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Abstract

This paper considers the robust and efficient implemematfdGaussian process regression with
a Student- observation model, which has a non-log-concave likelihodlde challenge with the
Studentt model is the analytically intractable inference which ispgleveral approximative meth-
ods have been proposed. Expectation propagation (EP) bagdund to be a very accurate method
in many empirical studies but the convergence of EP is knaretproblematic with models con-
taining non-log-concave site functions. In this paper Wwesttate the situations where standard EP
fails to converge and review different modifications anemative algorithms for improving the
convergence. We demonstrate that convergence problemscoay during the type-1l maximum
a posteriori (MAP) estimation of the hyperparameters amsvdhat standard EP may not converge
in the MAP values with some difficult data sets. We presentasbimplementation which relies
primarily on parallel EP updates and uses a moment-matdtasgd double-loop algorithm with
adaptively selected step size in difficult cases. The ptiediperformance of EP is compared with
Laplace, variational Bayes, and Markov chain Monte Carjoragpimations.

Keywords: Gaussian process, robust regression, Studdigtribution, approximate inference,
expectation propagation

1. Introduction

In many regression problems observations may include outliers which dewategly from the
other members of the sample. Such outliers may occur, for example, bewfaizgleires in the
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measurement process or absence of certain relevant explanatialylesin the model. In such
cases, a robust observation model is required.

Robust inference has been studied extensively. De Finetti (196&)iloked how Bayesian in-
ference on the mean of a random sample, assuming a suitable observatEinmatdally leads to
giving less weight to outlying observations. However, in contrast to singgetion of outliers, the
posterior depends on all data but in the limit, as the separation between thesautliethe rest of
the data increases, the effect of outliers becomes negligible. More ticabresults on this kind of
outlier rejection were presented by Dawid (1973) who gave sufficiamditions on the observation
modelp(y|6) and the prior distributiom(8) of an unknown location paramet@rwhich ensure that
the posterior expectation of a given function®) tends to the prior ag — «. He also stated that
the Student-distribution combined with a normal prior has this property.

A more formal definition of robustness was given by O’Hagan (1979)rimgeof an outlier-
prone observation model. The observation model is defined to be outtiee-mf ordern, if
P(Oly1,---,Ynr1) — P(Oly1,...,¥n) @Syn+1 — . That is, the effect of a single conflicting obser-
vation to the posterior becomes asymptotically negligible as the observatiooaapps infinity.
O’Hagan (1979) showed that the Studemlistribution is outlier prone of order 1, and that it can
reject up tom outliers if there are at leastr2observations altogether. This contrasts heavily with
the commonly used Gaussian observation model in which each observatimmo#b the posterior
no matter how far it is from the others.

In nonlinear Gaussian process (GP) regression context the outlietiogjes more complicated
and one may consider the posterior distribution of the unknown functiores#lu= f(x;) locally
near some input locations. Depending on the smoothness properties defined through the prior
on f;, m observations can be rejected locally if there are at leasti@a points nearby. However,
already two conflicting data points can render the posterior distribution multinmoaking the
posterior inference challenging (these issues will be illustrated in the upga@aations).

In this work, we adopt the StudehbBbservation model for GP regression because of its good
robustness properties which can be altered continuously from a vavy kaled distribution to the
Gaussian model with the degrees of freedom parameter. This allows tim ektebustness to be
determined from the data through hyperparameter inference. The Stunleservation model was
studied in linear regression by West (1984) and Geweke (1993), antl(l997) introduced it for
GP regression. Other robust observation models which have beemuSBdegression include, for
example, mixtures of Gaussians (Kuss, 2006; Stegle et al., 2008), theckagistribution (Kuss,
2006), and input dependent observation models (Goldberg et al.; 18&h-Guzman and Holden,
2008).

The challenge with the Studetimodel is the analytically intractable inference. A common
approach has been to use the scale-mixture representation of the Stdastribution (Geweke,
1993), which enables Gibbs sampling (Geweke, 1993; Neal, 19973 fawdorizing variational ap-
proximation (fVB) for the posterior inference (Tipping and Lawrend@92, Kuss, 2006). Recently
Vanhatalo et al. (2009) compared fVB with the Laplace approximation é&sge,Rasmussen and
Williams, 2006) and showed that Laplace’s method provided slightly bettdigbinee performance
with less computational burden. They also showed that fVB tends to wsitheate the posterior
uncertainties of the predictions because it assumes the scales and togvmiriinction values a
posteriori independent. Another variational approach called varidtimnands (VB) is available
in the GPML software package (Rasmussen and Nickisch, 2010). Thednistbbased on form-
ing an un-normalized Gaussian lower bound for each non-Gaussian digdlierm independently
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(see Nickisch and Rasmussen, 2008, for details and comparisons in &#Hicdion). Yet an-
other related variational approach is described by Opper and Arclzan{Be09) who studied the
Cauchy observation model (Studéntith degrees of freedom 1). This method is similar to the
KL-divergence minimization approach (KL) described by Nickisch andrResen (2008) and the
VB approach can be regarded as a special case of KL. The exdarmiwarisons by Nickisch and
Rasmussen (2008) in GP classification suggest that VB provides bedtkctpre performance than
the Laplace approximation but worse marginal likelihood estimates than KLparcgation propa-
gation (EP) (Minka, 2001a). According to the comparisons of NickischRasmussen (2008), EP
is the method of choice since it is much faster than KL, at least in GP classificdtiee problem
with EP, however, is that the Studeritkelihood is not log-concave which may lead to convergence
problems (Seeger, 2008).

In this paper, we focus on establishing a robust EP implementation for thertuobserva-
tion model. We illustrate the convergence problems of standard EP with simpidimeasional
regression examples and discuss how damping, fractional EP updapesv@r EP) (Minka, 2004;
Seeger, 2005), and double-loop algorithms (Heskes and Zoeter) @@92e used to improve the
convergence. We present a robust implementation which relies primariharaiigd EP updates
(see, e.g., van Gerven et al., 2009) and uses a moment-matching-babéstidop algorithm with
adaptively selected step size to find stationary solutions in difficult casesh@div that the imple-
mentation enables a robust type-1l maximum a posteriori (MAP) estimation diyiherparameters
based on the approximative marginal likelihood. The proposed implementatienésal so that it
could be applied also to other models having non-log-concave likelihodus piiedictive perfor-
mance of EP is compared to the Laplace approximation, fVB, VB, and Markain Monte Carlo
(MCMC) using one simulated and three real-world data sets.

2. Gaussian Process Regression with the Studenh®bservation Model

We will consider a regression problem, with scalar observatypss f (xi) +€;,i = 1,...,n at in-
put locationsX = {x;}!_,, and where the observation errass...,e, are zero-mean exchangeable
random variables. The object of inference is the latent function : 09 — O, which is given a
Gaussian process prior

f(x)|6 ~ GP (Mm(x),k(x,x'|0)), (1)

wherem(x) andk(x,x’|0) are the mean and covariance functions of the process controlled by hype
parameter®. For notational simplicity we will assume a zero mean GP. By definition, a Gaussia
process prior implies that any finite subset of latent variatiles{ f(x;)}{';, has a multivariate
Gaussian distribution. In particular, at the observed input locatiotise latent variables are dis-
tributed asp(f|X,8) = A((f|0,K), whereK is the covariance matrix with entriés; = K(xi,x;|8).

The covariance function encodes the prior assumptions on the latetibfurguch as the smooth-
ness and scale of the variation, and can be chosen freely as long asdhi@icce matrices which it
produces are symmetric and positive semi-definite. An example of a statianamjace function

is the squared exponential

d

kse(Xi, Xj[0) = ogeexp<— Z WXJK)Z) ) (2

2
k=1 2Ik
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whered = {02, 11,..., 14}, 0% is @ magnitude parameter which scales the overall variation of the un-
known function, andi is a length-scale parameter which governs how fast the correlatioredesre
as the distance increases in the input dimenkion

The traditional assumption is that givethe error terms; are i.i.d. Gaussiarg; ~ A((0,02). In
this case, the marginal likelihogay|X, 8,0?) and the conditional posterior of the latent variables
p(f|D,8,0%), whereD = {y, X}, have an analytical solution. This is computationally convenient
since approximate methods are needed only for the inference on the@aga®eterd ando?. The
robust Student-observation model

F((v+1)/2 . f)2 ~(vtD/2
Pyl fr.0%v) = LW EL/Z) () B ,
r(v/2)\/vro VO
wheref; = f(x;), v is the degrees of freedom aodthe scale parameter (Gelman et al., 2004), is
computationally challenging. The marginal likelihood and the conditional goste(f| D, 6,32,v)
are not anymore analytically tractable but require some method for appraxinfarence.

3. Approximate Inference

In this section, we review the approximate inference methods consideresd pafier. First we give
a short description of MCMC and the Laplace approximation, as well as anational methods,
fVB and VB. Then we give a more detailed description of the EP algorithmremiéw ways to
improve the convergence in more difficult problems.

