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Abstract. We present a simple, effective method for solving structure from

motion problems by averaging epipolar geometries. Based on recent successes

in solving for global camera rotations using averaging schemes, we focus on the

problem of solving for 3D camera translations given a network of noisy pair-

wise camera translation directions (or 3D point observations). To do this well,

we have two main insights. First, we propose a method for removing outliers

from problem instances by solving simpler low-dimensional subproblems, which

we refer to as 1DSfM problems. Second, we present a simple, principled aver-

aging scheme. We demonstrate this new method in the wild on Internet photo

collections.
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1 Introduction

Recent work on the unstructured Structure from Motion (SfM) problem has had re-

newed interest in global methods. Unlike sequential approaches which build 3D mod-

els from photo collections by iteratively growing a small seed model, global (or batch)

methods for SfM consider the entire problem at once. By doing this they avoid sev-

eral disadvantages of sequential methods, which have tended to be costly, requiring

a repeated nonlinear model refinement (bundle adjustment) to avoid errors. Also, un-

like global methods, sequential SfM necessarily treats images unequally, where those

considered first can have a disproportionate effect on the final model. In practice, this

behavior can sometimes lead to cascading mistakes and can exacerbate the problem of

drift.

However, global methods have difficulties of their own. A key problem is that reason-

ing about outliers is challenging. Techniques from sequential methods, such as filtering

out measurements inconsistent with the current model at each step, are not directly ap-

plicable in a global setting. It is harder to reason a priori about which measurements

are unreliable.

In this work, we present a new global SfM method; like other methods, we solve

first for global camera rotations, then translations, given a set of pairwise epipolar ge-

ometries. As there has been significant progress on the rotations problem, we focus on

translations, and offer two key insights. The first, which we call 1DSfM, is a simple

way to preprocess a problem instance to remove outlier measurements. 1DSfM is based

on reducing a difficult problem to single-dimensional subproblems where inference be-

comes a more straightforward combinatorial computation. Under this 1D projection, a

D. Fleet et al. (Eds.): ECCV 2014, Part III, LNCS 8691, pp. 61–75, 2014.

c© Springer International Publishing Switzerland 2014



62 K. Wilson and N. Snavely

translations problem becomes an instance of MINIMUM FEEDBACK ARC SET, a well

studied graph problem. By solving for a 1D ordering, we recover information about

which 3D measurements are likely inconsistent. Second, we describe a new, very simple

solver for the translations problem. Surprisingly, we find that non-linear optimization

with this solver—even with random initialization—works remarkably well, especially

once outliers have been removed. Hence, our 1DSfM-based outlier removal technique

goes hand in hand with our simple translations solver to achieve high-quality results.

We show the effectiveness of our two methods on a variety of landmark-scale Internet

community photo collections, covering a range of sizes and scene types. Our code and

data are available at http://www.cs.cornell.edu/projects/1dsfm.

2 Related Work

While some earlier SfM methods were global, such as factorization [20], most current

large-scale SfM systems involve sequential reconstruction [19,2,9]. Sequential meth-

ods build models a few images at a time, often with bundle adjustment in between steps.

However, there has been significant recent interest in revisiting global methods because

of their potential for improved speed and decreased dependence on local decisions or

image ordering. These methods often work by first estimating an initial set of camera

poses (typically through use of estimated relative poses between pairs or triplets), fol-

lowed by a global bundle adjustment to refine this initial solution. With a few exceptions

(e.g. [12]), these methods first solve for camera rotations, and then camera translations.

Rotations. A number of methods have been proposed for solving for global rotations

from pairwise estimates of relative rotations. Some methods formulate the problem as

a linear system by relaxing constraints on rotation parameterizations [11,17,3]. Enqvist

et al. [8] look for a best spanning tree of pairwise rotations to filter outliers in advance.

Sinha et al. [18] use vanishing point estimates as an additional cue. More recently, Hart-

ley et al. [13] as well as Chatterjee and Govindu [5] have presented robust l1 methods

based on the Lie algebraic structure of the manifold of rotations. Finally, Fredriksson

and Olsson [10] present an approach based on primal and dual problems which can

certify if a solution is globally optimal. We have found the method of Chatterjee and

Govindu [5] particularly effective, and use it to produce input for our method.

