν)
]

,

wherep(θ,σ2,ν) is the prior of the hyperparameters. The gradients of the approximate log marginal
likelihood can be solved analytically, which enables the MAP estimation of the hyperparameters
with gradient based optimization methods. Following Williams and Barber (1998) the approxima-
tion scheme is called the Laplace method, but essentially the same approach is named Gaussian
approximation by Rue et al. (2009) in their Integrated nested Laplace approximation (INLA) soft-
ware package for Gaussian Markov random field models (Vanhatalo et al., 2009), (see also Tierney
and Kadane, 1986).

The implementation of the Laplace algorithm for this particular model requires care since the
Student-t likelihood is not log-concave and thusp(f|D,θ,σ2,ν) may be multimodal and some of
theW ii negative. It follows that the standard implementation presented by Rasmussen and Williams
(2006) requires some modifications in determining the modef̂ and the covarianceΣLA which are
discussed in detail by Vanhatalo et al. (2009). Later on Hannes Nickischproposed a slightly dif-
ferent implementation (personal communication) where the stabilized Newton algorithm is used for
finding f̂ instead of the EM algorithm and LU decomposition for determiningΣLA instead of rank-1
Cholesky updates (see also Section 4.1). This alternative approach is used at the moment in the
GPML software package (Rasmussen and Nickisch, 2010).

3.3 Factorizing Variational Approximation (fVB)

The scale-mixture decomposition (3) enables a computationally convenient variational approxima-
tion if the latent valuesf and the residual variance termsV = [V1, ...,Vn] are assumed a posteriori
independent:

q(f,V) = q(f)
n

∏
i=1

q(Vi). (5)

This kind of factorizing variational approximation was introduced by Tippingand Lawrence (2003)
to form a robust observation model for linear models within the relevance vector machine frame-
work. For robust Gaussian process regression with the Student-t model it was applied by Kuss
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(2006) and essentially the same variational approach has also been usedfor approximate inference
on linear models with the automatic relevance determination prior (see, e.g., Tipping and Lawrence,
2005). Assuming the factorizing posterior (5) and minimizing the KL-divergence fromq(f,V) to
the true posteriorp(f,V|D,θ,σ2,ν) results in a Gaussian approximation for the latent values, and
inverse-χ2 (or equivalently inverse gamma) approximations for the residual variancesVi . The param-
eters ofq(f) andq(Vi) can be estimated by maximizing a variational lower bound for the marginal
likelihood p(y|X,θ,σ2,ν) with an expectation maximization (EM) algorithm. In the E-step of the
algorithm the lower bound is maximized with respect toq(f) andq(Vi) given the current point esti-
mate of the hyperparameters and in the M-step a new estimate of the hyperparameters is determined
with fixedq(f) andq(Vi).

The drawback with a factorizing approximation determined by minimizing the reverse KL-
divergence is that it tends to underestimate the posterior uncertainties (see, e.g., Bishop, 2006).
Vanhatalo et al. (2009) compared fVB with the previously described Laplace and MCMC approxi-
mations, and found that fVB provided worse predictive variance estimatescompared to the Laplace
approximation. In addition, the estimation ofν based on maximizing the variational lower bound
was found less robust with fVB.

3.4 Variational Bounds (VB)

This variational bounding method was introduced for binary GP classification by Gibbs and MacKay
(2000) and comparisons to other approximative methods for GP classification were done by Nick-
isch and Rasmussen (2008). The method is based on forming a Gaussian lower bound for each
likelihood term independently:

p(yi | fi)≥ exp(− f 2
i /(2γi)+bi fi −h(γi)/2),

which can be used to construct a lower bound on the marginal likelihood:p(y|X,θ,ν,σ) ≥ ZVB .
With fixed hyperparameters,γi and bi can be determined by maximizingZVB to obtain a Gaus-
sian approximation forp(f|D,θ,ν,σ2) and an approximation for the marginal likelihood. With the
Student-t observation model only the scale parametersγi need to be optimized because the location
parameter is determined by the corresponding observations:bi = yi/γi . Similarly to the Laplace ap-
proximation and EP, MAP-estimation of the hyperparameters can be done by optimizing ZVB with
gradient-based methods. In our experiments we used the implementation available in the GPML-
package (Rasmussen and Nickisch, 2010) augmented with the same hyperprior definitions as with
the other approximative methods.

3.5 Expectation Propagation

The EP algorithm is a general method for approximating integrals over functions that factor into
simple terms (Minka, 2001a). It approximates the conditional posterior with

q(f|D,θ,σ2,ν) =
1

ZEP
p(f|θ)

n

∏
i=1

t̃i( fi |Z̃i , µ̃i , σ̃2
i ) =N (µ,Σ), (6)

whereZEP≈ p(y|X,θ,σ2,ν), and the parameters of the approximate conditional posterior distribu-
tion are given byΣ= (K−1+ Σ̃

−1)−1, µ=ΣΣ̃
−1µ̃, Σ̃= diag[σ̃2

1, ..., σ̃2
n], andµ̃= [µ̃1, ..., µ̃n]

T. In
Equation (6) the likelihood termsp(yi | fi ,σ2,ν) are approximated by un-normalized Gaussian site
functionst̃i( fi |Z̃i , µ̃i , σ̃2

i ) = Z̃iN ( fi |µ̃i , σ̃2
i ).
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The EP algorithm updates the site parametersZ̃i , µ̃i andσ̃2
i and the posterior approximation (6)

sequentially. At each iteration (i), first thei’th site is removed from thei’th marginal posterior to
obtain a cavity distribution

q−i( fi) ∝ q( fi |D,θ,σ2,ν)t̃i( fi)
−1.

Then thei’th site is replaced with the exact likelihood term to form a tilted distribution ˆpi( fi) =
Ẑ−1

i q−i( fi)p(yi | fi) which is a more refined non-Gaussian approximation to the truei’th marginal
distribution. Next the algorithm attempts to match the approximative posterior marginal q( fi) =
q( fi |D,θ,σ2,ν) with p̂i( fi) by finding first a Gaussian ˆqi( fi) satisfying

q̂i( fi) =N ( fi |µ̂i , σ̂2
i ) = argmin

qi

KL (p̂i( fi)||qi( fi)) ,

which is equivalent to matching ˆµi andσ̂2
i with the mean and variance of ˆpi( fi). Then the parameters

of the local approximatioñti are updated so that the moments ofq( fi) match withq̂i( fi):

q( fi |D,θ,σ2,ν) ∝ q−i( fi)t̃i( fi)≡ ẐiN ( fi |µ̂i , σ̂2
i ). (7)

Finally, the parametersµ andΣ of the approximate posterior (6) are updated according to the
changes in sitẽti . These steps are repeated for all the sites at some order until convergence.
Since only the means and variances are needed in the Gaussian moment matching only µ̃i and
σ̃2

i need to be updated during the iterations. The normalization termsZ̃i are required for the
marginal likelihood approximationZEP ≈ p(y|X,θ,σ2,ν) which is computed after convergence
of the algorithm, and they can be determined by integrating overfi in Equation (7) which gives
Z̃i = Ẑi(

∫
q−i( fi)N ( fi |µ̃i , σ̃2

i )d fi)−1.
In the traditional EP algorithm (from now on referred to as sequential EP), the posterior approx-

imation (6) is updated sequentially after each moment matching(7). Recently an alternative parallel
update scheme has been used especially in models with a very large number ofunknowns (see, e.g.,
van Gerven et al., 2009). In parallel EP the site updates are calculated withfixed posterior marginals
µ and diag(Σ) for all t̃i , i = 1, ...,n, in parallel, and the posterior approximation is refreshed only
after all the sites have been updated. Although the theoretical cost for one sweep over the sites is
the same (O(n3)) for both sequential and parallel EP, in practice one re-computation ofΣ using the
Cholesky decomposition is much more efficient thann sequential rank-one updates. In our exper-
iments, the number of sweeps required for convergence was roughly thesame for both schemes in
easier cases where standard EP converges.