3.1 Markov Chain Monte Carlo

The MCMC approach is based on drawing samples fpgfrB, 2, v| D) and using these samples to
represent the posterior distribution and to numerically approximate integeithe latent variables
and the hyperparameters. Instead of implementing a Markov chain samplahydior the Student-
model, a more common approach is to use the Gibbs sampling based on the foloalmgixture
representation of the Studendistribution

il fi, Vi ~ A(i, M),
Vi ‘V,O’Z ~ |nV-X2(V,O'2), (3)

where each observation has its own kRedistributed noise variandé (Neal, 1997; Gelman et al.,
2004). Sampling of the hyperparamet8rsan be done with any general sampling algorithm, such
as the Slice sampling or the hybrid Monte Carlo (HMC) (see, e.g., Gelman et08#).2 The
Gibbs sampler on the scale mixture (3) converges often slowly and may gktfetuong times
in small values ob? because of the dependence betwéeando?. This can be avoided by re-
parameterizatio¥;, = a?U;, whereU; ~ Inv-x3(v,12), p(t?) 0 1/12, and p(a?) O 1/a? (Gelman
et al., 2004). This improves mixing of the chains and reduces the auttat@mmns but introduces
an implicit prior for the scale parametef = a?1? of the Student-model. An alternative param-
eterization proposed by Liu and Rubin (1995), whére- 02/y; andy; ~ Gammav/2,v/2), also
decoupless? andV; but does not introduce the additional scale parametér could also lead to
better mixing without the implicit scale prior but in the experiments we used thengsasition of
Gelman et al. (2004) because the results were not sensitive to the chpieron o2.
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3.2 Laplace Approximation (LA)

The Laplace approximation for the conditional posterior of the latent fumesi@onstructed from
the second order Taylor expansion of [u@| D, 8, a2, v) around the modg which gives a Gaussian
approximation to the conditional posterior

p(f|@,9,0’2,V) ~ q<f|@,e,0'2,V) - N(f’fa 2LA)y

wheref = argmaxp(f|D,6,02,v) (Rasmussen and Williams, 2006¥, 4 is the Hessian of the
negative log conditional posterior at the mode, that is,

YA = —00logp(f|D,0,0% V)]s =K1+ W, (4)

whereW is a diagonal matrix with entried/;i = O, 0y, log p(y| fi,02,v)| fimfe

The inference in the hyperparameters is done by approximating the coatlitianginal likeli-
hood p(y|X,8,02,v) with Laplace’s method and searching for the approximate maximum a poste-
rior estimate for the hyperparameters

{6,82,0} = argmax{logq(8, 02, v|D)] = argmaxlogq(y|X,8,0%,v) +logp(8,0%,v)] ,
0,02,v

6,02,v

wherep(8,02,v) is the prior of the hyperparameters. The gradients of the approximate |ggalar
likelihood can be solved analytically, which enables the MAP estimation of therpgpameters
with gradient based optimization methods. Following Williams and Barber (1988 phroxima-
tion scheme is called the Laplace method, but essentially the same approaateis Gaussian
approximation by Rue et al. (2009) in their Integrated nested Laplacexipmation (INLA) soft-
ware package for Gaussian Markov random field models (Vanhatalg 2089), (see also Tierney
and Kadane, 1986).

The implementation of the Laplace algorithm for this particular model requiressiace the
Studentt likelihood is not log-concave and thyf|D,8,02,v) may be multimodal and some of
theW;; negative. It follows that the standard implementation presented by Rasmargs#Villiams
(2006) requires some modifications in determining the nfoaled the covariancE,  which are
discussed in detail by Vanhatalo et al. (2009). Later on Hannes Nickisgiosed a slightly dif-
ferent implementation (personal communication) where the stabilized Newtorithig is used for
findingf instead of the EM algorithm and LU decomposition for determirliig instead of rank-1
Cholesky updates (see also Section 4.1). This alternative approackdiauthe moment in the
GPML software package (Rasmussen and Nickisch, 2010).

3.3 Factorizing Variational Approximation (fVB)

The scale-mixture decomposition (3) enables a computationally convenrétiomal approxima-
tion if the latent value$ and the residual variance terids= [V, ...,V,)] are assumed a posteriori
independent:

alf.v) = () [ o). ©)

This kind of factorizing variational approximation was introduced by Tipgind Lawrence (2003)
to form a robust observation model for linear models within the relevanc®eachine frame-
work. For robust Gaussian process regression with the Stadentel it was applied by Kuss
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(2006) and essentially the same variational approach has also beefouapdroximate inference

on linear models with the automatic relevance determination prior (see, e.g.,§g gprLawrence,
2005). Assuming the factorizing posterior (5) and minimizing the KL-divecgefromq(f,V) to

the true posteriop(f,V|D,0,02,v) results in a Gaussian approximation for the latent values, and
inversex? (or equivalently inverse gammay) approximations for the residual vasadhcehe param-
eters ofq(f) andq(V;) can be estimated by maximizing a variational lower bound for the marginal
likelihood p(y|X,8,02,v) with an expectation maximization (EM) algorithm. In the E-step of the
algorithm the lower bound is maximized with respecgté) andq(V;) given the current point esti-
mate of the hyperparameters and in the M-step a new estimate of the hypeefemsais determined
with fixed q(f) andq(V).

The drawback with a factorizing approximation determined by minimizing the sevit -
divergence is that it tends to underestimate the posterior uncertaintiese(geeBishop, 2006).
Vanhatalo et al. (2009) compared fVB with the previously described cepad MCMC approxi-
mations, and found that fVB provided worse predictive variance estincatapared to the Laplace
approximation. In addition, the estimationwbased on maximizing the variational lower bound
was found less robust with fVB.

3.4 Variational Bounds (VB)

This variational bounding method was introduced for binary GP classifichtiéibbs and MacKay
(2000) and comparisons to other approximative methods for GP classifieegi® done by Nick-
isch and Rasmussen (2008). The method is based on forming a Gausséarbtwnd for each
likelihood term independently:

P(yil fi) = exp(—f2/(2y1) +bifi —h(y)/2),

which can be used to construct a lower bound on the marginal likelihpodX,0,v,0) > Zyg.
With fixed hyperparametersy; andb; can be determined by maximizirgys to obtain a Gaus-
sian approximation fop(f| D, 8,v,0?) and an approximation for the marginal likelihood. With the
Studentt observation model only the scale parametgrgeed to be optimized because the location
parameter is determined by the corresponding observatprsy; /yi. Similarly to the Laplace ap-
proximation and EP, MAP-estimation of the hyperparameters can be dongibyzing Zyg with
gradient-based methods. In our experiments we used the implementation laviailtde GPML-
package (Rasmussen and Nickisch, 2010) augmented with the samerlorpaefinitions as with
the other approximative methods.

3.5 Expectation Propagation

The EP algorithm is a general method for approximating integrals over funsctiwmt factor into
simple terms (Minka, 2001a). It approximates the conditional posterior with

1 N 5 o
q(f| D) 9, 027\)) = Zi p(f|e) I_ltl ( fi |ZI , i, olz) = N(FH 2)7 (6)
EP =
whereZep ~ p(y|X,8,02,v), and the parameters of the approximate conditional posterior distribu-
tion are given by® = (K1 + 311,y =2¥-14, 3 = diagd?, ..., 62, andyi = [fu, ..., ] - In
Equation (6) the likelihood termp(y;|fi,02,v) are approximated by un-normalized Gaussian site

functionsti (i|Z, i, 62) = ZA((fi|{, 5?).
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The EP algorithm updates the site parameferf; and&? and the posterior approximation (6)
sequentially. At each iteration)( first thei’th site is removed from th&th marginal posterior to
obtain a cavity distribution

q_i(f) Oa(fi|D,8,0%v)(f)~L.

Then thei'th site is replaced with the exact likelihood term to form a tilted distributp(f; | =
Z7Yq_i(f)p(yi|fi) which is a more refined non-Gaussian approximation to theittuenarginal
distribution. Next the algorithm attempts to match the approximative posterior rabggifi) =
q(fi|D,8,02,v) with §i(f;) by finding first a Gaussiag (T;) satisfying

Gi(fi) = A(fi|y, 67) :argqminKL (Bi(fllai(fi)),

which is equivalent to matching andé? with the mean and variance pf( ;). Then the parameters
of the local approximatiof) are updated so that the momentgi6f;) match withgj( fi):

q(fi|D,6,0%,v) Dai(f)fi(fi) = ZA(filu, 67). (7)

Finally, the parameterg and 3 of the approximate posterior (6) are updated according to the
changes in sitdj. These steps are repeated for all the sites at some order until camverge
Since only the means and variances are needed in the Gaussian moment gnadifi and

G2 need to be updated during the iterations. The normalization t&nase required for the
marginal likelihood approximatioZep =~ p(y|X,8,02,v) which is computed after convergence
of the algorithm, and they can be determined by integrating éver Equation (7) which gives

Z, = Z(f a-i(fi)A(filf, 62)d fi) 2.

In the traditional EP algorithm (from now on referred to as sequentigltB®posterior approx-
imation (6) is updated sequentially after each moment matdffindrecently an alternative parallel
update scheme has been used especially in models with a very large numblenoivns (see, e.g.,
van Gerven et al., 2009). In parallel EP the site updates are calculatefikedtiposterior marginals
p and diagX) for all §i, i = 1,...,n, in parallel, and the posterior approximation is refreshed only
after all the sites have been updated. Although the theoretical costémsveeep over the sites is
the same Q(n%)) for both sequential and parallel EP, in practice one re-computatidhusfing the
Cholesky decomposition is much more efficient tmesequential rank-one updates. In our exper-
iments, the number of sweeps required for convergence was rougtgaiine for both schemes in
easier cases where standard EP converges.