Translations. Like the rotations problem, the translations problem is often formulated

as computing global camera translations from pairwise ones. Some approaches to solv-

ing this problem are based on a linear system of cross product constraints [11,3]. Others

use Second Order Cone Programming, based on the l∞ norm [16,17]. Such methods re-

quire very careful attention to outliers. Brand et al. [4] use a spectral approach, but

do not address outlier noise. Sinha et al. [18] robustly compute similarity transforma-

tions that align pairs of reconstructions, and then average over these transformations.

Recently Jiang et al. [14] have formulated a linear constraint with geometric, rather

than algebraic meaning, based on co-planarity in triplets of cameras. Finally, Crandall

et al. [6] take a different approach to optimization, using a complex scheme involv-

ing a discrete Markov Random Field search and a continuous Levenberg-Marquardt

refinement to robustly explore the solution space. Our translations solver optimizes an

http://www.cs.cornell.edu/projects/1dsfm
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objective function that depends only on comparing measurement directions to model

directions, as opposed to other methods [11,3] where the objective function is also a

function of the distance between images. To avoid the resulting bias, Govindu proposes

an iterative reweighting scheme [11], which is unnecessary in our approach. Jiang et

al. discuss the importance of geometric vs. algebraic cost functions, as they minimize

a value that has physical significance. In this sense our cost function is also geometric

(but in the space of measurements, rather than in the solution space).

Handling Outliers. A key contribution of our work is a simple algorithm for removing

outliers in a translations problem. Zach et al. [23] detect outlier epipolar geometries by

looking at loop closure in graph cycles. Our method for outlier removal is similar in

motivation, but by projecting into a single dimension we solve tractable subproblems

that reduce to a simple combinatorial graph problem.

3 Problem Formulation

The gold standard method for structure from motion is bundle adjustment—the joint

nonlinear refinement of camera and structure parameters [21]. However, bundle adjust-

ment is a largely local search, and its success depends critically on initialization. Given

a good initial guess, bundle adjustment can produce high quality solutions, but if the

guess is bad, the optimization may fall into local minima far from the optimal solution.

For this reason most SfM methods focus on creating a close-enough initialization which

can then be refined with bundle adjustment; sequential (or incremental) SfM methods

are one such approach that use repeated bundle adjustment on increasingly large prob-

lems to reach a good solution.

Initializing bundle adjustment involves estimating a rotation matrix and a position

for each camera. In our notation, a rotation matrix Ri represents a mapping from world

coordinates to camera coordinates, and a translation ti represents a location in the world

coordinate frame (in our work, we use “location” and “translation” interchangeably, in

a slight abuse of terminology). As with other recent global methods, our input is a set

of images V , and a network of computed epipolar geometries (R̂ij , t̂
l
ij) between pairs

(i, j) of overlapping images. (We will use a hat for epipolar geometries, to emphasize

that they are our input measurements. We use a superscript l for relative translations

between two cameras, which are defined in a local coordinate system.) These epipolar

geometries are not available for all camera pairs, because not all pairs of images visually

overlap. These inputs define a graph we call the epipolar geometry (EG) graph G =
(V,E) on a set of images V , where for every edge (i, j) ∈ E we have a measurement

(R̂ij , t̂
l
ij). Given perfect measurements, global camera poses (Ri, ti) would satisfy

R̂ij = R
⊤
i Rj (1)

λij t̂
l
ij = R

⊤
i (tj − ti) (2)

where λij ’s are unknown scaling factors (unique up to global gauge ambiguity).

Following a now-common approach [11,16,17,6,3,14], we separate the initialization

into two stages: a rotations problem and a translations problem. These two together

produce an initialization to a final bundle adjustment. Recent work has been successful
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in solving the rotations problem robustly [13,10,5]; we build on this work and focus on

the translations problem. Given estimates Ri of camera rotation matrices, we can write

our measurement of the direction from camera i to camera j as t̂ij = Rit̂
l
ij , where

t̂ij is a unit 3-vector (i.e., a point on the unit sphere) in the global coordinate system.

Hence, the translations problem reduces to the following graph embedding problem:

Given: Graph G = (V,E)

Measurements t̂ij : E → S2

Metric d : S2 × S2 → R

Minimize:
∑

(i,j)∈E

d

(

t̂ij ,
tj − ti

‖tj − ti‖

)

over embeddings: T : V → R
3 i.e. T = {ti|i ∈ V }

Note that in this framework, the second endpoint j of an edge may be a point or a

camera. Camera-point constraints can be important for achieving full scene coverage,

and for avoiding degeneracies arising from collinear motion, an issue discussed in [14].

