Robust Global Registration

Natasha Gelfand ${ }^{\dagger} \quad$ Niloy J. Mitra ${ }^{\dagger} \quad$ Leonidas J. Guibas ${ }^{\dagger} \quad$ Helmut Pottmann ${ }^{\ddagger}$
${ }^{\dagger}$ Stanford University $\quad{ }^{\ddagger}$ Vienna University of Technology

Abstract

 to noise. A small number of feature points are automatically picked from the data shape according to the uniqueness of the descriptor value at the point. For each feature point on the data, we use the descriptor values of the model to find potential corresponding points. We then develop a fast branch-and-bound algorithm based on distance matrix comparisons to select the optimal correspondence set and bring the two shapes into a coarse alignment. The result of our alignment algorithm is used as the initialization to lterative Closest Point (ICP) and its variants for fine registration of the data to the model. Our algorithm can be used for matching shapes that overlap only over parts of their extent, for building models from partial range scans, as well as for simple symmetry detection, and for matching shapes undergoing articulated motion.

Method Overview

1. Compute a geometric descriptor for each point of data and model. We use integral volume descriptor.
2. Automatically select a small number of feature points based on uniqueness of descriptor values.
3. Use descriptor values to identify potential corresponding points for each feature.
4. Efficiently explore entire correspondence search space using a branch and bound algorithm to find the optimal set of correspondences.
5. Refine the alignment using Iterated Closest Point (ICP) algorithm.

Integral Volume Descriptor

Definition $\quad V_{r}(p)=\int_{B_{r}(p) \cap S} d x$
Properties

- Related to mean curvature (H) as $V_{r}(p)=\frac{2 \pi}{3} r^{3}-\frac{\pi H}{4} r^{4}+O\left(r^{5}\right)$. Robust to noise
Multi-scale with scale controlled by r.
Voxelize the interior of the shape onto a grid and convolve with the rasterization of the ball B_{r}. Can be efficiently computed using FFT.

Correspondence Search

To find the correct set of correspondences for the feature points, we minimize the pairwise distance mismatch

$$
d R M S^{2}(P, Q)=\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\left\|p_{i}-p_{j}\right\|-\left\|q_{i}-q_{j}\right\|\right)^{2}
$$

Explore the correspondence search space using a branch and bound algorithm. - prune if partial correspondence exceeds current best assignment.

- prune if any pairs of points in partial correspondence violates rigidity constraint.

Since we explore the entire search space, we are guaranteed to find the optimal

 assignment.
Results

Whole Object Matching

Partial Matching
Maximize the number of feature points that get assigned a valid corresponding point in the model, while still keeping the dRMS error of the correspondence set low.

Automatic Scan Registration

Registration using our algorithm

Refinement with ICP

Applications

Symmetry Detection

Model dRMS vs Size of Correspondence Set

Segmentation and Matching for Simple Articulated Motion

Input Poses
Segmentation