The marginal likelihood approximation is given by

1 ~ 1, ~_1. A A
logZep = — 5 log|K +2!—§uT (K+3) 1N+_Zl|092i(027\))+CEP; (8)
=

whereCgp = —g log(2m) — 5 log [ g-i(fi) AL(fi ]ﬂi,éiz)d fi collects terms that are not explicit func-
tions of@, a2 or v. If the algorithm has converged, that j8( f;) is consistent (has the same means
and variances) with( f;) for all sites,Cep, 3 and 1 can be considered constants when differentiat-
ing (8) with respect to the hyperparameters (Seeger, 2005; Opp&Viatiter, 2005). This enables
efficient MAP estimation with gradient based optimization methods.

There is no guarantee of convergence for either sequential or p&BIl®/hen the likelihood
terms are log-concave and the approximation is initialized to the prior, the algoctmverges
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fine in many cases (see, e.g., Nickisch and Rasmussen, 2008). Hpimeease of a non-log-
concave likelihood such as the Studéfikelihood, convergence problems may arise and these will
be discussed in Section 5. The convergence can be improved eithempndathe EP updates
(Minka and Lafferty, 2002) or by using a robust but slower doubtglalgorithm (Heskes and
Zoeter, 2002). In damping, the site parameters in their natural expontmtias, T; = 6,2 and

Vi = 6(2&, are updated to a convex combination of the old and proposed new vahieh, results

in the following update rules:

A% =8(6; 2~ 07 %) and AY; =8(6; s —oj ), 9)

wherep; ando? are the mean and variancedtffi| D, 0,02,v), andd € (0, 1] is a step size parameter
controlling the amount of damping. Damping can be viewed as using a smallesiztepithin a
gradient-based search for saddle points of the same objective funstisnised in the double-loop
algorithm (Heskes and Zoeter, 2002).

3.6 Expectation Propagation, the Double-Loop Algorithm

When either sequential or parallel EP does not converge one may staidprdximations satisfying
the moment matching conditions (7) by a double loop algorithm. For examplegblaski Zoeter
(2002) present simulation results with linear dynamical systems where thxedoop algorithm
is able to find useful approximations when damped EP fails to convergeh&aonodel under con-
sideration, the fixed points of the EP algorithm correspond to the stationarisf the following
objective function (Minka, 2001b; Opper and Winther, 2005)

. n £2 U
rg\lsnn;\ax_izllog/p(yi‘fi)eXp<Vi fi —Ti2'> dfi— Iog/p(f) iﬂexp(w fi —Tié> df

n f_2
+ 5 log / exp(v fi—1 '>df- (10)
I; Sl S 2 I

whereA_ = {v_i,T_i}, A = {U;, %}, and\s = {vs,T5} are the natural parameters of the cavity
distributionsg_i( f;), the site approximatiorig f;), and approximate marginal distributiogs( f;) =

N (15'vs,151) respectively. The min-max problem needs to be solved subject to the aiatstr
Vi =Vvg —V_j andT; = 15 — T_j, which resemble the moment matching conditions in (7). The
objective function in (10) is equal te logZgp defined in (6) and is also equivalent to the expectation
consistent (EC) free energy approximation presented by Opper anldai{@005). A unifying view

of the EC and EP approximations as well as the connection to the Bethe &mgesris presented
by Heskes et al. (2005).

Equation (10) suggests a double-loop algorithm where the inner loofistofisnaximization
with respect to\ _ with fixed Ag and the outer loop of minimization with respectXg. The inner
maximization affects only the first two terms and ensures that the marginal moofdnéscurrent
posterior approximatiog(f) are equal to the moments of the tilted distributiquf;) for fixed As.

The outer minimization ensures that the momegts;) are equal to marginal momentsaf). At
the convergencey(f;), pi(fi), andgs (fi) share the same moments up to the second ordptyilffi)
are bounded, the objective is bounded from below and consequenttydkists stationary points
satisfying these expectation consistency constraints (Minka, 2001ker@pp Winther, 2005). In
the case of multiple stationary points the solution with the smallest free enerdpeadrosen.
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Since the first two terms in (10) are concave functions\ofand X the inner maximization
problem is concave with respectia (or equivalentIyS\) after substitution of the constraims=
As — A_ (Opper and Winther, 2005). The Hessian of the first term with respeat tis well
defined (and negative semi-definite) only if the tilted distributipiis; YO p(vi| fi)g-i( f;) are proper
probability distributions with finite moments up to the fourth order. Thereforenture that the
product ofg_;( fi) and the Studentsite p(y;|fi) has finite moments and that the inner-loop moment
matching remains meaningful, the cavity precisionshave to be kept positive. Furthermore, since
the cavity distributions can be regarded as estimates for the leave-one@j @istributions of
the latent values;_; = 0 would correspond to a situation wheggfi|y_i, X) has infinite variance,
which does not make sense given the Gaussian prior assumption (1).e @tht#r handf; may
become negative for example when the corresponding obseryaiman outlier (see Section 5).

3.7 Fractional EP Updates

Fractional EP (or power EP, Minka, 2004) is an extension of EP whiohbeaused to reduce the
computational complexity of the algorithm by simplifying the tilted moment evaluatiodsaim-
prove the robustness of the algorithm when the approximation family is ndiléesnough (Minka,
2005) or when the propagation of information is difficult due to vague pnifmrmation (Seeger,
2008). In fractional EP the cavity distributions are definedyagfi) O q(fi|D,8,v,0?) /& (i)
and the tilted distribution ap; (i) O q-i(fi) p(yi| fi)" for a fraction parametear € (0,1]. The site
parameters are updated so that the momentg ffi ) ()" O q(f;) match withg_i(f;)p(yi| fi)".
Otherwise the procedure is similar and standard EP can be recoveredibgig = 1. In fractional
EP the natural parameters of the cavity distribution are given by

Ti=072-n% and v_ =0’y —nvi, (11)
and the site updates (with damping fackby
AT =3n"1(6,2-02) and AV =016, — o ). (12)

The fractional update step mKL (fi(fi)||q(fi)) can be viewed as minimization of tree-
divergence witlo = (Minka, 2005). Compared to the KL-divergence, minimizingdhdivergence
with 0 < a < 1 does not force( f;) to cover as much of the probability massmf f;) whenever
pi(fi) > 0. As a consequence, fractional EP tends to underestimate the vanahoeranalization
constant ofg_; (i) p(yi| i), and also the approximate marginal likelihageb. On the other hand,
we also found that minimizing the KL-divergence in standard EP may overdstitn@ marginal
likelihood with some data sets. In case of multiple modes, the approximation trigxréseat the
overall uncertainty irpT f;) the more exactly the closeris to 1. In the limita — O the reverse KL-
divergence is obtained which is used in some form, for example, in the fdB&arapproximations
(Nickisch and Rasmussen, 2008). Also the double-loop objective fun¢li@) can be modified
according to the different divergence measure of fractional EPkéCard Heskes, 2011; Seeger
and Nickisch, 2011).

Fractional EP has some benefits over standard EP with the non-logveoBtadent- sites.
First, when evaluating the moments @f; (f;) p(yi| fi)", settingn < 1 flattens the likelihood term
which alleviates the possible converge problems related to multimodality. Thistisdétathe ap-
proximating family being too inflexible and the benefits of different divecgemeasures in these
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cases are considered by Minka (2005). Second, the fractionatesgdaklp to avoid the cavity preci-
sions becoming too small, or even negative. Equation (11) shows thabbgiolgn < 1, a fraction
(1—n) of the precisiort; of thei:th site is left in the cavity. This decreases the cavity variances
which in turn makes the tilted moment integrations and the subsequent EP ufidgtesore ro-
bust. Problems related to cavity precision becoming too small can be présenith log-concave
sites when the prior information is vague. For example, Seeger (200&)sdpat with an under-
determined linear model combined with a log-concave Laplace prior the caeitysjpns remain
positive but they may become very small which induces numerical inadearacthe analytical
moment evaluations. These inaccuracies may accumulate and even cauesgeace problems.
Seeger (2008) reports that fractional updates improve numericastradss and convergence in
such cases.

4. Robust Implementation of the Parallel EP Algorithm

The sequential EP updates are shown to be stable for models in which tttesdgaterms (in

our case the likelihood functiong(y;|fi)) are log-concave (Seeger, 2008). In this case, all site
variances, if initialized to non-negative values, remain non-negativiegitite updates. It follows
that the variances of the cavity distributians ( f;) are positive and thus also the subsequent moment
evaluations ofy_;(fi)p(yi| fi) are numerically robust. The non-log-concave Studdikelihood is
problematic because both the conditional postepidfD, 6,v,0) as well as the tilted distributions
pi(fi) may become multimodal. Therefore extra care is needed in the implementation aed the
issues are discussed in this section.

The double-loop algorithm is a rigorous approach that is guaranteedverge to a stationary
point of the objective function (10) when the site termy;|fi) are bounded from below. The
downside is that the double-loop algorithm can be much slower than for ée@amallel EP because
it spends much computational effort during the inner loop iterations, &dlyeio the early stages
whengs ( fi) are poor approximations for the true marginals. An obvious improvemeritheuto
start with damped parallel updates and to continue with the double-loop methecei$sary. Since
in our experiments parallel EP has proven quite efficient with many eadeesdts, we adopt this
approach and propose few modifications to improve the convergencdiaulditases. A parallel
EP initialization and a double-loop backup is also used by Seeger and Ni¢Ridt1) in their fast
EP algorithm.