The formulation above does not specify the exact form of our objective function. It

also excludes objective functions that depend on the distance between ti and tj , rather

than only the direction. These issues will both be discussed in Section 5.

Finally, this problem is made greatly more difficult by noise. We hope that most EGs

will be approximately correct, but sometimes calculating EGs returns a wildly incorrect

solution. For the translations problem we assume a mixed model of small variance inlier

noise with a smaller fraction of outlier noise distributed uniformly over S2.

4 Outlier Removal Using 1DSfM

By removing bad measurements in advance we can solve problems more accurately and

reliably. In this section, we present a new method for identifying outlier measurements

by projecting translations problems to 1-dimensional subproblems which we can solve

more easily. Our approach is related to previous work [23] which detects outliers as

measurements that cannot be consistently chained along cycles. However, there are usu-

ally many cycles to enumerate, and inferring erroneous measurements from bad cycles

is difficult for large problems. Our method is based on many smaller, simpler inferences

that are then aggregated. This makes outlier detection tractable even for large problems

where [23] has difficulty.

The translations problem described above is a 3-dimensional embedding. One way

to approach outlier detection is to try to first simplify this underlying problem. For in-

stance, we could project the 3D problem onto a ground plane, resulting in a 2D graph

embedding problem. In other words, we could ignore the z component of each measure-

ment, and consider only the 2D projections: t̂ij �→ t̂ij − proj
k̂
t̂ij , where k̂ = 〈0, 0, 1〉.

In this projected problem, we would need to assign an (x, y) pair to each vertex.

In our work, we take this idea a step further and project onto a single dimensional

subspace. Consider projecting a translations problem onto the x-axis, as in the blue

problem in Figure 1. Only the x component of each translations measurement is now
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Fig. 1. A toy illustration of 1DSfM. Panel (a) is a good solution to a translations problem for

reference. Panel (b) shows the translations problem input—a set of edges with orientations. One

outlier edge has been added in red. We also show two directions for projection: î and p. Panel

(c) contains only the projected translations problems, one for each projection direction. These

problems are instances of MINIMUM FEEDBACK ARC SET. Finally, (d) contains good solutions

to the 1D problems in (c). In the lower case, not all ordering constraints can be satisfied, due to

the outlier edge. Note that outlier edges may be consistent in some subproblems but not in others.

relevant to the problem: t̂ij · 〈1, 0, 0〉 = xij , and we need to assign an x-coordinate

to each vertex. Recall that our pairwise translation measurements represent directions,

but not distances. On the x-axis there are only two directions: left and right. Hence, an

embedding is consistent with edge (i, j) if xij > 0 and i embeds to the left of j, and vice

versa for xij < 0. Figure 1 panel (d) shows such an embedding. Note that in 1D, edge

directions have become ordering constraints: all embeddings with the same ordering

are equally consistent with our problem. Hence, this 1D problem is a combinatorial

ordering problem, rather than a continuous optimization problem: we want to find a

global ordering of the vertices that satisfies the pairwise orderings as well as possible.

We can formulate this problem on a directed version of our graph G, as described below.

Figure 1 also illustrates projecting the same problem in a different direction (in

green). Notice that the outlier shown in red is inconsistent in one projection direction,

but not in another. To catch as many outliers as possible, we embed a graph in many 1D

subspaces, each defined by a unit vector p. For each subproblem only the component

of translations measurements t̂ij in the direction of p is relevant to the optimization:

t̂ij �→ p · t̂ij = wij . By regarding the pair (i, j), wij as equivalent to (j, i),−wij , we

can form a problem with directed edges with positive edge weights. Given a directed

graph formed in this way, we try to find an ordering that satisfies as many of these pair-

wise constraints as possible; the edges that are inconsistent with this ordering are po-

tential outliers. This is a well-studied problem in optimization called MINIMUM FEED-

BACK ARC SET (MFAS). Unfortunately it is NP-complete, but there is a rich literature

of approximation algorithms. We found that a variant of [7], as detailed in Algorithm

1, worked very well on our problems. This algorithm greedily builds an order from

left to right. It always selects a next node that breaks no order constraints if possible.