The marginal likelihood approximation is given by

logZEP=− 1
2

log|K + Σ̃|− 1
2
µ̃T (K + Σ̃

)−1
µ̃+

n

∑
i=1

logẐi(σ2,ν)+CEP, (8)

whereCEP= −n
2 log(2π)−∑i log

∫
q−i( fi)N ( fi |µ̃i , σ̃2

i )d fi collects terms that are not explicit func-
tions ofθ, σ2 or ν. If the algorithm has converged, that is, ˆpi( fi) is consistent (has the same means
and variances) withq( fi) for all sites,CEP, Σ̃ andµ̃ can be considered constants when differentiat-
ing (8) with respect to the hyperparameters (Seeger, 2005; Opper andWinther, 2005). This enables
efficient MAP estimation with gradient based optimization methods.

There is no guarantee of convergence for either sequential or parallel EP. When the likelihood
terms are log-concave and the approximation is initialized to the prior, the algorithm converges
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fine in many cases (see, e.g., Nickisch and Rasmussen, 2008). However, in case of a non-log-
concave likelihood such as the Student-t likelihood, convergence problems may arise and these will
be discussed in Section 5. The convergence can be improved either by damping the EP updates
(Minka and Lafferty, 2002) or by using a robust but slower double-loop algorithm (Heskes and
Zoeter, 2002). In damping, the site parameters in their natural exponentialforms, τ̃i = σ̃−2

i and
ν̃i = σ̃−2

i µ̃i , are updated to a convex combination of the old and proposed new values,which results
in the following update rules:

∆τ̃i = δ(σ̂−2
i −σ−2

i ) and ∆ν̃i = δ(σ̂−2
i µ̂i −σ−2

i µi), (9)

whereµi andσ2
i are the mean and variance ofq( fi |D,θ,σ2,ν), andδ ∈ (0,1] is a step size parameter

controlling the amount of damping. Damping can be viewed as using a smaller stepsize within a
gradient-based search for saddle points of the same objective function as is used in the double-loop
algorithm (Heskes and Zoeter, 2002).

3.6 Expectation Propagation, the Double-Loop Algorithm

When either sequential or parallel EP does not converge one may still findapproximations satisfying
the moment matching conditions (7) by a double loop algorithm. For example, Heskes and Zoeter
(2002) present simulation results with linear dynamical systems where the double loop algorithm
is able to find useful approximations when damped EP fails to converge. Forthe model under con-
sideration, the fixed points of the EP algorithm correspond to the stationary points of the following
objective function (Minka, 2001b; Opper and Winther, 2005)

min
λs

max
λ−

−
n

∑
i=1

log
∫

p(yi | fi)exp

(

ν−i fi − τ−i
f 2
i

2

)

d fi − log
∫

p(f)
n

∏
i=1

exp

(

ν̃i fi − τ̃i
f 2
i

2

)

df

+
n

∑
i=1

log
∫

exp

(

νsi fi − τsi

f 2
i

2

)

d fi (10)

whereλ− = {ν−i ,τ−i}, λ̃ = {ν̃i , τ̃i}, andλs = {νsi ,τsi} are the natural parameters of the cavity
distributionsq−i( fi), the site approximations̃ti( fi), and approximate marginal distributionsqsi ( fi) =
N (τ−1

si
νsi ,τ−1

si
) respectively. The min-max problem needs to be solved subject to the constraints

ν̃i = νsi − ν−i and τ̃i = τsi − τ−i , which resemble the moment matching conditions in (7). The
objective function in (10) is equal to− logZEP defined in (6) and is also equivalent to the expectation
consistent (EC) free energy approximation presented by Opper and Winther (2005). A unifying view
of the EC and EP approximations as well as the connection to the Bethe free energies is presented
by Heskes et al. (2005).

Equation (10) suggests a double-loop algorithm where the inner loop consist of maximization
with respect toλ− with fixedλs and the outer loop of minimization with respect toλs. The inner
maximization affects only the first two terms and ensures that the marginal momentsof the current
posterior approximationq(f) are equal to the moments of the tilted distributions ˆpi( fi) for fixedλs.
The outer minimization ensures that the momentsqsi ( fi) are equal to marginal moments ofq(f). At
the convergence,q( fi), p̂i( fi), andqsi ( fi) share the same moments up to the second order. Ifp(yi | fi)
are bounded, the objective is bounded from below and consequently there exists stationary points
satisfying these expectation consistency constraints (Minka, 2001b; Opper and Winther, 2005). In
the case of multiple stationary points the solution with the smallest free energy canbe chosen.
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Since the first two terms in (10) are concave functions ofλ− and λ̃ the inner maximization
problem is concave with respect toλ− (or equivalentlyλ̃) after substitution of the constraintsλ̃ =
λsi −λ− (Opper and Winther, 2005). The Hessian of the first term with respect toλ− is well
defined (and negative semi-definite) only if the tilted distributions ˆpi( fi)∝ p(yi | fi)q−i( fi) are proper
probability distributions with finite moments up to the fourth order. Therefore, toensure that the
product ofq−i( fi) and the Student-t site p(yi | fi) has finite moments and that the inner-loop moment
matching remains meaningful, the cavity precisionsτ−i have to be kept positive. Furthermore, since
the cavity distributions can be regarded as estimates for the leave-one-out (LOO) distributions of
the latent values,τ−i = 0 would correspond to a situation whereq( fi |y−i ,X) has infinite variance,
which does not make sense given the Gaussian prior assumption (1). On the other hand,̃τi may
become negative for example when the corresponding observationyi is an outlier (see Section 5).

3.7 Fractional EP Updates

Fractional EP (or power EP, Minka, 2004) is an extension of EP which can be used to reduce the
computational complexity of the algorithm by simplifying the tilted moment evaluations and to im-
prove the robustness of the algorithm when the approximation family is not flexible enough (Minka,
2005) or when the propagation of information is difficult due to vague priorinformation (Seeger,
2008). In fractional EP the cavity distributions are defined asq−i( fi) ∝ q( fi |D,θ,ν,σ2)/t̃i( fi)η

and the tilted distribution as ˆpi( fi) ∝ q−i( fi)p(yi | fi)η for a fraction parameterη ∈ (0,1]. The site
parameters are updated so that the moments ofq−i( fi)t̃i( fi)η ∝ q( fi) match withq−i( fi)p(yi | fi)η.
Otherwise the procedure is similar and standard EP can be recovered by settingη = 1. In fractional
EP the natural parameters of the cavity distribution are given by

τ−i = σ−2
i −ητ̃i and ν−i = σ−2

i µi −ην̃i , (11)

and the site updates (with damping factorδ) by

∆τ̃i = δη−1(σ̂−2
i −σ−2

i ) and ∆ν̃i = δη−1(σ̂−2
i µ̂i −σ−2

i µi). (12)

The fractional update step minqKL(p̂i( fi)||q( fi)) can be viewed as minimization of theα-
divergence withα=η (Minka, 2005). Compared to the KL-divergence, minimizing theα-divergence
with 0 < α < 1 does not forceq( fi) to cover as much of the probability mass of ˆpi( fi) whenever
p̂i( fi)> 0. As a consequence, fractional EP tends to underestimate the variance and normalization
constant ofq−i( fi)p(yi | fi)η, and also the approximate marginal likelihoodZEP. On the other hand,
we also found that minimizing the KL-divergence in standard EP may overestimate the marginal
likelihood with some data sets. In case of multiple modes, the approximation tries to represent the
overall uncertainty in ˆpi( fi) the more exactly the closerα is to 1. In the limitα → 0 the reverse KL-
divergence is obtained which is used in some form, for example, in the fVB and KL approximations
(Nickisch and Rasmussen, 2008). Also the double-loop objective function (10) can be modified
according to the different divergence measure of fractional EP (Cseke and Heskes, 2011; Seeger
and Nickisch, 2011).

Fractional EP has some benefits over standard EP with the non-log-concave Student-t sites.
First, when evaluating the moments ofq−i( fi)p(yi | fi)η, settingη < 1 flattens the likelihood term
which alleviates the possible converge problems related to multimodality. This is related to the ap-
proximating family being too inflexible and the benefits of different divergence measures in these
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JYL ÄNKI , VANHATALO AND VEHTARI

cases are considered by Minka (2005). Second, the fractional updates help to avoid the cavity preci-
sions becoming too small, or even negative. Equation (11) shows that by choosingη < 1, a fraction
(1−η) of the precisioñτi of the i:th site is left in the cavity. This decreases the cavity variances
which in turn makes the tilted moment integrations and the subsequent EP updates(12) more ro-
bust. Problems related to cavity precision becoming too small can be present also with log-concave
sites when the prior information is vague. For example, Seeger (2008) reports that with an under-
determined linear model combined with a log-concave Laplace prior the cavity precisions remain
positive but they may become very small which induces numerical inaccuracies in the analytical
moment evaluations. These inaccuracies may accumulate and even cause convergence problems.
Seeger (2008) reports that fractional updates improve numerical robustness and convergence in
such cases.