Parallel EP can also be interpreted as a variant of the double-loop ailgosittere only one
inner-loop optimization step is done by moment matching (7) and each sucteupdallowed by
an outer-loop refinement of the marginal approximatiggsfi). The inner-loop step consists of
evaluating the tilted momentqy, 6?|i = 1,...,n} with g5 (i) = q(fi) = A (i, Zii), updating the
sites (9), and updating the posterior (6). The outer-loop step consiststtofgqs (fi) equal to
the new marginal distributiong( f;). Connections between the message passing updates and the
double-loop methods together with considerations of different searebtidins for the inner-loop
optimization can be found in the extended version of Heskes and Zoe@)(Zlhe robustness of
parallel EP can be improved by the following modifications.

1. After each moment matching step check that the objective (10) incrébgesobjective does
not increase, decrease the damping coeffiddamttil increase is obtained. The downside is
that this requires one additional evaluation of the tilted moments for every sittepaion,
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but if these one-dimensional integrals are implemented efficiently this is anaalsoprice
for stability.

. Before updating the sites (9) check that the new cavity varianges 15 — (Tj + AT;) are

positive. If they are negative, choose a smaller damping f&csar thatt _; > 0. This com-

putationally cheap precaution ensures that the increase of the objedivean be verified
according to modification 1.

. With modifications 1 and 2 the site parameters can still oscillate (see Sectioarbifloistra-
tion) but according to our experiments the convergence is obtained withtbarameters
values eventually. The oscillations can be reduced by updegicfy) only after the moments
of fi(fi) andq(f;) are consistent for all= 1, ...,n with some small tolerance, for example
10-4. At each update, check also that the new cavity precisions are positigeéf not, con-
tinue the inner-loop iterations with the previogs( fi) until better moment consistency is
achieved or switch to fractional updates. Actually, this modification cooredpto the max-
imization in (10) and it results in a double-loop algorithm where the inner-lguipnization

is done by moment matching (7). If no parallel initialization is done, often dutiedfirst
5-10 iterations when the step sigds limited according to modification 2, the consistency
betweenp( fi) andq( fi) cannot be achieved. This is an indicationyf) being a too inflex-
ible approximation for the tilted distributions with the curregt(fi). An outer-loop update
gs (fi) = q(fi) usually helps in these cases.

. If sufficient increase of the objective is not achieved after an iowy update (modification
1), use the gradient information to obtain a better step &iz&he gradients of (10) with
respect to the site parametersand; can be calculated without additional evaluations of
the objective function for fixeds. With these gradients, it is possible to deternmy@), the
gradient of the inner-loop objective function with respecdfa the current search direction.
For parallel EP the search direction is defined by (9) with fixed site upddtes 6, 2 — o; 2
andAv; = 6(2& — szpi fori=1,...,n. In case of a too large steg(d) becomes negative.
Then, for example, spline interpolation with derivative constraints at tkepeimts can be
used to approximate the objective as a functiod.dfrom this approximation a better estimate
for the step sizé can be determined efficiently. In case of a too short sgép), becomes
positive and a better step size can be obtained by extrapolating with cotsstvrased on
approximate second order derivatives. This modification corresponals spproximative
line search in the concave inner-loop maximization.

In the comparisons of Section 6 we start with 10 damped (.8) parallel iterations because

with a sensible hyperparameter initialization this is enough to achieve coneergemost hyper-
parameter optimization steps with the empirical data sets. If no convergermtedaged this parallel
initialization also speeds up the convergence of the subsequent doaplédmtions (see Section
5.3). If after any of the initial parallel updates the posterior covaridadecomes ill-conditioned,
that is, many of thé; are too negative, or any of the cavity variances become negative v trege
new site configuration and proceed with more robust updates using theysiy described modifi-
cations. To reduce the computational costs we limited the maximum number of iopetdmations
(modification 3) to two with two possible additional step size adjustment iterationdifjoadion
4). This may not be enough to suppress all oscillations of the site pararbateénspractice more
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frequent outer loop refinements af (f;) were found to require fewer computationally expensive
objective evaluations for convergence.

In some rare cases, for example, when the noise ighery small, the outer-loop update of
s (fi) may result in negative values for some of the cavity variances even thtbeghner-loop
optimality is satisfied. In practise this means tf8§]~* is smaller thari; for somei. This may
be a numerical problem or an indication of a too inflexible approximating famifysiitching to
fractional updates helps. However, in our experiments, this happergdvben the noise level
was set to too small values and with a sensible hyperparameter initializatiopsidems did not
emerge.

4.1 Other Implementation Details

The EP updates require evaluation of moments= [ fi"gi(fi)d fi for k=0,1,2, where we have
definedgi(fi) = g-i(fi)p(yi| fi)". With the Student-likelihood and an arbitrary € (0, 1] numer-
ical integration is required. Instead of the standard Gauss quadraduised the adaptive Gauss-
Kronrod quadrature described by Shampine (2008) because it earfusetion evaluations by re-
using the existing nodes during the adaptive interval subdivisions uRteir computational savings
all the required moments were calculated simultaneously using the same funetioati®ns. The
integrandg; ( fi) may have one or two modes between the cavity mearand the observatiop.
In the two-modal case the first mode is n@ar and the other negi, = ofo(ojizpu +nio—2y;),
wherep,, ando? = (oji2+ nio—2)~! correspond to the mean and variance of the limiting Gaussian
tilted distribution asv — . The integration limits were set to mj_; — 60_;, o — 100,) and
max(lL_ + 60_j, lo + 100) to cover all the relevant mass around the both possible modes.

Both the hyperparameter estimation and monitoring the convergence of Hifesethat the
marginal likelihoodq(y|X,8,02,v) can be evaluated in a numerically robust manner. Assuming a
fraction parameten the marginal likelihood is given by

n
logZep :r]]- i; (IogZ + % logts - + %r:ilvgi — ;rsl\%) — % log|l + KX~ — %ﬂTu,
wherevs = v_j +nV; andts = 1_; +nT;. The first sum term can be evaluated safely if the cavity
precisionst_; and the tilted variance&? remain positive during the EP updates because at conver-
gencets = G; 2.

Evaluation of[| + K1 andX = (K1 + 3-1)~! needs some care because many of the di-
agonal entries ob1= diagTs, ..., Tn] may become negative due to outliers and thus the standard
approach presented by Rasmussen and Williams (2006) is not suitableop@oe is to use the
rank one Cholesky updates as described by Vanhatalo et al. (2068 bl decomposition as is
done in the GPML implementation of the Laplace approximation (Rasmussen aridddick010).

In our parallel EP implementation we process the positive and negative sjasagely. We define
Wi = diag(fil/z) for T > 0 andW, = diag(ﬁi]l/z) for Tj < 0, and divideK into corresponding
blocksK 11, K22, andK 1o = Kgl. We compute the Cholesky decompositions of two symmetric
matrices

Lil] =14+W3KpaWy  and Lol =1 —Wjy(K— UUD)Wop,

whereU, = Ko;WiL; . The required determinant is given bly+ K1 = |L4|?|L,/?. The
dimension oL ; is typically much larger than that &f, and it is always positive definité., may not
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be positive definite if the site precisions have too small negative valuesharefore if the second
Cholesky decomposition fails after a parallel EP update we reject the sgdsite parameters and
reduce the step size. The posterior covariance can be evaludied &— UUT +VV T, whereU =
(K11, K12 TW1LT T andV = [Ka1, K22 "WoL, T — UUTW,L, T, The regular observations reduce
the posterior uncertainty throudthand the outliers increase uncertainty throdgh

5. Properties of EP with a Student-t Likelihood

In GP regression the outlier rejection property of the Studenodel depends heavily on the data
and the hyperparameters. If the hyperparameters and the resulting aheppdoximation (6) are
suitable for the data there are usually only a few outliers and there is emuiegimation to han-
dle them given the smoothness assumptions of the GP prior and the regs#avaitons. This

is usually the case during the MAP estimation if the hyperparameters are initiaknsibly. On
the other hand, unsuitable hyperparameters may produce a very largeenaf outliers and also
considerable uncertainty on whether certain data points are outliers drarotxample, a small
combined with a too smati and a too large lengthscale (i.e., a too inflexible model) can result into
a very large number of outliers because the model is unable to explain laagéty of the obser-
vations. Unsuitable hyperparameters may not necessarily induce geneerproblems for EP if
there exists only one plausible posterior hypothesis capable of handlingtthers. However, if the
conditional posterior distribution has multiple modes, convergence problesnecnar unless suf-
ficient amount of damping is used. In some difficult cases either fractigradtes or double-loop
iterations may be needed to achieve convergence. In this section wesdiseusnvergence prop-
erties of EP with the Studentikelihood, demonstrate the effects of the different EP modifications
described in the sections 3 and 4, and also compare the quality of the ERiaptron to the other
methods described in Section 3 with the help of simple regression examples.