If not, it selects the next node to maximize a heuristic: (1+degout(v))/(1+degin(v)),
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Algorithm 1. MFAS ordering

1: procedure MFAS(G = (V,E), wij ) ⊲ Order vertices on a line

2: Edir ← {(i, j)|wij > 0} ∪ {(j, i)|wij < 0} ⊲ Put in form of an MFAS problem

3: π = [ ] ⊲ build a permutation here

4: Vrem = V ⊲ unchosen vertices

5: G′ ← (Vrem, Edir)
6: while G′ �= ∅ do

7: x ← {v ∈ G′|v is source} ⊲ select all sources first

8: if x = ∅ then

9: x ← argmaxv∈Vrem

1+degout(v)

1+degin(v)
⊲ heuristic

10: π.append(x)
11: Vrem ← Vrem − x
12: G′ ← restrict(G′, Vrem) ⊲ restrict graph

Algorithm 2. Combinatorial Cleaning

1: procedure CLEAN(G = (V,E), t̂, N, τ ) ⊲ Remove outlier measurements from E
2: xij ← 0 ∀(i, j) ∈ E ⊲ Accumulator for broken edge weight

3: for k ← 1, N do

4: p̂ ← RAND(t̂) ⊲ Sample p̂ proportional to density of t̂ on S2

5: wij ← p̂ · t̂ij ∀(i, j) ∈ E
6: π ← MFAS((V,E), wij) ⊲ Order vertices along direction p̂
7: for (i, j) ∈ E do

8: if sgn(π(j)− π(i)) �= sgn(wij) then

9: xij ← xij + |wij |

10: E ← {(i, j) |xij/N < τ}

where degin(v) and degout(v) are the sum of weights of outgoing and incoming edges

of node v, respectively. We found that this ratio heuristic performs much better on our

problems than the heuristic used in [7] (namely, degout(v)− degin(v)).
Projection from 3D to 1D necessarily loses information. Bad measurements could

be missed entirely by some choices of projection direction p. To identify outliers reli-

ably we aggregate the results of solving 1D subproblems projected in many different

directions. We use a kernel density estimator to sample these projection directions ran-

domly, proportional to the density of directions of measurements in the input problem.

We sample this way because outliers stand out most clearly in directions where many

edges project with high weight; picking uncommon directions (like straight up) tends

to have poor signal-to-noise ratio. For each direction, if an edge (i, j) is inconsistent

with the ordering we compute, we accumulate the weight |wij | on that edge. Edges

that accumulate weight in many subproblems are inconsistent and probably bad. Af-

ter running in N sampled directions we reject edges (i, j) which have accumulated

more than a threshold τ · N of weighted inconsistency. This process is summarized in

Algorithm 2.

5 Solving the Translations Problem

Now that we have a cleaner set of pairwise relative translations, we use them to solve for

a global set of translations. In order to make our translations problem concrete, we must
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Table 1. Common distances on S2

Name Formula Equivalent

Geodesic ∠(u,v) θ
Cross Product u× v sin θ
Inner Product 1− u · v 2 sin2 θ

2

Squared Chordal Distance ‖u− v‖2 4 sin2 θ
2

first choose an objective function to minimize. After evaluating a number of metrics, we

opted to use the sum of squared chordal distance:

errch(T ) =
∑

(i,j)∈E

dch

(

t̂ij ,
tj − ti

‖tj − ti‖

)2

(3)

dch(u,v) = ‖u− v‖2 (4)

This is a nonlinear least squares problem, with the nonlinearity coming from the di-

vision mapping vectors to directions. We minimize it using Levenberg-Marquardt, as

implemented in the Ceres software package [1]. In general, nonlinear least squares

problems are not guaranteed to have a single local minimum, so a good initialization

is critical. Surprisingly, we find that with this distance metric, our problems generally

converged well for our test datasets even from random initialization. Although the node

orderings from 1DSfM could provide an initialization, we found this no more effective

than randomization.1

Comparative Discussion. The SfM translations problem recovers coordinates in R
3

from measurements on the sphere S2. Previous work has proposed objective functions

based on different combinations of these two spaces. For example, the cross product

used in [11] maps S2 × R
3 → R. This biases the problem as error is proportional to

the length of the edges in a solution. To compensate, they use an iterative reweighting

framework to divide out edge length. This framework approximates a cross product

map S2 × S2 → [−1, 1].
We avoid this bias by comparing measurements (on S2) directly to edge directions

for a solution (also on S2). Table 1 shows several ways to measure the distance between

two directions. A natural distance on a sphere is the geodesic (great circle) distance, so

each distance is also given in terms of this angle θ. Note that the cross product has

both parallel and antiparallel minima, which is undesirable. The inner product and the

squared chordal distance are equivalent up to a constant, but the latter is a preferable

formulation because it is a sum of squares.