4. Robust Implementation of the Parallel EP Algorithm

The sequential EP updates are shown to be stable for models in which the exact site terms (in
our case the likelihood functionsp(yi | fi)) are log-concave (Seeger, 2008). In this case, all site
variances, if initialized to non-negative values, remain non-negative during the updates. It follows
that the variances of the cavity distributionsq−i( fi) are positive and thus also the subsequent moment
evaluations ofq−i( fi)p(yi | fi) are numerically robust. The non-log-concave Student-t likelihood is
problematic because both the conditional posteriorp(f|D,θ,ν,σ) as well as the tilted distributions
p̂i( fi) may become multimodal. Therefore extra care is needed in the implementation and these
issues are discussed in this section.

The double-loop algorithm is a rigorous approach that is guaranteed to converge to a stationary
point of the objective function (10) when the site termsp(yi | fi) are bounded from below. The
downside is that the double-loop algorithm can be much slower than for example parallel EP because
it spends much computational effort during the inner loop iterations, especially in the early stages
whenqsi ( fi) are poor approximations for the true marginals. An obvious improvement would be to
start with damped parallel updates and to continue with the double-loop method ifnecessary. Since
in our experiments parallel EP has proven quite efficient with many easier data sets, we adopt this
approach and propose few modifications to improve the convergence in difficult cases. A parallel
EP initialization and a double-loop backup is also used by Seeger and Nickisch (2011) in their fast
EP algorithm.

Parallel EP can also be interpreted as a variant of the double-loop algorithm where only one
inner-loop optimization step is done by moment matching (7) and each such update is followed by
an outer-loop refinement of the marginal approximationsqsi ( fi). The inner-loop step consists of
evaluating the tilted moments{µ̂i , σ̂2

i |i = 1, ...,n} with qsi ( fi) = q( fi) = N (µi ,Σii ), updating the
sites (9), and updating the posterior (6). The outer-loop step consists ofsettingqsi ( fi) equal to
the new marginal distributionsq( fi). Connections between the message passing updates and the
double-loop methods together with considerations of different search directions for the inner-loop
optimization can be found in the extended version of Heskes and Zoeter (2002). The robustness of
parallel EP can be improved by the following modifications.

1. After each moment matching step check that the objective (10) increases. If the objective does
not increase, decrease the damping coefficientδ until increase is obtained. The downside is
that this requires one additional evaluation of the tilted moments for every site per iteration,
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but if these one-dimensional integrals are implemented efficiently this is a reasonable price
for stability.

2. Before updating the sites (9) check that the new cavity variancesτ−i = τsi − (τ̃i +∆τ̃i) are
positive. If they are negative, choose a smaller damping factorδ so thatτ−i > 0. This com-
putationally cheap precaution ensures that the increase of the objective (10) can be verified
according to modification 1.

3. With modifications 1 and 2 the site parameters can still oscillate (see Section 5 for an illustra-
tion) but according to our experiments the convergence is obtained with all hyperparameters
values eventually. The oscillations can be reduced by updatingqsi ( fi) only after the moments
of p̂i( fi) andq( fi) are consistent for alli = 1, ...,n with some small tolerance, for example
10−4. At each update, check also that the new cavity precisions are positive,and if not, con-
tinue the inner-loop iterations with the previousqsi ( fi) until better moment consistency is
achieved or switch to fractional updates. Actually, this modification corresponds to the max-
imization in (10) and it results in a double-loop algorithm where the inner-loop optimization
is done by moment matching (7). If no parallel initialization is done, often duringthe first
5-10 iterations when the step sizeδ is limited according to modification 2, the consistency
between ˆpi( fi) andq( fi) cannot be achieved. This is an indication ofq(f) being a too inflex-
ible approximation for the tilted distributions with the currentqsi ( fi). An outer-loop update
qsi ( fi) = q( fi) usually helps in these cases.

4. If sufficient increase of the objective is not achieved after an inner-loop update (modification
1), use the gradient information to obtain a better step sizeδ. The gradients of (10) with
respect to the site parametersν̃i and τ̃i can be calculated without additional evaluations of
the objective function for fixedλs. With these gradients, it is possible to determineg(δ), the
gradient of the inner-loop objective function with respect toδ in the current search direction.
For parallel EP the search direction is defined by (9) with fixed site updates∆τ̃i = σ̂−2

i −σ−2
i

and∆ν̃i = σ̂−2
i µ̂i −σ−2

i µi for i = 1, ...,n. In case of a too large step,g(δ) becomes negative.
Then, for example, spline interpolation with derivative constraints at the end points can be
used to approximate the objective as a function ofδ. From this approximation a better estimate
for the step sizeδ can be determined efficiently. In case of a too short step,g(δ) becomes
positive and a better step size can be obtained by extrapolating with constraints based on
approximate second order derivatives. This modification corresponds toan approximative
line search in the concave inner-loop maximization.

In the comparisons of Section 6 we start with 10 damped (δ = 0.8) parallel iterations because
with a sensible hyperparameter initialization this is enough to achieve convergence in most hyper-
parameter optimization steps with the empirical data sets. If no convergence is achieved this parallel
initialization also speeds up the convergence of the subsequent double-loop iterations (see Section
5.3). If after any of the initial parallel updates the posterior covarianceΣ becomes ill-conditioned,
that is, many of thẽτi are too negative, or any of the cavity variances become negative we reject the
new site configuration and proceed with more robust updates using the previously described modifi-
cations. To reduce the computational costs we limited the maximum number of inner loop iterations
(modification 3) to two with two possible additional step size adjustment iterations (modification
4). This may not be enough to suppress all oscillations of the site parametersbut in practice more
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frequent outer loop refinements ofqsi ( fi) were found to require fewer computationally expensive
objective evaluations for convergence.

In some rare cases, for example, when the noise levelσ is very small, the outer-loop update of
qsi ( fi) may result in negative values for some of the cavity variances even thoughthe inner-loop
optimality is satisfied. In practise this means that[Σii ]

−1 is smaller thañτi for somei. This may
be a numerical problem or an indication of a too inflexible approximating family but switching to
fractional updates helps. However, in our experiments, this happened only when the noise level
was set to too small values and with a sensible hyperparameter initialization suchproblems did not
emerge.

4.1 Other Implementation Details

The EP updates require evaluation of momentsmk =
∫

f k
i gi( fi)d fi for k = 0,1,2, where we have

definedgi( fi) = q−i( fi)p(yi | fi)η. With the Student-t likelihood and an arbitraryη ∈ (0,1] numer-
ical integration is required. Instead of the standard Gauss quadrature we used the adaptive Gauss-
Kronrod quadrature described by Shampine (2008) because it can save function evaluations by re-
using the existing nodes during the adaptive interval subdivisions. For further computational savings
all the required moments were calculated simultaneously using the same function evaluations. The
integrandgi( fi) may have one or two modes between the cavity meanµ−i and the observationyi .
In the two-modal case the first mode is nearµ−i and the other nearµ∞ = σ2

∞(σ
−2
−i µ−i +ηiσ−2yi),

whereµ∞ andσ2
∞ = (σ−2

−i +ηiσ−2)−1 correspond to the mean and variance of the limiting Gaussian
tilted distribution asν → ∞. The integration limits were set to min(µ−i − 6σ−i ,µ∞ − 10σ∞) and
max(µ−i +6σ−i ,µ∞ +10σ∞) to cover all the relevant mass around the both possible modes.