An outlying observatiory; increases the posterior uncertainty on the unknown function at the
input space regions a priori correlated wikh The amount of increase depends on how far the
posterior mean estimate of the unknown function valud;|B®), is from the observatiog. Some
insight into this behavior is obtained by considering the negative Hessiag pfyi| fi,v,0?), that
is, W = —D% logp(yi|fi), as a function off; (compare to the Laplace approximation in Section
3.2). W is positive wheny, — o/v < fi <y + 0V, attains its negative minimum whef) =
yi+0+/3v and approaches zerodg — . Thus, with the Laplace approximatiqm,satisfyingﬁ —
oV < i < fi+ 0V can be interpreted as regular observations because they decrepssténmr
covariancez[j in Equation (4). The rest of the observations increase the posteriertamty and
can therefore be interpreted as outliers. Observations that arefatifemodef; are clear outliers
in the sense that they have very little effect on the posterior uncertaintger@dtions that are
close tof; £ 0/3v are not clearly outlying because they increase the posterior uncertasntyotbt.
The most problematic situations arise when the hyperparameters are suctatlyd; are close to
y; + 0v/3v. However, despite the negatiVé;, the covariance matriX, » is positive definite iff is
a local maximum of the conditional posterior.

EP behaves similarly as well. If there is a disagreement between the cavityudietrg_;( i) =
N (Wi,02%;) and the likelihoodp(yi| fi) but the observation is not a clear outlier, the uncertainty in
the tilted distribution increases towards the observation and the tilted distribatioeven become
two-modal. The moment matching (7) results in an increase of the marginatiposi@riance,

62 > o2, which cause§; to decrease (9) and possibly to become negative. Sequential EP usually
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runs smoothly when all the outliers are clear gud| D, 6,v,0?) has a unique mode. The site
precisions corresponding to the outlying observations may become reepatitheir absolute values
remain small compared to the site precisions of the regular observationeveliow some of the
negative sites become very small they may notably decrease the approximgieaharecisions
1; = 0; 2 of the a priori dependent sites because of the prior correlations dédjri€. It follows that
the uncertainty in the cavity distributions may increase considerably, thaktisathty precisions,
T_j = T — Tj, may become very small or negative. This may cause both stability and gemeer
problems which will be illustrated in the following sections with the help of simpleaggjon
examples.

5.1 Simple Regression Examples

Figure 1 shows two one-dimensional regression problems in which sthE&amay run into prob-
lems. In example 1 (the left subfigures), there are two outligrandy, providing conflicting
information in a region with no regular observations{X < 3). In this example the posterior
mass of the length-scale is concentrated to sufficiently large value so th@ptipeior is stiff and
keeps the marginal posterip(f|D) (shown in the lower left panel) and the conditional posterior
p(f|fD,é,\7,62) at the MAP estimate unimodal. Both sequential and parallel EP converge with the
MAP estimate for the hyperparameters.

The corresponding predictive distribution is visualized in the upper lefépaf Figure 1 show-
ing a considerable increase in the posterior uncertainty when & 3. The lower left panel shows
comparison of the predictive distribution &fx) at x = 2 obtained with the different approxima-
tions described in Section 3. The hyperparameters are estimated separagelgh method. The
smooth MCMC estimate of the predictive density of the latent vdlue f(x,) at input locatiork.
is calculated by integrating analytically oviefor each posterior draw of the residual varianves
and averaging the resulting Gaussian distributig{fs|x.,V,0). The MCMC estimate (with inte-
gration over the hyperparameters) is unimodal but shows small side bunepstinlatent function
value is close to the observatiogs andy,. The standard EP estimate covers well the posterior
uncertainty on the latent value but both the Laplace method and fVB unidesés it. At the other
input locations where the uncertainty is small, all methods give very similar esimate

Even though EP remains stable in example 1 with the MAP estimates of the hygregiars, it
is not stable with all hyperparameter values: #indo? were sufficiently small, so that the likelihood
p(yi| fi) was narrow as a function df, and the length-scale was small inducing small correlations
between inputs far apart, there would be significant posterior uncertoyt the unknowrf (x)
when 1< x < 3 and the true conditional posterior would be multimodal. Due to the small prior
covariances of the observatiopsandy, with the other data pointg, ..., y,, the cavity distributions
g-1(f1) andqg_»(f2) would differ strongly from the approximative marginal posterior distribugion
q(f1) andq(fz). This difference would lead to a very small (or even negative) cavitgigienst_
andt_» during the EP iterations which causes stability problems as will be illustratedtinrséc2.

The second one-dimensional regression example, visualized in therigiggranel of Figure 1,
is otherwise similar with example 1 except that the nonlinearity of the true funistronich stronger
when—5 < x < 0, and the observatioryg andy, are closer in the input space. The stronger nonlin-
earity requires a much smaller length-scale for a good data fit and the owtlaardy, provide more
conflicting information (and stronger multimodality) due to the larger prior dawae. The lower
right panel shows comparison of the approximative predictive distribsitadrf (x) whenx = 2.
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Figure 1: The upper row: Two one-dimensional regression examplexevwstandard EP may falil
to converge with certain hyperparameter values, unless damped stifficieme EP ap-
proximations obtained by both the regular updages 1 (EP) and the fractional updates
n = 0.5 (fEP) are visualized. The lower row: Comparison of the approximatigdip-
tive distributions of the latent valug(x) atx = 2. With MCMC all the hyperparameters
are sampled and for all the other approximations (except fVB in exampke2hg text
for explanation) the hyperparameters are fixed to the correspondingddifRates. No-
tice that the MCMC estimate of the predictive distribution is unimodal in example 1
and multimodal in example 2. With smaller lengthscale values the conditional posterio
p(f|D,8,v,0?) can be multimodal also in example 1.

The MCMC estimate has two separate modes near the observgtiansly,. The Laplace and
fVB approximations are sharply localized at the mode ngdut the standard EP approximation
(EP1) is very wide trying to preserve the uncertainty about the both modmsraty to example

1, also the conditional posterig(f|D,8,v,0) is two-modal if the hyperparameters are set to their
MAP-estimates.

5.2 EP Updates with the Student- Sites

Next we discuss the problems with the standard EP updates with the helproplexd. Figure
2 illustrates a two-dimensional tilted distribution of the latent valfieand f, related to the ob-
servationsy; andy, in example 1. A relatively small lengthscale (0.9) is chosen so that there is
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Figure 2: An illustration of a two-dimensional tilted distribution related to the twdigmatic
data pointsy; andy, in example 1. Compared to the MAP value used in Figure 1,
shorter lengthscale (0.9) is selected so that the true conditional postemaittimmodal.
Panel (a) visualizes the joint likelihooplys| f1)p(y2| f2) together with the generalized
2-dimensional cavity distributiog( f1, f2]ys, ...,yn) obtained by one round of undamped
sequential EP updates on sitgd; ), fori = 3,...,n. Panel (b) visualizes the corresponding
two-dimensional tilted distributiom; (f1, f2) O q( 1, f2|ys, ..., Yn) P(Y1| f1) p(y2|f2). Pan-
els (c) and (d) show the same with only a fractipa: 0.5 of the likelihood terms included
in the tilted distribution, which corresponds to fractional EP updates on Hitese

quite strong prior correlation betwedn and f,. Suppose that all other sites have already been
updated once with undamped sequential EP starting from a zero initializgtierd(andv; = 0 for

i =1,...,n). Panel (a) visualizes a generalized 2-dimensional cavity distribgtibn f2|ys, ..., yn)
together with the joint likelihoog(y1, Y| f1, f2) = p(yz| f2) p(y2| f2), and panel (b) shows the con-
tours of the resulting two dimensional tilted distribution which has two separatesnditthe site
f1(f1) is updated next in the sequential manner with no damginwill get a large positive value
and the approximatiog( f1, f2) fits tightly around the mode near the observatipnAfter this, when
the sitef,(f) is updated, it gets a large negative precisitng 0, since the approximation needs
to be expanded towards the observatgnlt follows that, the marginal precision df is updated
to a smaller value thaty. Therefore, during the second sweep the cavity precisigr= 0;2 -1
becomes negative, and site 1 can no longer be updated. If the EP upgagedone in parallel,
both the cavity and the site precisions would be positive after the first porstedate, bugy( f1, f2)
would be tightly centered between the modes. After a couple of parallel tn@psall the sites, one
of the problematic sites gets a too small negative precision because theiaggiion needs to be
expanded to cover all the marginal uncertainty in the tilted distributions whids leaa negative
cavity precision for the other site.

Skipping updates on the sites with negative cavity variances can keep tréhadgnumeri-
cally stable (see, for example, Minka and Lafferty, 2002). Also inéngedamping reduceAT; so
that the negative cavity precisions are less likely to emerge. Howeveg, thedifications are not
enough to ensure convergence. After a few EP iterations, the margistripr distribution of a
problematic site, for instanag f;), is centered between the observations (see, for example, Figure
1). At the same time, the respective cavity distributipm,( f1), is centered near the other problem-
atic observationy,. Combining such cavity distribution with the likelihood terpiy1|f1), gives a
tilted distribution with significant mass around both observations. If the sitggwas,t; andTy,
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are sufficiently large (corresponding to a tight posterior approximattbe)yariance of the tilted
distribution will be larger than that of the marginal posterior and thus the siggion,T; will be
decreased. The same happens for the other site. The site precisialex@ased for a few itera-
tions after which the posterior marginals are so wide that the variancestilfeédedistributions are
smaller than the posterior marginal variances. At this point the site precisiansgain to increase
gradually. This leads to oscillation between small and large site precisionsssaiiéad in Figure 3.