While our 1DSfM method seeks to remove outlier measurements, we note that one

could also handle outliers using robust cost functions. Crandall et al. [6] demonstrate the

utility of robust cost functions for global SfM problems, but operated within a complex

discrete optimization algorithm. In our case, within an continuous optimization frame-

work, we have found that the choice of robust function is very important—Cauchy and

1 Formally, Eq. 5 is undefined if ever tj = ti for any edge. With a random initialization and

natural problems this is exceedingly unlikely. However, in this case a random perturbation

could allow the algorithm to continue.
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threshold-based robust costs lead to poor convergence, but we find that a Huber loss to

be very effective. Our results will show that a Huber loss can improve solution quality

while retaining good convergence, and that the benefit is largely orthogonal to 1DSfM.

Convergence Properties. We now give a basis for confidence in minimizing our objec-

tive function. Consider two vectors x0 and x1 in R
3, and a convex combination of them,

xλ = (1−λ)x0+λx1. The chordal distance is not convex here (nor quasi-convex), but

a related (weaker) inequality holds: 2

dch

(

xλ

‖xλ‖
, t̂

)2

≤ max

{

dch

(

x0

‖x0‖
, t̂

)2

, dch

(

x1

‖x1‖
, t̂

)2
}

(5)

(In fact, this also holds without squares, so these results also apply to a robust L1 cost.)

So if T0 and T1 are embeddings (maps taking each vertex to R
3), and Tλ is a convex

combination of them, then we can bound the objective function at Tλ:

errch(Tλ) =
∑

(i,j)∈E

dch

(

Tλ(j)− Tλ(i)

‖Tλ(j)− Tλ(i)‖
, t̂ij

)2

≤ errch(T0) + errch(T1) (6)

This means that in a noise-free problem (errch(T0) = 0) the error surface would be per-

fectly non-decreasing away from a global minimum T0 (though note that all solutions

are only unique up to a global gauge, and ill-posed problems may have an even larger

space of global minima). With small noise we are still guaranteed that the barrier be-

tween any solution and an optimum is no higher than the optimal value of the objective

function. This bound is not necessarily tight, and is not achieved in natural problems. In

practice, once most outliers have been removed (by 1DSfM) we consistently find good

solutions.

6 Implementation

Solving for Rotations. To compute global rotations, we run Chatterjee and Govindu’s

rotations averaging method [5], with the parameters suggested in their paper.

Forming a Translations Problem. Given rotations, we form a translations problem with

both camera-to-camera and camera-to-point edges. We find camera-to-camera edges to

be crucial for accuracy and compute them from EGs. However, these camera-to-camera

edges often have areas of sparse coverage—we find that popular parts of the scene are

well represented, but less photographed areas can have many fewer measurements, re-

sulting in reconstructions that can break apart into disconnected submodels.

To address this problem, we augment the translations problem with camera-to-point

edges. We find that on their own these yield a noisy solution, but they increase scene

coverage and connectedness. In addition, these edges are crucial for avoiding degenera-

cies when cameras are nearly collinear, as discussed in [14].

2 To be precise, this follows if we assume that t̂ and the geodesic from x0 to x1 lie in open

hemisphere. Since we think of errch(T0) as small, this constraint is easy to satisfy.
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We use only some of all possible camera-to-point edges, as they increase problem

size, with diminishing returns. Similar to [6], to choose a subset of points to add to our

problem we solve a simple graph covering problem: we greedily choose points that are

visible to the most (as-yet-uncovered) cameras, until all cameras see k points. (We use

k = 6 in our experiments.) Every camera-to-point edge in with this subset of points is

included in our translations problem.

Cleaning with 1DSfM. We run 1DSfM on N = 48 random subproblems. We then

remove all edges with accumulated inconsistency scores ≥ τ ·N from the translations

problem. We use τ = 0.10 in our experiments.

Solving a Translations Problem. We minimize our sum of squared chordal distance

objective function using Ceres Solver [1], a state-of-the-art nonlinear least squares pack-

age. We use default solver settings, except that we set the linear solver to be an iterative

Schur method with Jacobi preconditioning. Additionally, we weight each constraint to

prevent camera-to-point edges from dominating the problem, since there are many more

of these than camera-to-camera edges. We set camera-to-camera (cc) edge weights to

1.0 and camera-to-point (cp) edges weights to α · |cc edges| / |cp edges|. In our experi-

ments we use α = 0.5, so cc edges contribute twice as much to the objective function

as cp edges. For runs using a robust cost function, we use a Huber loss with width

0.1, implemented in Ceres. After solving the translations problem, we use this initial-

ization, along with the camera rotations, to triangulate all points, and run a final bundle

adjustment using the standard reprojection error.