Both the hyperparameter estimation and monitoring the convergence of EP requires that the
marginal likelihoodq(y|X,θ,σ2,ν) can be evaluated in a numerically robust manner. Assuming a
fraction parameterη the marginal likelihood is given by

logZEP=
1
η

n

∑
i=1

(

logẐi +
1
2

logτsi τ
−1
−i +

1
2

τ−1
−i ν2

−i −
1
2

τ−1
si

ν2
si

)

− 1
2

log|I +KΣ̃
−1|− 1

2
ν̃Tµ,

whereνsi = ν−i +ην̃i andτsi = τ−i +ητ̃i . The first sum term can be evaluated safely if the cavity
precisionsτ−i and the tilted varianceŝσ2

i remain positive during the EP updates because at conver-
genceτsi = σ̂−2

i .
Evaluation of|I +KΣ̃

−1| andΣ = (K−1+ Σ̃
−1)−1 needs some care because many of the di-

agonal entries of̃Σ−1 = diag[τ̃1, ..., τ̃n] may become negative due to outliers and thus the standard
approach presented by Rasmussen and Williams (2006) is not suitable. Oneoption is to use the
rank one Cholesky updates as described by Vanhatalo et al. (2009) orthe LU decomposition as is
done in the GPML implementation of the Laplace approximation (Rasmussen and Nickisch, 2010).
In our parallel EP implementation we process the positive and negative sites separately. We define
W1 = diag(τ̃1/2

i ) for τ̃i ≥ 0 andW2 = diag(|τ̃i |1/2) for τ̃i < 0, and divideK into corresponding
blocksK11, K22, andK12 = KT

21. We compute the Cholesky decompositions of two symmetric
matrices

L1LT
1 = I +W1K11W1 and L2LT

2 = I −W2(K22−U2UT
2)W2,

whereU2 = K21W1L−T
1 . The required determinant is given by|I +KΣ̃

−1| = |L1|2|L2|2. The
dimension ofL1 is typically much larger than that ofL2 and it is always positive definite.L2 may not
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be positive definite if the site precisions have too small negative values, andtherefore if the second
Cholesky decomposition fails after a parallel EP update we reject the proposed site parameters and
reduce the step size. The posterior covariance can be evaluated asΣ=K −UUT+VVT, whereU=
[K11,K12]

TW1L−T
1 andV = [K21,K22]

TW2L−T
2 −UUT

2W2L−T
2 . The regular observations reduce

the posterior uncertainty throughU and the outliers increase uncertainty throughV.

5. Properties of EP with a Student-t Likelihood

In GP regression the outlier rejection property of the Student-t model depends heavily on the data
and the hyperparameters. If the hyperparameters and the resulting unimodal approximation (6) are
suitable for the data there are usually only a few outliers and there is enoughinformation to han-
dle them given the smoothness assumptions of the GP prior and the regular observations. This
is usually the case during the MAP estimation if the hyperparameters are initializedsensibly. On
the other hand, unsuitable hyperparameters may produce a very large number of outliers and also
considerable uncertainty on whether certain data points are outliers or not.For example, a smallν
combined with a too smallσ and a too large lengthscale (i.e., a too inflexible model) can result into
a very large number of outliers because the model is unable to explain large quantity of the obser-
vations. Unsuitable hyperparameters may not necessarily induce convergence problems for EP if
there exists only one plausible posterior hypothesis capable of handling theoutliers. However, if the
conditional posterior distribution has multiple modes, convergence problems may occur unless suf-
ficient amount of damping is used. In some difficult cases either fractionalupdates or double-loop
iterations may be needed to achieve convergence. In this section we discuss the convergence prop-
erties of EP with the Student-t likelihood, demonstrate the effects of the different EP modifications
described in the sections 3 and 4, and also compare the quality of the EP approximation to the other
methods described in Section 3 with the help of simple regression examples.

An outlying observationyi increases the posterior uncertainty on the unknown function at the
input space regions a priori correlated withxi . The amount of increase depends on how far the
posterior mean estimate of the unknown function value, E( fi |D), is from the observationyi . Some
insight into this behavior is obtained by considering the negative Hessian oflogp(yi | fi ,ν,σ2), that
is, Wi = −∇2

fi logp(yi | fi), as a function offi (compare to the Laplace approximation in Section
3.2). Wi is positive whenyi − σ

√
ν < fi < yi + σ

√
ν, attains its negative minimum whenfi =

yi ±σ
√

3ν and approaches zero as| fi |→∞. Thus, with the Laplace approximation,yi satisfying f̂i −
σ
√

ν < yi < f̂i +σ
√

ν can be interpreted as regular observations because they decrease theposterior
covarianceΣ−1

LA in Equation (4). The rest of the observations increase the posterior uncertainty and
can therefore be interpreted as outliers. Observations that are far from the modef̂i are clear outliers
in the sense that they have very little effect on the posterior uncertainty. Observations that are
close to f̂i ±σ

√
3ν are not clearly outlying because they increase the posterior uncertainty the most.

The most problematic situations arise when the hyperparameters are such that many f̂i are close to
yi ±σ

√
3ν. However, despite the negativeW ii , the covariance matrixΣLA is positive definite if̂f is

a local maximum of the conditional posterior.
EP behaves similarly as well. If there is a disagreement between the cavity distributionq−i( fi) =

N (µ−i ,σ2
−i) and the likelihoodp(yi | fi) but the observation is not a clear outlier, the uncertainty in

the tilted distribution increases towards the observation and the tilted distribution can even become
two-modal. The moment matching (7) results in an increase of the marginal posterior variance,
σ̂2

i > σ2
i , which causes̃τi to decrease (9) and possibly to become negative. Sequential EP usually
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runs smoothly when all the outliers are clear andp(f|D,θ,ν,σ2) has a unique mode. The site
precisions corresponding to the outlying observations may become negative but their absolute values
remain small compared to the site precisions of the regular observations. However, if some of the
negative sites become very small they may notably decrease the approximate marginal precisions
τi = σ−2

i of the a priori dependent sites because of the prior correlations defined byK . It follows that
the uncertainty in the cavity distributions may increase considerably, that is, the cavity precisions,
τ−i = τi − τ̃i , may become very small or negative. This may cause both stability and convergence
problems which will be illustrated in the following sections with the help of simple regression
examples.

5.1 Simple Regression Examples

Figure 1 shows two one-dimensional regression problems in which standard EP may run into prob-
lems. In example 1 (the left subfigures), there are two outliersy1 and y2 providing conflicting
information in a region with no regular observations (1< x < 3). In this example the posterior
mass of the length-scale is concentrated to sufficiently large value so that theGP prior is stiff and
keeps the marginal posteriorp(f|D) (shown in the lower left panel) and the conditional posterior
p(f|D, θ̂, ν̂, σ̂2) at the MAP estimate unimodal. Both sequential and parallel EP converge with the
MAP estimate for the hyperparameters.

The corresponding predictive distribution is visualized in the upper left panel of Figure 1 show-
ing a considerable increase in the posterior uncertainty when 1< x< 3. The lower left panel shows
comparison of the predictive distribution off (x) at x = 2 obtained with the different approxima-
tions described in Section 3. The hyperparameters are estimated separatelyfor each method. The
smooth MCMC estimate of the predictive density of the latent valuef∗ = f (x∗) at input locationx∗
is calculated by integrating analytically overf for each posterior draw of the residual variancesV
and averaging the resulting Gaussian distributionsq( f∗|x∗,V,θ). The MCMC estimate (with inte-
gration over the hyperparameters) is unimodal but shows small side bumps when the latent function
value is close to the observationsy1 andy2. The standard EP estimate covers well the posterior
uncertainty on the latent value but both the Laplace method and fVB underestimate it. At the other
input locations where the uncertainty is small, all methods give very similar estimates.

Even though EP remains stable in example 1 with the MAP estimates of the hyperparameters, it
is not stable with all hyperparameter values. Ifν andσ2 were sufficiently small, so that the likelihood
p(yi | fi) was narrow as a function offi , and the length-scale was small inducing small correlations
between inputs far apart, there would be significant posterior uncertaintyabout the unknownf (x)
when 1< x < 3 and the true conditional posterior would be multimodal. Due to the small prior
covariances of the observationsy1 andy2 with the other data pointsy3, ...,yn, the cavity distributions
q−1( f1) andq−2( f2) would differ strongly from the approximative marginal posterior distributions
q( f1) andq( f2). This difference would lead to a very small (or even negative) cavity precisionsτ−1

andτ−2 during the EP iterations which causes stability problems as will be illustrated in section 5.2.