With a smallerd the oscillations are slower and with a sufficiently sntathe amplitude of
the oscillations may gradually decrease leading to convergence, as inrbke(ppof Figure 3.
However, the convergence is not guaranteed since the conditions indreloop maximization
in (10) are not guaranteed to be fulfilled in sequential or parallel EPefample, a sequential EP
update can be considered as a one inner-loop step where only one gitiaied) followed by an
outer-loop step which updates all the marginal posteriotg é§) = q(f;). Since the update of one
site does not maximize the inner-loop objective, the conditions used to forapgies bound of the
convex part in (10) are not met (Opper and Winther, 2005). Thezetbe outer-loop objective is
not guaranteed to decrease and the new approximate marginal posteiolbe worse than in the
previous iteration.

Example 2 is more difficult in the sense that convergence requires danpaagawithd = 0.5.
With sequential EP the convergence depends also on the update ottersitfes and < 0.3 is
needed for convergence with all permutations. Furthermore, if the déatyppeapproach of Section
4 is considered, the best step size, that minimizes the inner-loop objective utfent search
direction, can change (and also increase) considerably betweesqselns inner-loop iterations
which makes the continuous step-size adjustments very useful.

Also fractional updates improve the stability of EP. Figures 2(c)—(d) illistize same approx-
imate tilted distribution as Figures 2(a)—(b) but now only a fractjca 0.5 of the likelihood terms
are included. This corresponds to the first round fractional updatéisese sites with zero initial-
ization. Because of the flattened likelihop@y1 | f1)"p(y2|f2)" the 2-dimensional tilted distribution
is still two-modal but less sharply peaked compared to standard EP ontthk feflows that also
the one-dimensional tilted distributions have smaller variances and the atimedcactional up-
dates (12) of the sites 1 and 2 do not widen the marginal variaricasdo3 as much. This helps to
keep the cavity precisions positive by increasing the approximate margistrgor precisions and
reducing the possible negative increments on the site precisi@md1,. This is possible because
the different divergence measure allows for a more localized approximatib< x < 3. In addi-
tion, the property that a fractiofl — n) of the site precisions is left in the cavity distributions helps
to keep the cavity precisions positive during the algorithm. Figure 1 shoasparison of standard
(EP) and fractional EP (fEBR = 0.5) with the MAP estimates of the hyperparameters. In example
1 both methods produce very similar predictive distribution because theriposseunimodal. In
example 2 (the lower right panel) fractional EP gives a much smaller pnegligticertainty esti-
mate whernx = 2 than standard EP which in turn puts more false posterior mass in the tails when
compared to MCMC.

The practical guidelines presented in Section 4 bring additional stability indiineadescribed
problematic situations. Modification 1 helps to avoid immediate problems from a tge &ep
size by ensuring that each parallel EP update increases the innerbeivee defined by (10).
Modification 2 reduces the step sideso that the cavity variances, definedtas = 15 — Ti with
fixed As = {vs,T5}, will remain positive during the inner-loop updates. Modification 3 reduces
the oscillations by ensuring that the inner-loop maximization is done within somertoterihat is,
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(a) Sequential, 6=0.8 (b) Sequential, 6=0.5 (c) Parallel, 3=0.5
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Figure 3: A convergence comparison between sequential and parBllesEvell as the double-
loop algorithm in example 2 (the right panel in Figure 1). For each method theth
objective— logZgp and the site precisioris related to data pointg, ..., ys (see Figure 1)
are shown. See Section 5.3 for explanation.

the moments ofy{ fi) andq(f;) are consistent for fixeds before updatingys (fi). For example, a
poor choice o® may require many iterations for achieving inner-loop consistency in the dgamp

1 or 2, and a too largd can easily lead to a decrease of the inner-loop objective function or even
negative cavity precisions for the sites 1 or 2. Finally, if an unsucclesptiate is made due to an
unsuitabled, modification 4 enables automatic determination of a better step size by makinfy use o
the concavity of the inner-loop maximization as well as the tilted and marginal momnaitsated

at the previous steps with the satkg

5.3 Convergence Comparisons

Figure 3 illustrates the convergence properties of the different EPitlgar using the data from
example 2. The hyperparameters were setvte: 2, 0 = 0.1, ose = 3 andlx = 0.88. Panel (a)
shows the negative marginal likelihood approximation during the first 1@@ps/with sequential
EP and the damping set &= 0.8. The panel below shows the site precisions corresponding to
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the observationg, ...,y4 marked in the upper right panel of Figure 1. With this damping level the
site parameters keep oscillating with no convergence and there are alio garameter values
between iterations 50-60 where the marginal likelihood is not defined beazfinegative cavity
precisions (the updates for such sites are skipped until the next itera@hgnevert; and T,
become very small they also inflict large decrease in the site precisions édhney sites 3 and 4.
These fluctuations affect other sites the more the larger their prior ciioredaare (defined by the
GP prior) with the sites 1 and 2. Panel (b) shows the same graphs with éargemt of damping
0 = 0.5. Now the oscillations gradually decrease as more iterations are donerwgrgence is
still very slow. Panel (c) shows the corresponding data with parallel iePtlae same amount
of damping. The algorithm does not converge and the oscillations are muggh tBompared to
sequential EP. Also the marginal likelihood is not defined at many iteratioreube of negative
cavity precisions.

Panel (d) in Figure 3 illustrates the convergence of the double-loopitigowith no parallel
initialization. There are no oscillations present because the increaseajtdwtive (10) is verified
at every iteration and sufficient inner-loop optimality is obtained beforegeding with the outer-
loop minimization. However, compared to sequential or parallel EP, the ggevee is very slow
and it takes over 100 iterations to get the site parameters to the level thansab&P attains
with only a couple of iterations. Panel (e) shows that much faster cagweegcan be obtained
by initializing with 5 parallel iterations and then switching to the double-loop alguritiihere is
still some slow drift visible in the site parameters after 20 iterations but changbe marginal
likelihood estimate are very small. Small changes in the site parameters indicatsigtencies in
the moment matching conditions (7) and consequently also the gradient of thmahéikelihood
estimate may be slightly inaccurate if the implicit derivatives ofdpg with respect toA_ and
As are assumed zero in the gradient evaluations (Opper and Winther, Z20&a¢! (f) shows that
parallel EP converges without damping if fractional updates with 0.5 are applied. Because of
the different divergence measure the posterior approximation is morgbxtésee Figure 1) and
also the cavity distributions are closer to the respective marginal distributibfadlows that the
site precisions related g andy, are larger and no damping is required to keep the updates stable.

5.4 The Marginal Likelihood Approximation

Figure 4 shows contours of the approximate log marginal likelihood with c¢gpdog(lx) and
log(02,) in the examples of Figure 1. The contours in the first column are obtaineg@iyirg

first sequential EP witl® = 0.8 and using the double-loop algorithm if it does not converge. The
hyperparameter values for which the sequential algorithm does no¢iganare marked with black
dots and the maximum marginal likelihood estimate of the hyperparameters is nvatkegk ).

The second column shows the corresponding results obtained with fi@icE&hf) = 0.5) and

the corresponding hyperparameter estimates are marked &yiti=¢r comparison, log marginal
likelihood estimates determined with the annealed importance sampling (AIS) @C£Hl) are
shown in the third column.

In the both examples there is an area of problematic EP updates with smallerdeattk which
corresponds to the previously discussed ambiguity about the unknawtidn near data pointg
andy» in Figure 1. There is also a second area of problematic updates at largtr-krale values
in example 2. With larger length-scales the model is too stiff and it is unable taiexarge pro-
portion of the data points in the strongly nonlinear regied & x < —1) and consequently there
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Example 1, EP,n=1, MAE=0.24 Example 1, EP,n=0.5, MAE=0.25 Example 1, AIS

e)

log(magnitud

log(length-scale)

Figure 4: The approximate log marginal likelihood lo|X,8,v,0?) as a function of the log-
length-scale log2) and the log-magnitude 1dg2,) in the examples shown in Figure 1.
The marginal likelihood approximation is visualized with both standardrER () and
fractional EP § = 0.5). The mode of the hyperparameters is marked witando for
standard and fractional EP respectively. For comparison the margiaidsapproxi-
mated by annealed importance sampling (AlS). For both standard and fi@d&B the
mean absolute errors (MAE) over the region with respect to the AIS estimatalso
shown. The noise parametef and the degrees of freedomare fixed to the MAP-
estimates obtained withh = 1. The hyperparameter values in which sequential EP with
0 = 0.8 does not converge are marked with black dots in the two leftmost panels.

exist no unique unimodal solution. Itis clear that with the first artificial exartipe optimization of
the hyperparameters with sequential EP can fail if not initialized carefulhyobenough damping
is used. In the second example the sequential EP approximation corragptinthe MAP values
cannot even be evaluated because the mode lies in the area of nogeomvsmperparameter val-
ues. In visual comparison with AlS both standard and fractional EPvgiesimilar and accurate
approximations in the first example (the contours are drawn at the sameflavelsch method).
In the second example there are more visible differences: standard &Pttenverestimate the
marginal likelihood due to the larger posterior uncertainties (see Figuréndjeas fractional EP
underestimates it slightly. This is congruent with the properties of the diffeligergence measure
used in the moment matching. The difference between the hyperparamats aathe modes be-
tween standard and fractional EP is otherwise less than 5% except thasedbnd example and

v are ca. 30% larger with fractional EP.
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Figure 5: A comparison of the approximative predictive meafk |E., D), standard deviations
std( f.|X., D), and predictive densitie(y. |x., D) provided by the different approxima-
tion methods using 10-fold cross-validation on the Boston housing datahyferpa-
rameters are fixed to the posterior means obtained by a MCMC run on allE&isth.dot
corresponds to one data point for which the x-coordinate is the MCMC dstiama the
y-coordinate the corresponding approximative value obtained with LANER or VB.