7 Results

We evaluated our algorithm on realistic synthetic scenes, as well as a number of medium-

to large-scale Internet datasets downloaded by geotag search from Flickr, as summa-

rized in Table 2, and shown as point clouds in Figure 3. The Notre Dame dataset is

publicly available online with Bundler [19].

1DSfM. We demonstrate that 1DSfM accurately identifies outliers in two ways. First,

we tested on synthetic problems where the error on each edge (and its inlier/outlier sta-

tus) is known. We observed that synthetic problems created with some common random

graph models are easier than real problems, so we form our synthetic problems by using

an existing reconstruction as a problem instance (reusing the epipolar graph structure

and computing pairwise translations from the sequential SfM camera positions), and

then adding known perturbations to every translation direction. We sampled a random

15% of edges, replacing them with translation directions sampled uniformly at random,

and perturbed the rest of the translation directions with Gaussian noise with standard

deviation 11.4 degrees. (We chose these numbers as representative of real problems we

have observed.) Edges with error greater than 30 degrees were deemed to be the ground

truth outliers for the purposes of analysis. We ran our 1DSfM algorithm on problem in-

stances generated from four scenes—Roman Forum, Tower of London, Ellis Island,

and Notre Dame. At our threshold of τ = 0.1, we found that 1DSfM classified edges

with a precision of 0.96 and an recall of 0.92 (averaged across the four datasets). This

high classification accuracy gives us confidence in the method.
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Fig. 2. Performance of 1DSfM at identifying outliers in real data. The x-axis is the error for each

input translation direction. 1DSfM classifies each of these as accepted or rejected. The lines are

cumulative distribution functions for both accepted edges (solid lines) and rejected edges (dotted

lines) for four datasets. We see that the accepted edges have many more low residual edges, and

the rejected edges contain many edges with much higher residuals.

We also demonstrate 1DSfM on real problems where ground truth is not known, but

for which we can still compare translation directions from pairwise EGs to a reference

reconstruction. Figure 2 shows cumulative distributions of errors in pairwise translation

estimates, for edges deemed inliers and outliers by 1DSfM on four of our datasets.

To approximate the inherent noisiness of the input epipolar geometries, we see how

well they agree with a good sequential SfM model built using [19]. The residuals in

each edge (the distance between the epipolar geometry translations direction and the

translation direction computed from the reference sequential SfM model, measured with

the geodesic distance) is closely tied to the noise in the input measurements. Our 1DSfM

algorithm divides these input translation edges into a set to keep, and a set to discard.

Figure 2 shows the distribution of residuals in these two sets. Notice that while most

inlier edges have low residual (are not very noisy) the edges selected to be removed

are much noisier. For example, we can see that the median error for rejected edges is

around 80◦ for several datasets. 1DSfM removes a relatively small number of correct

edges, but helps significantly by getting rid of most outlier edges.

Comparison to Sequential SfM. Because ground truth positions are usually unavail-

able for large-scale SfM problems, we show our method gives similar results to a se-

quential SfM system based on Bundler [19], but in much less time. Table 2 shows

the similarity between these sequential SfM solutions and the results of several global

algorithms, computed as mean and median distances between corresponding cameras

between the two SfM models, across all of our datasets. The units in Table 2 are ap-

proximately in meters, as we use geotags associated with images in the collection to

place each sequential SfM reconstruction in an approximate world coordinate frame,

and use a RANSAC approach to compute the absolute orientation between a candidate

reconstruction and the sequential SfM solution (using correspondences between camera

centers).

In Table 2, we compare several variants of our method: with and without a final

bundle adjustment (BA), and with four combinations of outlier treatments. We see that

in all cases, we return a result with a median within several meters of the sequential SfM
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Table 2. Comparison of several methods to a reference sequential SfM method based on [19].