The second one-dimensional regression example, visualized in the upperright panel of Figure 1,
is otherwise similar with example 1 except that the nonlinearity of the true functionis much stronger
when−5< x< 0, and the observationsy1 andy2 are closer in the input space. The stronger nonlin-
earity requires a much smaller length-scale for a good data fit and the outliersy1 andy2 provide more
conflicting information (and stronger multimodality) due to the larger prior covariance. The lower
right panel shows comparison of the approximative predictive distributions of f (x) whenx = 2.
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Figure 1: The upper row: Two one-dimensional regression examples, where standard EP may fail
to converge with certain hyperparameter values, unless damped sufficiently. The EP ap-
proximations obtained by both the regular updatesη = 1 (EP) and the fractional updates
η = 0.5 (fEP) are visualized. The lower row: Comparison of the approximative predic-
tive distributions of the latent valuef (x) at x= 2. With MCMC all the hyperparameters
are sampled and for all the other approximations (except fVB in example 2, see the text
for explanation) the hyperparameters are fixed to the corresponding MAPestimates. No-
tice that the MCMC estimate of the predictive distribution is unimodal in example 1
and multimodal in example 2. With smaller lengthscale values the conditional posterior
p(f|D,θ,ν,σ2) can be multimodal also in example 1.

The MCMC estimate has two separate modes near the observationsy1 andy2. The Laplace and
fVB approximations are sharply localized at the mode neary1 but the standard EP approximation
(EP1) is very wide trying to preserve the uncertainty about the both modes. Contrary to example
1, also the conditional posteriorq(f|D,θ,ν,σ) is two-modal if the hyperparameters are set to their
MAP-estimates.

5.2 EP Updates with the Student-t Sites

Next we discuss the problems with the standard EP updates with the help of example 1. Figure
2 illustrates a two-dimensional tilted distribution of the latent valuesf1 and f2 related to the ob-
servationsy1 andy2 in example 1. A relatively small lengthscale (0.9) is chosen so that there is
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Figure 2: An illustration of a two-dimensional tilted distribution related to the two problematic
data pointsy1 and y2 in example 1. Compared to the MAP value used in Figure 1,
shorter lengthscale (0.9) is selected so that the true conditional posterior ismultimodal.
Panel (a) visualizes the joint likelihoodp(y1| f1)p(y2| f2) together with the generalized
2-dimensional cavity distributionq( f1, f2|y3, ...,yn) obtained by one round of undamped
sequential EP updates on sitest̃i( fi), for i = 3, ...,n. Panel (b) visualizes the corresponding
two-dimensional tilted distribution ˆpi( f1, f2) ∝ q( f1, f2|y3, ...,yn)p(y1| f1)p(y2| f2). Pan-
els (c) and (d) show the same with only a fractionη= 0.5 of the likelihood terms included
in the tilted distribution, which corresponds to fractional EP updates on thesesites.

quite strong prior correlation betweenf1 and f2. Suppose that all other sites have already been
updated once with undamped sequential EP starting from a zero initialization (τ̃i = 0 andν̃i = 0 for
i = 1, ...,n). Panel (a) visualizes a generalized 2-dimensional cavity distributionq( f1, f2|y3, . . . ,yn)
together with the joint likelihoodp(y1,y2| f1, f2) = p(y2| f2)p(y2| f2), and panel (b) shows the con-
tours of the resulting two dimensional tilted distribution which has two separate modes. If the site
t̃1( f1) is updated next in the sequential manner with no damping,τ̃1 will get a large positive value
and the approximationq( f1, f2) fits tightly around the mode near the observationy1. After this, when
the sitet̃2( f2) is updated, it gets a large negative precision,τ̃2 < 0, since the approximation needs
to be expanded towards the observationy2. It follows that, the marginal precision off1 is updated
to a smaller value thañτ1. Therefore, during the second sweep the cavity precisionτ−1 = σ−2

1 − τ̃1

becomes negative, and site 1 can no longer be updated. If the EP updateswere done in parallel,
both the cavity and the site precisions would be positive after the first posterior update, butq( f1, f2)
would be tightly centered between the modes. After a couple of parallel loopsover all the sites, one
of the problematic sites gets a too small negative precision because the approximation needs to be
expanded to cover all the marginal uncertainty in the tilted distributions which leads to a negative
cavity precision for the other site.

Skipping updates on the sites with negative cavity variances can keep the algorithm numeri-
cally stable (see, for example, Minka and Lafferty, 2002). Also increasing damping reduces∆τ̃i so
that the negative cavity precisions are less likely to emerge. However, these modifications are not
enough to ensure convergence. After a few EP iterations, the marginal posterior distribution of a
problematic site, for instanceq( f1), is centered between the observations (see, for example, Figure
1). At the same time, the respective cavity distribution,q−1( f1), is centered near the other problem-
atic observation,y2. Combining such cavity distribution with the likelihood term,p(y1| f1), gives a
tilted distribution with significant mass around both observations. If the site precisions,τ̃1 andτ̃2,
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are sufficiently large (corresponding to a tight posterior approximation),the variance of the tilted
distribution will be larger than that of the marginal posterior and thus the site precision,τ̃1 will be
decreased. The same happens for the other site. The site precisions aredecreased for a few itera-
tions after which the posterior marginals are so wide that the variances of thetilted distributions are
smaller than the posterior marginal variances. At this point the site precisionsstart again to increase
gradually. This leads to oscillation between small and large site precisions as illustrated in Figure 3.

With a smallerδ the oscillations are slower and with a sufficiently smallδ the amplitude of
the oscillations may gradually decrease leading to convergence, as in the panel (b) of Figure 3.
However, the convergence is not guaranteed since the conditions of theinner-loop maximization
in (10) are not guaranteed to be fulfilled in sequential or parallel EP. Forexample, a sequential EP
update can be considered as a one inner-loop step where only one site is updated, followed by an
outer-loop step which updates all the marginal posteriors asqsi ( fi) = q( fi). Since the update of one
site does not maximize the inner-loop objective, the conditions used to form theupper bound of the
convex part in (10) are not met (Opper and Winther, 2005). Therefore, the outer-loop objective is
not guaranteed to decrease and the new approximate marginal posteriorsmay be worse than in the
previous iteration.

Example 2 is more difficult in the sense that convergence requires damping at least withδ = 0.5.
With sequential EP the convergence depends also on the update order ofthe sites andδ < 0.3 is
needed for convergence with all permutations. Furthermore, if the double-loop approach of Section
4 is considered, the best step size, that minimizes the inner-loop objective in the current search
direction, can change (and also increase) considerably between subsequent inner-loop iterations
which makes the continuous step-size adjustments very useful.

Also fractional updates improve the stability of EP. Figures 2(c)–(d) illustrate the same approx-
imate tilted distribution as Figures 2(a)–(b) but now only a fractionη = 0.5 of the likelihood terms
are included. This corresponds to the first round fractional updates on these sites with zero initial-
ization. Because of the flattened likelihoodp(y1| f1)η p(y2| f2)η the 2-dimensional tilted distribution
is still two-modal but less sharply peaked compared to standard EP on the left. It follows that also
the one-dimensional tilted distributions have smaller variances and the consecutive fractional up-
dates (12) of the sites 1 and 2 do not widen the marginal variancesσ2

1 andσ2
2 as much. This helps to

keep the cavity precisions positive by increasing the approximate marginal posterior precisions and
reducing the possible negative increments on the site precisionsτ̃1 andτ̃2. This is possible because
the different divergence measure allows for a more localized approximation at 1< x< 3. In addi-
tion, the property that a fraction(1−η) of the site precisions is left in the cavity distributions helps
to keep the cavity precisions positive during the algorithm. Figure 1 shows a comparison of standard
(EP) and fractional EP (fEP,η = 0.5) with the MAP estimates of the hyperparameters. In example
1 both methods produce very similar predictive distribution because the posterior is unimodal. In
example 2 (the lower right panel) fractional EP gives a much smaller predictive uncertainty esti-
mate whenx = 2 than standard EP which in turn puts more false posterior mass in the tails when
compared to MCMC.