6. Experiments

Four data sets are used to compare the approximative methods: 1) An aréficession example
by Friedman (1991) involving a nonlinear function of 5 inputs. To creadatufe selection problem,
five irrelevant input variables were added to the data. We generateatd @ets with 100 training
points and 10 randomly selected outliers as described by Kuss (20@)s&)n housing data with
506 observations for which the task is to predict the median house pricesBotton metropolitan
area with 13 input variables (see, e.g., Kuss, 2006). 3) Data that isvthleeprediction of concrete
quality based on 27 input variables for 215 experiments (Vehtari and inemp2002). 4) Data for
which the task is to predict the compressive strength of concrete bag:sidput variables for 1030
observations (Yeh, 1998).

6.1 Predictive Comparisons with Fixed Hyperparameters

First we compare the quality of the approximate predictive distributighgx., D,0,v,a?), where
X, Is the prediction location anfl. = f(x.), between all the approximative methods. We ran a full
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MCMC on the housing data to determine the posterior mean estimates for thedwgreeters.
Then the hyperparameters were fixed to these values and a 10-faddvedadation was done with
all the approximations including MCMC. The predictive means and stan@aidttbns of the latent
values as well as the predictive densities of the test observations obteitheldaplace’s method
(LA), EP, fVB, and VB are plotted against the MCMC estimate in Figure 5.llgkng MCMC, the
predictive densities were approximated by numerically integrating over thesza approximation
of f, in q(y.|x., D,8,v,0%) = [ p(y.|fs,v,02)q(f.|x., D,B,v,0°)d f,. EP gives the most accurate
estimates for all the predictive statistics, and clear differences to MCM®ughnbe seen in the
predictive densities of, which indicates that accurate mean and variance estimates of the latent
value may not always be enough when deriving other predictive stati$tiéscontrast somewhat to
the corresponding results in GP classification where Gaussian approximatsoshown to be very
accurate in estimating predictive probabilities (Nickisch and Rasmusse8). ZBfth fVB and VB
approximate the mean well but are overconfident in the sense that theyegtichate the standard
deviations, overestimate the larger predictive densities, and underestiream#ter predictive
densities. LA gives similar mean estimates with the VB approximations, but appates the
standard deviations slightly better especially with larger values. Put togatherethods provide
decent estimates with fixed hyperparameters but larger performaneeedides are possible with
other hyperparameter values (depending on the non-Gaussianity ofi¢heainditional posterior)
and especially when the hyperparameters are optimized.

6.2 Predictive Comparisons with Estimation of the Hyperparameters

In this section we compare the predictive performance of LA, EP, fVB, a2l MCMC with esti-
mation of the hyperparameters. The predictive performance was measgitihehe mean absolute
error (MAE) and the mean log predictive density (MLPD). These weatuated for the Friedman
data using a test set of 1000 latent variables for each of the 10 simulatedeta. A 10-fold
cross validation was used for the Boston housing and concrete qualitwbdataas a 2-fold cross-
validation was used for the compressive strength data because of tha@lemdper of observations.
To assess the significance of the differences between the modelrpanices, 95% credible inter-
vals of the MLPD measures were approximated by Bayesian bootstrap@ibede by Vehtari and
Lampinen (2002). Gaussian observation model (GA) is selected as lenbasedel for compar-
isons. With GA, LA, EP, and VB the hyperparameters were estimated by optgrtizénmarginal
posterior densities whereas with MCMC all parameters were sampled. Thepgroach was
implemented following Kuss (2006) where the hyperparameters are adagtesl M-step of the
EM-algorithm. The variational lower bound associated with the M-step wgmeanted with the
same hyperpriors that were used with the other methods.

Since the MAP inference on the degrees of freedom paramebeoved challenging due to
possible identifiability issues, the LA, EP, fVB, and VB approximations arteddsoth withv fixed
to 4 (LA1, EP1, fVB1, VB1) and optimized together with the other hypenpextars (LA2, EP2,
fVB2, VB2). v = 4 was chosen as a robust default alternative to the normal distributiorn whic
allows for outliers but still has finite variance compared to the extremely witigtalternatives
with v < 2. With EP we also tested a simple approach (from now on EP3) to approxingate th
integration over the posterior uncertaintyvofWe selected 15 valueg from the interval[1.5, 20]
linearly in the log-log scale and ran the optimization of all the other hyperpaeasneithv fixed
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to these values. The conditional posterior of the latent values was apatex! as

p( f*’X*7@) ~ zqu(f*‘x*a Q),ej,O'JZ,Vj),
J

where {8,0%} = argmax ,2q(6,0%|D,v)) andw; = q(8;,0%,v| D)/ (3xd(6k OF, Vk|D)). This
can be viewed as a crude approximation of the integrationwwédrerep(8, a2|v, D) is assumed to
be very narrowly distributed around the mode. This approximation reqoptsization of6 and
o2 with all the preselected values wfand therefor® ando? were initialized to the previous mode
to speed up the computations.

The squared exponential covariance (2) was used for all modelsoriadnriors were assumed
for 8 ando? on log-scale and fov on log-log-scale. The input and target variables were scaled to
zero mean and unit varianceswas initialized to 4o to 0.5 and the magnitude?. to 1. The opti-
mization was done with different random initializations for the length-sdales, |4 and the result
with the highest posterior marginal densi§g,v, 3?| D) was chosen. The MCMC inference on the
latent values was done with both Gibbs sampling based on the scale-mixturé(8joaied direct
application of the scaled HMC as described by Vanhatalo and Vehtar7)208e sampling of the
hyperparameters was tested with both slice sampling and HMC. The scaleam®iblys sampling
(SM) combined with the slice sampling of the hyperparameters resulted in thenbésg of the
chains and gave the best predictive performance which is why only thealis are reported. The
convergence and quality of the MCMC runs was checked by both visspéations as well as by
calculating the potential scale reduction factors, the effective numbedependent samples, and
the autocorrelation times (Gelman et al., 2004; Geyer, 1992). Based oorihergence diagnos-
tics, burn-in periods were excluded from the beginning of the chainshengemaining draws were
thinned to form the final MCMC estimates.

Figures 6(a), (c), (e) and (g) show the MLPD values together with tf&is eredible intervals
for all the methods in the four data sets. To illustrate the differences betilveapproximations
more clearly figures 6(b), (d), (f) and (h) show the pairwise compasisd the log posterior predic-
tive densities to SM. The mean values of the pairwise differences togeithetheir 95% credible
intervals are visualized. The Studdntodel with the SM implementation is significantly better
than the Gaussian model with a probability above 95% in all data sets. SM afsonpe signifi-
cantly better than all the other approximations on the Friedman and comgressingth data, and
on the housing data only EP1 is not significantly worse. The differeneesaasiderably smaller
in the concrete quality data on which EP1 actually performs better than SMp&sible explana-
tion for this is a wrong assumption on the noise model (evidence for a ctevalépendent noise
was found in other experiments). Another possibility is the experimental Wesigd in the data
collection; a large proportion of the observations can be classified lgsede of the input vari-
ables with a very small length scale which is why averaging over this paramaielead to worse
performance.

Additional pairwise comparisons not shown in Figure 6 reveal that eitRérdt EP2 is signifi-
cantly better than LA, VB, and fVB in all data sets except the compressieagh data for which
significant difference is not found when compared to LAL. If the betegfgoming method for
estimatingy is selected in either LA, fVB, or VB, LA is better than fVB and VB on the Friedma
data and the compressive strength data. No significant differencedouerd between fVB or VB
in pairwise comparisons.
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Figure 6: Left column: The mean log posterior predictive density (MLPRY) &s 95% central
credible interval. The Gaussian observation model (GA) is shown fereete. The
Studentt model is inferred with LA, EP, fVB, VB, and scale-mixture based Gibbs sam-
pling (SM). Number 1 after a method means thé fixed, number 2 that it is optimized,
and number 3 stands for the simple approximative numerical integrationvouRight
column: Pairwise comparisons of the log posterior predictive densities vafiece to
SM. The mean together with its 95% central credible interval are showne¥aleater
than zero indicate that a method is better than SM.