Units are approximately in meters; sizes are the number of cameras in the largest component of

the input EG graph. The methods are our translations solver combined with all four permutations

of using 1DSfM and robust cost functions. The fifth column is a baseline method [11]. Results are

given as Nc, the number of cameras reconstructed, x̄, the average error, and x̃, the median error,

where by errors are the distances to corresponding cameras in [19]. Lower error is closer to the

reference method. The lowest mean and median in each row are bolded, as well as two-way ties.

without 1DSfM with 1DSfM Robust Loss [11]

no BA BA no BA BA BA 1DSfM+BA BA

Name Size Nc x̃ Nc x̃ x̄ x̃ Nc x̃ x̄ Nc x̃ x̄ Nc x̃ x̄ Nc x̃

Piccadilly 80 2152 3.2 1905 1.0 9e3 4.1 1932 0.6 5e1 1965 0.3 9e3 1956 0.7 7e2 1638 10

Union Square 300 789 9.9 700 3.3 3e3 5.6 702 3.5 5e2 699 3.2 2e2 710 3.4 9e1 521 10

Roman Forum 200 1084 6.9 973 1.5 3e4 6.1 981 0.3 4e1 1000 2.7 9e5 989 0.2 3e0 840 37

Vienna Cathedral 120 836 5.5 758 0.9 9e3 6.6 757 0.5 8e3 770 0.7 7e4 770 0.4 2e4 652 12

Piazza del Popolo 60 328 1.8 311 1.2 2e1 3.1 303 2.6 4e0 317 1.6 9e1 308 2.2 2e2 93 16

NYC Library 130 332 1.7 297 1.5 7e2 2.5 292 0.9 2e1 307 0.2 8e1 295 0.4 1e0 271 1.4

Alamo 70 577 1.0 528 0.2 7e3 1.1 521 0.3 7e0 541 0.2 7e5 529 0.3 2e7 422 2.4

Metropolis 200 341 6.0 282 0.5 1e3 9.9 288 1.2 9e0 292 0.6 3e1 291 0.5 7e1 240 18

Yorkminster 150 437 7.0 405 0.2 3e3 3.4 395 0.2 1e4 416 0.4 9e3 401 0.1 5e2 345 6.7

Montreal N.D. 30 450 0.9 431 0.2 4e3 2.5 425 0.9 1e0 431 0.1 4e-1 427 0.4 1e0 357 9.8

Tower of London 300 572 9.4 417 1.1 2e3 11 414 0.4 3e3 427 0.2 3e4 414 1.0 4e1 306 44

Ellis Island 180 227 4.1 211 0.4 4e0 3.7 213 0.4 4e1 213 0.3 3e0 214 0.3 3e0 203 8.0

Notre Dame 300 553 19 524 0.7 2e4 10 500 2.1 7e0 530 0.8 7e4 507 1.9 7e0 473 2.1

solution, and often a much smaller distance. In general, bundle adjustment significantly

reduces error. The effect of 1DSfM shows up clearly in the average error, which usually

is reduced by orders of magnitude. While we see that both robust cost functions and

1DSfM improve reconstructions, they are not interchangeable—rather, 1DSfM is able

to greatly reduce average error, while robust cost functions usually increase it, while

decreasing median error. These two approaches cope with outliers in complementary

ways, and so we advocate using both 1DSfM and a Huber loss function (as mentioned

earlier, we found that other, non-convex loss functions performed poorly).

Qualitatively, our reconstructions have high quality; visualizations of many of the

results are shown in Figure 3. Finally, Figure 4 shows our largest reconstruction, Trafal-

gar, with 4591 images. This model was computed with 1DSfM and bundle adjustment.

The cameras have a median error of about 0.60 meters compared to sequential SfM, and

it took about 3.4 hours to run, compared to 8.1 hours for sequential SfM.

Table 3 shows timing information for the experiments in Table 2, comparing our

method especially with sequential SfM. All experiments were run on a machine with

two 2.53 GHz Intel Xeon E5540 quad core processors. Our method is always faster

than sequential SfM, usually 2-4 times faster, with even bigger improvements on larger

datasets such as Piccadilly. The majority of our time in each dataset is spent on bundle

adjustment, although unlike sequential SfM we only need to do a single large bundle

adjustment, rather than many repeated ones.