The practical guidelines presented in Section 4 bring additional stability in the above described
problematic situations. Modification 1 helps to avoid immediate problems from a too large step
size by ensuring that each parallel EP update increases the inner-loop objective defined by (10).
Modification 2 reduces the step sizeδ so that the cavity variances, defined asτ−i = τsi − τ̃i with
fixed λs = {νsi ,τsi}, will remain positive during the inner-loop updates. Modification 3 reduces
the oscillations by ensuring that the inner-loop maximization is done within some tolerance, that is,
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Figure 3: A convergence comparison between sequential and parallel EP as well as the double-
loop algorithm in example 2 (the right panel in Figure 1). For each method boththe
objective− logZEP and the site precisions̃τi related to data pointsy1, ...,y4 (see Figure 1)
are shown. See Section 5.3 for explanation.

the moments of ˆpi( fi) andq( fi) are consistent for fixedλs before updatingqsi ( fi). For example, a
poor choice ofδ may require many iterations for achieving inner-loop consistency in the examples
1 or 2, and a too largeδ can easily lead to a decrease of the inner-loop objective function or even
negative cavity precisions for the sites 1 or 2. Finally, if an unsuccessful update is made due to an
unsuitableδ, modification 4 enables automatic determination of a better step size by making use of
the concavity of the inner-loop maximization as well as the tilted and marginal momentsevaluated
at the previous steps with the sameλs.

5.3 Convergence Comparisons

Figure 3 illustrates the convergence properties of the different EP algorithms using the data from
example 2. The hyperparameters were set to:ν = 2, σ = 0.1, σse= 3 and lk = 0.88. Panel (a)
shows the negative marginal likelihood approximation during the first 100 sweeps with sequential
EP and the damping set toδ = 0.8. The panel below shows the site precisions corresponding to
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the observationsy1, ...,y4 marked in the upper right panel of Figure 1. With this damping level the
site parameters keep oscillating with no convergence and there are also certain parameter values
between iterations 50-60 where the marginal likelihood is not defined because of negative cavity
precisions (the updates for such sites are skipped until the next iteration). Wheneverτ̃1 and τ̃2

become very small they also inflict large decrease in the site precisions of thenearby sites 3 and 4.
These fluctuations affect other sites the more the larger their prior correlations are (defined by the
GP prior) with the sites 1 and 2. Panel (b) shows the same graphs with largeramount of damping
δ = 0.5. Now the oscillations gradually decrease as more iterations are done but convergence is
still very slow. Panel (c) shows the corresponding data with parallel EP and the same amount
of damping. The algorithm does not converge and the oscillations are much larger compared to
sequential EP. Also the marginal likelihood is not defined at many iterations because of negative
cavity precisions.

Panel (d) in Figure 3 illustrates the convergence of the double-loop algorithm with no parallel
initialization. There are no oscillations present because the increase of theobjective (10) is verified
at every iteration and sufficient inner-loop optimality is obtained before proceeding with the outer-
loop minimization. However, compared to sequential or parallel EP, the convergence is very slow
and it takes over 100 iterations to get the site parameters to the level that sequential EP attains
with only a couple of iterations. Panel (e) shows that much faster convergence can be obtained
by initializing with 5 parallel iterations and then switching to the double-loop algorithm. There is
still some slow drift visible in the site parameters after 20 iterations but changesin the marginal
likelihood estimate are very small. Small changes in the site parameters indicate inconsistencies in
the moment matching conditions (7) and consequently also the gradient of the marginal likelihood
estimate may be slightly inaccurate if the implicit derivatives of logZEP with respect toλ− and
λs are assumed zero in the gradient evaluations (Opper and Winther, 2005). Panel (f) shows that
parallel EP converges without damping if fractional updates withη = 0.5 are applied. Because of
the different divergence measure the posterior approximation is more localized (see Figure 1) and
also the cavity distributions are closer to the respective marginal distributions. It follows that the
site precisions related toy1 andy2 are larger and no damping is required to keep the updates stable.

5.4 The Marginal Likelihood Approximation

Figure 4 shows contours of the approximate log marginal likelihood with respect to log(lk) and
log(σ2

se) in the examples of Figure 1. The contours in the first column are obtained by applying
first sequential EP withδ = 0.8 and using the double-loop algorithm if it does not converge. The
hyperparameter values for which the sequential algorithm does not converge are marked with black
dots and the maximum marginal likelihood estimate of the hyperparameters is markedwith (×).
The second column shows the corresponding results obtained with fractional EP (η = 0.5) and
the corresponding hyperparameter estimates are marked with (◦). For comparison, log marginal
likelihood estimates determined with the annealed importance sampling (AIS) (Neal,2001) are
shown in the third column.

In the both examples there is an area of problematic EP updates with smaller length-scales which
corresponds to the previously discussed ambiguity about the unknown function near data pointsy1

andy2 in Figure 1. There is also a second area of problematic updates at larger length-scale values
in example 2. With larger length-scales the model is too stiff and it is unable to explain large pro-
portion of the data points in the strongly nonlinear region (−4 < x < −1) and consequently there
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Example 1, EP, η=1, MAE=0.24
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Example 2, EP, η=1.0, MAE=0.24
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Example 2,  EP, η=0.5, MAE=0.18
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Example 2, AIS

Figure 4: The approximate log marginal likelihood logp(y|X,θ,ν,σ2) as a function of the log-
length-scale log(l2

k) and the log-magnitude log(σ2
se) in the examples shown in Figure 1.

The marginal likelihood approximation is visualized with both standard EP (η = 1) and
fractional EP (η = 0.5). The mode of the hyperparameters is marked with× and◦ for
standard and fractional EP respectively. For comparison the marginal isalso approxi-
mated by annealed importance sampling (AIS). For both standard and fractional EP the
mean absolute errors (MAE) over the region with respect to the AIS estimate are also
shown. The noise parameterσ2 and the degrees of freedomν are fixed to the MAP-
estimates obtained withη = 1. The hyperparameter values in which sequential EP with
δ = 0.8 does not converge are marked with black dots in the two leftmost panels.

exist no unique unimodal solution. It is clear that with the first artificial example the optimization of
the hyperparameters with sequential EP can fail if not initialized carefully ornot enough damping
is used. In the second example the sequential EP approximation corresponding to the MAP values
cannot even be evaluated because the mode lies in the area of nonconvergent hyperparameter val-
ues. In visual comparison with AIS both standard and fractional EP givevery similar and accurate
approximations in the first example (the contours are drawn at the same levelsfor each method).
In the second example there are more visible differences: standard EP tends to overestimate the
marginal likelihood due to the larger posterior uncertainties (see Figure 1) whereas fractional EP
underestimates it slightly. This is congruent with the properties of the different divergence measure
used in the moment matching. The difference between the hyperparameter values at the modes be-
tween standard and fractional EP is otherwise less than 5% except that in the second exampleσ and
ν are ca. 30% larger with fractional EP.
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Figure 5: A comparison of the approximative predictive means E( f∗|x∗,D), standard deviations
std( f∗|x∗,D), and predictive densitiesq(y∗|x∗,D) provided by the different approxima-
tion methods using 10-fold cross-validation on the Boston housing data. Thehyperpa-
rameters are fixed to the posterior means obtained by a MCMC run on all data.Each dot
corresponds to one data point for which the x-coordinate is the MCMC estimate and the
y-coordinate the corresponding approximative value obtained with LA, EP, fVB, or VB.

6. Experiments

Four data sets are used to compare the approximative methods: 1) An artificial regression example
by Friedman (1991) involving a nonlinear function of 5 inputs. To create a feature selection problem,
five irrelevant input variables were added to the data. We generated 10 data sets with 100 training
points and 10 randomly selected outliers as described by Kuss (2006). 2)Boston housing data with
506 observations for which the task is to predict the median house prices in the Boston metropolitan
area with 13 input variables (see, e.g., Kuss, 2006). 3) Data that involves the prediction of concrete
quality based on 27 input variables for 215 experiments (Vehtari and Lampinen, 2002). 4) Data for
which the task is to predict the compressive strength of concrete based on8 input variables for 1030
observations (Yeh, 1998).