The optimization ol proved challenging and sensitive to the initialization of the hyperparam-
eters. The most difficult was fVB for which often drifted slowly towards infinity. This may be
due to our implementation that was made following Kuss (2006) or more likely to thestizlel
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GA | LAl | LA2 | EP1| EP2| EP3| fVB1 | fVB2 | VB1 | VB2 | SM
mean| 0.07| 1.0 | 0.8 | 0.8 | 7.0 | 13 15 89 | 1.6 | 1.8 | 280
max [ 0.09| 10| 12 | 1.1 | 16 | 26 39 22 3.3 | 3.8 | 440
fixed | 0.1 1.0 55 2.4 1.9 -

Table 1: Two upper rows: The relative CPU times required for the hypameter inference. The
times are scaled to yield 1 for LA1 separately for each of the four data 8etth the
relative mean (mean) as well as the maximum (max) over the data sets atedefdre
third row: The average relative CPU times over the four data sets with tlezgameters
fixed to 28 preselected configurations.

optimization of the hyperparameters. With LA, EP, and VB the integration figeredone in the
inner-loop for all objective evaluations in the hyperparameter optimizatibeyeas with fVB the
optimization is pursued with fixed approximatiofif|2,8,v,0?). The EP-based marginal likeli-
hood estimate was the most robust with regards to the hyperparameter initializaticording to
pairwise comparisons LA2 was significantly worse than LA1 only in the coagpre strength data.
EP2 was significantly better than EP1 in the housing and compressivethtdatg but significantly
worse with the housing data. With fVB and VB optimizationwfjave significantly better per-
formance only with the simulated Friedman data, and significant decreassbeeived with VB2
in the housing and compressive strength data. In pairwise comparisergutie numerical inte-
gration overnv (EP3) was significantly better than EP1 and EP2 with the housing and caiveres
strength data, but never significantly worse. These results give @ddkat the EP approximation
is more reliable in the hyperparameter inference because of the moratcmarginal likelihood
estimates which is in line with the results in GP classification (Nickisch and Rasm2G8).

In terms of MAE the Studerttmodel was significantly better than GA in all data sets besides the
concrete quality data, in which only EP1 gave better results. If the bestrpéng hyperparameter
inference scheme is selected for each method, EP is significantly betteréhaheis on all the data
sets excluding the compressive strength data in which the differenceswesignificant. EP was
better than SM on the Friedman and concrete quality data but no other signditfarences were
found in comparisons with SM. LA was significantly better than fVB and VB andbmpressive
strength data whereas on the simulated Friedman data VB was better than B¥Band

Table 1 summarizes the total CPU times required for the posterior infererlodimg the hy-
perparameter optimization and the predictions. The CPU times are scaled tmgiter LA1 and
both the mean and maximum over the four data sets are reported. The rtinrésgf the fastest
Studentt approximations are roughly 10-fold compared to the baseline method GA.\iziete
v = 4, is surprisingly fast compared to LA but it gets much slower with the optimizatieon(EP2).
This is explained by the increasing number of double-loop iterations retjtdrachieve conver-
gence with the larger number of difficult posterior distributionsyagets smaller values. EP3 is
clearly more demanding compared to EP1 or EP2 because the optimization lea®peated with
every preselected value of fVB is quite slow compared to LA or VB because of the slowly pro-
gressing EM-based hyperparameter adaptation. The running times aid. XB are quite similar
with v both fixed and optimized. The running times are suggestive since theydleperh on the
implementations, convergence thresholds and the hyperparameter initiaz3tdrhe 1 shows also
the average relative running times over the four data sets (excluding M@MiCthe hyperparam-
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eters fixed to 28 different configurations (fixed). The configurativese created by first including

the MCMC mean for each data set and then generating all combinations efdeely different
values ofv, 0, andoge around the MCMC mean with randomly selected lengthscales. The average
relative running time is higher with EP because many difficult hyperpararcetgigurations were
created.

7. Discussion

Much research has been done on EP and it has been found veratecand computationally ef-
ficient in many practical applications. Although non-log-concave sitetions may be problem-
atic for EP it has been used and found effective for many potentially diffnodels such as the
Gaussian mixture likelihoods (Kuss, 2006; Stegle et al., 2008) as wellpilee”and slab” priors
(Herrandez-Lobato et al., 2008). Modifications such as the damping and fractipdates as well
as alternative double-loop algorithms have been proposed to improve lfiigysta difficult cases
but the practical implementation issues have not been discussed that mubfs viork we have
given another demonstration of the good predictive performance of BRlallenging model but
also analyzed the convergence problems and the EP improvements fractiagdmpoint of view.
In addition, we have presented practical guidelines for a robust peE&llenplementation that can
be applied for other non-log-concave likelihoods as well.

We have described the properties of the EP algorithm and its modifications witBttident-
observation model, but the same key challenges can also be consideragdspitict to a general
observation model with a non-log-concave likelihood. With a Gaussian@niband a log-concave
likelihood, each site approximation increases the posterior precision atie aite precisions re-
main positive throughout the EP iterations as was shown by Seeger (288} non-log-concave
likelihood, however, negative site precisions may occur. The negdt&eecisions are natural
and well justified because a non-log-concave likelihood can generatidnoceases of the posterior
uncertainty which cannot otherwise be modeled with the Gaussian approximiatioexample, as
discussed here and by Vanhatalo et al. (2009), with the Studantel the negative site precisions
correspond to the outlying observations. Through the prior covarsasfdethe negative site preci-
sions decrease also the approximate marginal posterior precisions ahénesibe approximations
with positive site precisions. This may become a problem during the sequentia parallel EP
iterations if some of the approximate marginal posterior precisions dectteseto the level of
the corresponding site precisions. In such cases the respective madigions become very small
which can both induce numerical instabilities in the tilted moment integrations (S&8§8) and
make the respective sites very sensitive to the subsequent EP uptiite &P updates are not con-
strained some of the cavity precisions may also become negative in whictheasieed moments
and the following updates are no longer well defined.

Both of the well-known EP modifications help to alleviate the above descrilmdadigon. Damp-
ing takes more conservative update steps so that the negative site preistoments are less likely
to decrease the other cavity precisions too much. Fractional EP keepaviheprecisions larger
by leaving a fraction of the site precisions in the cavity but leads to diffexpptoximation which
may underestimate the posterior uncertainties. The double-loop algorithmsutationally de-
manding but admissible steps in the concave inner-loop maximization ensuttesticavity and the
tilted distributions remain well defined at all times. And most importantly, the inrar+oaximiza-
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tion forms an upper-bound which provably converges to a stationartieokatisfying the moment
matching conditions (7).

The general modifications described in Section 4 bring additional stability editonable com-
putational cost. Maodification 1 is a principled way to avoid immediate problems @fisim a too
large step size. It ensures that each parallel EP update results in eas@af the inner-loop
objective, and it is computationally cheap with likelihoods for which the tilted monearide de-
termined analytically (e.g., finite Gaussian mixtures). Modification 2 is also cotmmedly cheap
and it ensures that the cavity distributions (defined with fixgdremain well defined at all times.
If the current step size does not result in a sufficient decrease ehimgy the extra tilted moment
evaluations required in modification 1 can be used in determining a better stgp bxrsed on the
gradient information according to modification 4 with little additional computatioost.c

Modification 3 comes with a considerable computational cost if a small toleranegquired for
the inner-loop iterations. However, in our experiments with the Studemdeel, a relaxed double-
loop scheme with a maximum of two inner-loop iterations and two step-size adjuststeps (only
if required) were sufficient to achieve convergence. In practice ¢ljsires at most three additional
matrix inversions per iteration compared to the regular parallel EP buttuntdely also the number
of outer loop iterations tended to increase with the more difficult data sets ypatgarameter
values. In these cases the main challenge was the difficult inner-loop mamageiting which can
be partly related to a too inflexible approximating family and partly to a suboptiraadis@irection
defined by parallel EP. Considering the better convergence propefrsegiuential EP (see Section
5.3), for instance a scheme, where the inner-loop optimization of the moreuttifites (whose
cavity distributions differ notably from the respective marginals) was dmwientially and the
remaining sites were optimized with parallel updates, could lead to better gverirmance.

The nonlinear GP regression combined with the Stutlembdel makes the inference problem
challenging because the potential multimodality of the conditional posteriondep the hyper-
parameter values. As we have demonstrated by examples, standard EBtroagverge with the
MAP estimates of the hyperparameters. Therefore, in practical applisatoe cannot simply
discard all problematic hyperparameter values. Instead some estimate ofrieatiékelihood is
required also in the more difficult cases. In our examples these situatioasel&ted to two modes
in the conditional posterior (caused by two outliers) quite far away froch egher which requires
a very large local increase of the marginal variances from the unimasator approximation.
(It should also be noted that moderately damped sequential EP workedlifinmany other mul-
timodal posterior distributions.) The globally unimodal assumption is not theibestch cases
although the true underlying function is unimodal, but we think that it is impotiamfet some
useful posterior approximation. Whether one prefers the possibledaitainty provided by the
Laplace or VB approximations, or the possible false uncertainty of EP, istemod taste but we
prefer the latter one.

It is also important that the inference procedure gives some clue of teat@d inadequacy
of the approximating family so that more elaborate models can be consideredidition to the
examination of the posterior approximation, the need for double-loop itesatidh the MAP hy-
perparameter estimates may be one indication of an unsuitable model. Oneacceorajsare the
cavity distributions, which can be regarded as the LOO estimates of the laleesywith the re-
spective marginal approximations. If for certain sites most of the LOO rimétion comes from
the corresponding site approximations there is reason to suspect thaptiogimation is not suit-
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able. Our EP implementation enables a robust way of forming such approxiaitial in case of
problems it also enables automatic switching to fractional updates.

The presented EP approach for approximative inference with GP modelsl&mnemted in the
freely available GPstuff software packade t(p: // www. | ce. hut . fi/research/ mm gpstuff/).
The software also allows experimenting with other non-log-concave likediidy implementing
the necessary tilted moment integrations in a separate likelihood function.
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