Comparison to [11]. We also compared our results to [11], which solves the translations

problem by minimizing the cross product of solution translations with input pairwise

translations. To avoid bias from the cross product, this linear method is wrapped in an

iterative reweighting framework. We used our own SciPy implementation, on the same

machine as the other trials. In a slight departure, we use only three rounds of reweight-

ing rather than four, since with each round of reweighting the underlying linear system
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Table 3. Timing information, in seconds for the results in Table 2. Times are listed for solving

for rotations with [5] (TR), removing outliers with 1DSfM (TO), running a translations problem

solver (TS), and for bundle adjustment (TBA).

without 1DSfM with 1DSfM using [11] using [19]

Name TR TS TBA Σ TO TS TBA Σ TS TBA Σ T

Piccadily 570 177 3252 3999 122 366 2425 3483 9497 1046 11113 44369

Union Square 17 71 401 489 20 75 340 452 277 150 444 1244

Roman Forum 37 104 1733 1874 40 135 1245 1457 290 694 1021 4533

Vienna Cathedral 98 225 3611 3934 60 144 2837 3139 1282 893 2273 10276

Piazza del Popolo 14 28 213 255 9 35 191 249 98 26 138 1287

NYC Library 9 38 382 429 13 54 392 468 21 190 220 3807

Alamo 56 96 646 798 29 73 752 910 1039 308 1403 1654

Madrid Metropolis 15 32 224 271 8 20 201 244 57 67 139 1315

Yorkminster 11 60 955 1026 18 93 777 899 81 302 394 3225

Montreal Notre Dame 17 76 1043 1136 22 75 1135 1249 25 382 424 2710

Tower of London 9 52 750 811 14 55 606 648 17 238 264 1900

Ellis Island 12 17 276 305 7 13 139 171 7 108 127 1191

Notre Dame 53 152 2139 2344 42 59 1445 1599 299 841 1193 6154

becomes increasingly poorly conditioned. We evaluated [11] on translations problems

produced by 1DSfM, reporting the results after bundle adjustment, since this combina-

tion gave the best results. Median error is reported in Table 2 and timing information in

Table 3. While [11] is usually faster than our method (especially on smaller problems),

the accuracy (and number of reconstructed cameras) greatly suffers.

Discussion. Our method has at its core a nonlinear optimization framework that we

have found to be particularly effective, even with random initialization (once outliers

are removed). Our analysis of convergence in Section 5 suggests reasons for this, but

understanding fully the convergence properties of translations problems is still an inter-

esting avenue for future work. As we noted previously, the same analysis extends to L1

style robust cost functions as well. We believe our work points to nonlinear optimization

being reconsidered as a tool for structure-from-motion beyond bundle adjusting a good

solution. It is also instructive to contrast ours with other global methods. In particular,

the recent linear method by Jiang et al. works on very different principles to ours, both

in addressing outliers and in its efficient linear optimization framework built on triplets.

Other recent methods use more sophisticated optimization methods (including discrete

optimization) [6]. We believe a strength of our method is its simplicity—it relies on a

well-studied combinatorial optimization problem, and a simple non-linear solver.

Limitations. Our method is based on averaging epipolar geometries to compute an

accurate initialization. This works well when there are many EGs to reason about. How-

ever, sometimes EGs are sparse, such as when scenes are poorly connected. Averag-

ing very few measurements may not be accurate. Figure 5 shows a failure case of our

method. A correct reconstruction from [19] is on the left, and our broken solution is on

the right. The scene has a central building with smaller domed buildings on each side.

This scene is challenging because of the wide baseline between the buildings, and the

similar appearance of the domes. There are few EGs that connect cameras which view

different buildings. A second limitation is that our method does not reason about self-
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Piccadilly Roman Forum

Union Square Ellis Island

Vienna Cathedral Tower of London Notre Dame

Yorkminster Alamo

Fig. 3. Selected renders of models produced by our method
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Fig. 4. A large reconstruction of Trafalgar Square containing 4597 images

Fig. 5. (a) A correct model of Gendarmenmarkt from [19]. (b) A broken model by our method.

consistent outliers, such as those arising from ambiguous structures in the scene. To

deal with these cases, SfM disambiguation methods could be used [23,15,22].

8 Conclusion

We presented a new method for solving the global SfM translations problem. Our method

has two pieces: 1DSfM, a a method for removing outliers by solving 1-dimension order-

ing problems, and a simple translations solver based on squared chordal distance. Like

other global methods, it treats images equally and runs faster than common sequential

methods. Our method stands out by being particularly simple, and represents a different

take on the problem from previous methods which focus on linear formulations.

We have demonstrated the effectiveness of our method on a range of datasets in

the wild; these are available, along with code, at http://www.cs.cornell.edu/

projects/1dsfm. We produce models comparable to existing sequential methods

in much less time. In the future we hope to explore further ways of aggregating 1DSfM

subproblems than simple summation, which could shed light on more complicated out-

liers, such as those arising from ambiguous scene structures.
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