6.1 Predictive Comparisons with Fixed Hyperparameters

First we compare the quality of the approximate predictive distributionsq( f∗|x∗,D,θ,ν,σ2), where
x∗ is the prediction location andf∗ = f (x∗), between all the approximative methods. We ran a full
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MCMC on the housing data to determine the posterior mean estimates for the hyperparameters.
Then the hyperparameters were fixed to these values and a 10-fold cross-validation was done with
all the approximations including MCMC. The predictive means and standard deviations of the latent
values as well as the predictive densities of the test observations obtainedwith Laplace’s method
(LA), EP, fVB, and VB are plotted against the MCMC estimate in Figure 5. Excluding MCMC, the
predictive densities were approximated by numerically integrating over the Gaussian approximation
of f∗ in q(y∗|x∗,D,θ,ν,σ2) =

∫
p(y∗| f∗,ν,σ2)q( f∗|x∗,D,θ,ν,σ2)d f∗. EP gives the most accurate

estimates for all the predictive statistics, and clear differences to MCMC canonly be seen in the
predictive densities ofy∗ which indicates that accurate mean and variance estimates of the latent
value may not always be enough when deriving other predictive statistics. This contrast somewhat to
the corresponding results in GP classification where Gaussian approximation was shown to be very
accurate in estimating predictive probabilities (Nickisch and Rasmussen, 2008). Both fVB and VB
approximate the mean well but are overconfident in the sense that they underestimate the standard
deviations, overestimate the larger predictive densities, and underestimate the smaller predictive
densities. LA gives similar mean estimates with the VB approximations, but approximates the
standard deviations slightly better especially with larger values. Put together, all methods provide
decent estimates with fixed hyperparameters but larger performance differences are possible with
other hyperparameter values (depending on the non-Gaussianity of the true conditional posterior)
and especially when the hyperparameters are optimized.

6.2 Predictive Comparisons with Estimation of the Hyperparameters

In this section we compare the predictive performance of LA, EP, fVB, VB, and MCMC with esti-
mation of the hyperparameters. The predictive performance was measured with the mean absolute
error (MAE) and the mean log predictive density (MLPD). These were evaluated for the Friedman
data using a test set of 1000 latent variables for each of the 10 simulated data sets. A 10-fold
cross validation was used for the Boston housing and concrete quality datawhereas a 2-fold cross-
validation was used for the compressive strength data because of the large number of observations.
To assess the significance of the differences between the model performances, 95% credible inter-
vals of the MLPD measures were approximated by Bayesian bootstrap as described by Vehtari and
Lampinen (2002). Gaussian observation model (GA) is selected as a baseline model for compar-
isons. With GA, LA, EP, and VB the hyperparameters were estimated by optimizing the marginal
posterior densities whereas with MCMC all parameters were sampled. The fVB approach was
implemented following Kuss (2006) where the hyperparameters are adaptedin the M-step of the
EM-algorithm. The variational lower bound associated with the M-step was augmented with the
same hyperpriors that were used with the other methods.

Since the MAP inference on the degrees of freedom parameterν proved challenging due to
possible identifiability issues, the LA, EP, fVB, and VB approximations are tested both withν fixed
to 4 (LA1, EP1, fVB1, VB1) and optimized together with the other hyperparameters (LA2, EP2,
fVB2, VB2). ν = 4 was chosen as a robust default alternative to the normal distribution which
allows for outliers but still has finite variance compared to the extremely wide-tailed alternatives
with ν ≤ 2. With EP we also tested a simple approach (from now on EP3) to approximate the
integration over the posterior uncertainty ofν. We selected 15 valuesν j from the interval[1.5,20]
linearly in the log-log scale and ran the optimization of all the other hyperparameters withν fixed
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to these values. The conditional posterior of the latent values was approximated as

p( f∗|x∗,D)≈ ∑
j

w jq( f∗|x∗,D,θ j ,σ2
j ,ν j),

where{θ j ,σ2
j} = argmaxθ,σ2 q(θ,σ2|D,ν j) andw j = q(θ j ,σ2

j ,ν j |D)/
(

∑k q(θk,σ2
k,νk|D)

)

. This
can be viewed as a crude approximation of the integration overν wherep(θ,σ2|ν,D) is assumed to
be very narrowly distributed around the mode. This approximation requiresoptimization ofθ and
σ2 with all the preselected values ofν and thereforeθ andσ2 were initialized to the previous mode
to speed up the computations.

The squared exponential covariance (2) was used for all models. Uniform priors were assumed
for θ andσ2 on log-scale and forν on log-log-scale. The input and target variables were scaled to
zero mean and unit variances.ν was initialized to 4,σ to 0.5 and the magnitudeσ2

se to 1. The opti-
mization was done with different random initializations for the length-scalesl1, ..., ld and the result
with the highest posterior marginal densityq(θ,ν,σ2|D) was chosen. The MCMC inference on the
latent values was done with both Gibbs sampling based on the scale-mixture model (3) and direct
application of the scaled HMC as described by Vanhatalo and Vehtari (2007). The sampling of the
hyperparameters was tested with both slice sampling and HMC. The scale-mixture Gibbs sampling
(SM) combined with the slice sampling of the hyperparameters resulted in the best mixing of the
chains and gave the best predictive performance which is why only thoseresults are reported. The
convergence and quality of the MCMC runs was checked by both visual inspections as well as by
calculating the potential scale reduction factors, the effective number of independent samples, and
the autocorrelation times (Gelman et al., 2004; Geyer, 1992). Based on the convergence diagnos-
tics, burn-in periods were excluded from the beginning of the chains andthe remaining draws were
thinned to form the final MCMC estimates.

Figures 6(a), (c), (e) and (g) show the MLPD values together with their 95% credible intervals
for all the methods in the four data sets. To illustrate the differences betweenthe approximations
more clearly figures 6(b), (d), (f) and (h) show the pairwise comparisons of the log posterior predic-
tive densities to SM. The mean values of the pairwise differences together with their 95% credible
intervals are visualized. The Student-t model with the SM implementation is significantly better
than the Gaussian model with a probability above 95% in all data sets. SM also performs signifi-
cantly better than all the other approximations on the Friedman and compressive strength data, and
on the housing data only EP1 is not significantly worse. The differences are considerably smaller
in the concrete quality data on which EP1 actually performs better than SM. Onepossible explana-
tion for this is a wrong assumption on the noise model (evidence for a covariate dependent noise
was found in other experiments). Another possibility is the experimental design used in the data
collection; a large proportion of the observations can be classified basedon one of the input vari-
ables with a very small length scale which is why averaging over this parametermay lead to worse
performance.

Additional pairwise comparisons not shown in Figure 6 reveal that either EP1 or EP2 is signifi-
cantly better than LA, VB, and fVB in all data sets except the compressive strength data for which
significant difference is not found when compared to LA1. If the better performing method for
estimatingν is selected in either LA, fVB, or VB, LA is better than fVB and VB on the Friedman
data and the compressive strength data. No significant differences were found between fVB or VB
in pairwise comparisons.
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Figure 6: Left column: The mean log posterior predictive density (MLPD) and its 95% central
credible interval. The Gaussian observation model (GA) is shown for reference. The
Student-t model is inferred with LA, EP, fVB, VB, and scale-mixture based Gibbs sam-
pling (SM). Number 1 after a method means thatν is fixed, number 2 that it is optimized,
and number 3 stands for the simple approximative numerical integration overν. Right
column: Pairwise comparisons of the log posterior predictive densities with respect to
SM. The mean together with its 95% central credible interval are shown. Values greater
than zero indicate that a method is better than SM.

The optimization ofν proved challenging and sensitive to the initialization of the hyperparam-
eters. The most difficult was fVB for whichν often drifted slowly towards infinity. This may be
due to our implementation that was made following Kuss (2006) or more likely to the EMstyle
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GA LA1 LA2 EP1 EP2 EP3 fVB1 fVB2 VB1 VB2 SM
mean 0.07 1.0 0.8 0.8 7.0 13 15 8.9 1.6 1.8 280
max 0.09 1.0 1.2 1.1 16 26 39 22 3.3 3.8 440
fixed 0.1 1.0 5.5 2.4 1.9 –

Table 1: Two upper rows: The relative CPU times required for the hyperparameter inference. The
times are scaled to yield 1 for LA1 separately for each of the four data sets.Both the
relative mean (mean) as well as the maximum (max) over the data sets are reported. The
third row: The average relative CPU times over the four data sets with the hyperparameters
fixed to 28 preselected configurations.

optimization of the hyperparameters. With LA, EP, and VB the integration overf is redone in the
inner-loop for all objective evaluations in the hyperparameter optimization, whereas with fVB the
optimization is pursued with fixed approximationq(f|D,θ,ν,σ2). The EP-based marginal likeli-
hood estimate was the most robust with regards to the hyperparameter initialization. According to
pairwise comparisons LA2 was significantly worse than LA1 only in the compressive strength data.
EP2 was significantly better than EP1 in the housing and compressive strength data but significantly
worse with the housing data. With fVB and VB optimization ofν gave significantly better per-
formance only with the simulated Friedman data, and significant decrease wasobserved with VB2
in the housing and compressive strength data. In pairwise comparisons, the crude numerical inte-
gration overν (EP3) was significantly better than EP1 and EP2 with the housing and compressive
strength data, but never significantly worse. These results give evidence that the EP approximation
is more reliable in the hyperparameter inference because of the more accurate marginal likelihood
estimates which is in line with the results in GP classification (Nickisch and Rasmussen, 2008).

In terms of MAE the Student-t model was significantly better than GA in all data sets besides the
concrete quality data, in which only EP1 gave better results. If the best performing hyperparameter
inference scheme is selected for each method, EP is significantly better than the others on all the data
sets excluding the compressive strength data in which the differences were not significant. EP was
better than SM on the Friedman and concrete quality data but no other significant differences were
found in comparisons with SM. LA was significantly better than fVB and VB on the compressive
strength data whereas on the simulated Friedman data VB was better than LA andfVB.

Table 1 summarizes the total CPU times required for the posterior inference including the hy-
perparameter optimization and the predictions. The CPU times are scaled to giveone for LA1 and
both the mean and maximum over the four data sets are reported. The runningtimes of the fastest
Student-t approximations are roughly 10-fold compared to the baseline method GA. EP1, where
ν = 4, is surprisingly fast compared to LA but it gets much slower with the optimizationof ν (EP2).
This is explained by the increasing number of double-loop iterations required to achieve conver-
gence with the larger number of difficult posterior distributions asν gets smaller values. EP3 is
clearly more demanding compared to EP1 or EP2 because the optimization has to be repeated with
every preselected value ofν. fVB is quite slow compared to LA or VB because of the slowly pro-
gressing EM-based hyperparameter adaptation. The running times of LA and VB are quite similar
with ν both fixed and optimized. The running times are suggestive since they depend much on the
implementations, convergence thresholds and the hyperparameter initializations. Table 1 shows also
the average relative running times over the four data sets (excluding MCMC) with the hyperparam-
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eters fixed to 28 different configurations (fixed). The configurationswere created by first including
the MCMC mean for each data set and then generating all combinations of three clearly different
values ofν, σ, andσse around the MCMC mean with randomly selected lengthscales. The average
relative running time is higher with EP because many difficult hyperparameterconfigurations were
created.

7. Discussion

Much research has been done on EP and it has been found very accurate and computationally ef-
ficient in many practical applications. Although non-log-concave site functions may be problem-
atic for EP it has been used and found effective for many potentially difficult models such as the
Gaussian mixture likelihoods (Kuss, 2006; Stegle et al., 2008) as well as ”spike and slab” priors
(Herńandez-Lobato et al., 2008). Modifications such as the damping and fractional updates as well
as alternative double-loop algorithms have been proposed to improve the stability in difficult cases
but the practical implementation issues have not been discussed that much. Inthis work we have
given another demonstration of the good predictive performance of EP ina challenging model but
also analyzed the convergence problems and the EP improvements from a practical point of view.
In addition, we have presented practical guidelines for a robust parallel EP implementation that can
be applied for other non-log-concave likelihoods as well.

We have described the properties of the EP algorithm and its modifications with the Student-t
observation model, but the same key challenges can also be considered withrespect to a general
observation model with a non-log-concave likelihood. With a Gaussian prioron f and a log-concave
likelihood, each site approximation increases the posterior precision and allthe site precisions re-
main positive throughout the EP iterations as was shown by Seeger (2008). With a non-log-concave
likelihood, however, negative site precisions may occur. The negative site precisions are natural
and well justified because a non-log-concave likelihood can generate local increases of the posterior
uncertainty which cannot otherwise be modeled with the Gaussian approximation. For example, as
discussed here and by Vanhatalo et al. (2009), with the Student-t model the negative site precisions
correspond to the outlying observations. Through the prior covariances of f, the negative site preci-
sions decrease also the approximate marginal posterior precisions of the other site approximations
with positive site precisions. This may become a problem during the sequentialor the parallel EP
iterations if some of the approximate marginal posterior precisions decreaseclose to the level of
the corresponding site precisions. In such cases the respective cavityprecisions become very small
which can both induce numerical instabilities in the tilted moment integrations (Seeger, 2008) and
make the respective sites very sensitive to the subsequent EP updates. If the EP updates are not con-
strained some of the cavity precisions may also become negative in which casethe tilted moments
and the following updates are no longer well defined.

Both of the well-known EP modifications help to alleviate the above described problem. Damp-
ing takes more conservative update steps so that the negative site precision increments are less likely
to decrease the other cavity precisions too much. Fractional EP keeps the cavity precisions larger
by leaving a fraction of the site precisions in the cavity but leads to differentapproximation which
may underestimate the posterior uncertainties. The double-loop algorithm is computationally de-
manding but admissible steps in the concave inner-loop maximization ensure thatthe cavity and the
tilted distributions remain well defined at all times. And most importantly, the inner-loop maximiza-
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tion forms an upper-bound which provably converges to a stationary solution satisfying the moment
matching conditions (7).

The general modifications described in Section 4 bring additional stability with reasonable com-
putational cost. Modification 1 is a principled way to avoid immediate problems arising from a too
large step size. It ensures that each parallel EP update results in an increase of the inner-loop
objective, and it is computationally cheap with likelihoods for which the tilted momentscan be de-
termined analytically (e.g., finite Gaussian mixtures). Modification 2 is also computationally cheap
and it ensures that the cavity distributions (defined with fixedλs) remain well defined at all times.
If the current step size does not result in a sufficient decrease of theenergy the extra tilted moment
evaluations required in modification 1 can be used in determining a better step length based on the
gradient information according to modification 4 with little additional computational cost.

Modification 3 comes with a considerable computational cost if a small toleranceis required for
the inner-loop iterations. However, in our experiments with the Student-t model, a relaxed double-
loop scheme with a maximum of two inner-loop iterations and two step-size adjustments steps (only
if required) were sufficient to achieve convergence. In practice this requires at most three additional
matrix inversions per iteration compared to the regular parallel EP but unfortunately also the number
of outer loop iterations tended to increase with the more difficult data sets and hyperparameter
values. In these cases the main challenge was the difficult inner-loop momentmatching which can
be partly related to a too inflexible approximating family and partly to a suboptimal search direction
defined by parallel EP. Considering the better convergence propertiesof sequential EP (see Section
5.3), for instance a scheme, where the inner-loop optimization of the more difficult sites (whose
cavity distributions differ notably from the respective marginals) was donesequentially and the
remaining sites were optimized with parallel updates, could lead to better overallperformance.

The nonlinear GP regression combined with the Student-t model makes the inference problem
challenging because the potential multimodality of the conditional posterior depends on the hyper-
parameter values. As we have demonstrated by examples, standard EP may not converge with the
MAP estimates of the hyperparameters. Therefore, in practical applications, one cannot simply
discard all problematic hyperparameter values. Instead some estimate of the marginal likelihood is
required also in the more difficult cases. In our examples these situations were related to two modes
in the conditional posterior (caused by two outliers) quite far away from each other which requires
a very large local increase of the marginal variances from the unimodal posterior approximation.
(It should also be noted that moderately damped sequential EP worked finewith many other mul-
timodal posterior distributions.) The globally unimodal assumption is not the bestin such cases
although the true underlying function is unimodal, but we think that it is importantto get some
useful posterior approximation. Whether one prefers the possible falsecertainty provided by the
Laplace or VB approximations, or the possible false uncertainty of EP, is a matter of taste but we
prefer the latter one.

It is also important that the inference procedure gives some clue of the potential inadequacy
of the approximating family so that more elaborate models can be considered. In addition to the
examination of the posterior approximation, the need for double-loop iterations with the MAP hy-
perparameter estimates may be one indication of an unsuitable model. One can also compare the
cavity distributions, which can be regarded as the LOO estimates of the latent values, with the re-
spective marginal approximations. If for certain sites most of the LOO information comes from
the corresponding site approximations there is reason to suspect that the approximation is not suit-
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able. Our EP implementation enables a robust way of forming such approximations and in case of
problems it also enables automatic switching to fractional updates.

The presented EP approach for approximative inference with GP models is implemented in the
freely available GPstuff software package (http://www.lce.hut.fi/research/mm/gpstuff/).
The software also allows experimenting with other non-log-concave likelihoods by implementing
the necessary tilted moment integrations in a separate likelihood function.
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