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ABSTRACT Multi-sensor integrated positioning technique that combines complementary features of the

global positioning system (GPS) and inertial navigation system (INS) for navigation in challenging urban

environments has been a hot research area. A variety of algorithms have been proposed over the past two

decades for this well-studied field. However, with the increasing demands of seamless positioning, traditional

GPS/INS integrated technique faces rigorous challenges, especially in GPS-denied environment, where

traditional techniques cannot be applied directly. To improve the precision and robustness of the navigation

system, a novel hybrid GPS/INS/Doppler velocity log (DVL) positioning method is proposed, which

introduces DVL as the reference information to assist the GPS module to correct the divergence error of

INS. A new robust adaptive federated strong tracking Kalman filter (RAFSTKF) algorithm is also presented

for data fusion, which has the advantage of robustness with respect to the uncertainty of the system model.

Meanwhile, we introduce the least square principle and adaptively adjust information sharing factors to

obtain the optimal estimation, which can improve the reliability of the overall system. The theoretical analysis

and simulation results demonstrate the effectiveness of the proposed hybrid GPS/INS/DVL positioning

method based on RAFSTKF. In addition, the tracking performance of the proposed method outperforms

that of traditional federated Kalman filter.

INDEX TERMS Localization, target tracking, positioning, hybrid navigation, Kalman filter, weighted least

square, federated strong tracking filter.

I. INTRODUCION

Many existing and perspective technologies of navigation

and location systems would benefit notably from the ability

to position accurately and reliably in challenging environ-

ments [1]–[6]. Recently, inertial navigation systems (INS)

provide users with position, velocity, and attitude (PVA)

information with high resolution independent of the vehicle

platform [7], [8]. However the PVA information provided by

INS can only maintain reliable precision for short time lim-

ited by the fact that the INS navigation error will accumulate
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over time and diverge after a long duration [9]. Global posi-

tioning system (GPS) is a satellite-based navigation system

that provides a user with proper equipment access to useful

and accurate real-time three-dimensional (3D) position and

velocity information anywhere on the globe [10]. However,

it is not only susceptible to multipath effect but also unable

to effectively fulfill precise error correction in a wide range

of driving areas [11]–[13]. Doppler velocity log (DVL) uti-

lizing the doppler effect is an ideal sensor to get measure-

ment speed in high precision and is easy to use [14]–[16].

Ultra-wideband (UWB) technology [17], [18] can provide

a ranging accuracy of tens of centimeters with fine time

resolution and has robustness against multipath interference,
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which makes UWB particularly attractive for dense multipath

environments [19]–[21].

As these navigation sensors and technologies have com-

plementary characteristics, integrated navigation system has

become a hot research area and many researchers have

proposed different combination methods to improve the

navigation precision. In the past few decades, benefit-

ting from overcoming each other’s limitations and perfor-

mance improvement, integrated GPS/INS system offering

decimeter-to-centimeter-level relative positioning accuracy

has become a standard approach in modern navigation

area [22], [23]. It has been applied in many fields such as

military and civilian aircrafts, land vehicles, ships and sub-

marines, missiles and rockets, etc., whose advantages include

decreasing the inertial errors in position and velocity, the cal-

ibration of gyros and accelerometers et al [24], [25]. To offer

improved performance, researchers have studied the fusion

of additional sensors for relative navigation. For example,

Rad et al. improved the attitude and position obtained via INS

by integration of its information, star tracker attitude mea-

surements, and horizon sensor transformation matrix [26].

Wang et al. [27] presented a method for fusing data from INS,

GPS and VisNav based on information filter to estimate the

relative navigation information. Wang et al. [15] proposed

a multi-sensor integrated navigation scheme based on INS,

Celestial Navigation System (CNS) and DVL to improve

the performance of autonomous navigation for Unmanned

Surface Vehicles (USVs) [15].

Efficient implementation of estimating algorithm plays a

crucial role in integrated navigation, also leads to cost reduc-

tion [28], [29]. In general, there are a number of different

solutions to state estimation for navigation and positioning,

making it often unclear to decide the optimal solutions [30].

Kalman filter (KF) is the most commonly used estimation

technique for integrating signals from short-term high perfor-

mance systems, like INS, with reference systems exhibiting

long-term stability, like GPS. The well-known conventional

KF providing optimal solution in the sense of minimum

variance criterion requires an accurate system model and

exact stochastic information [31]. However, in most situa-

tions, the system model has an unknown bias, which may

degrade the performance of the KF and even may cause

the filter to diverge [32]–[34]. Strong tracking filter (STF)

proposed by Zhou et al. introduces a fading factor to constrain

the innovation outputs of the filter to satisfy the orthogo-

nality principle. It is an ideal substitution to KF owing to

its strong robustness and tracking ability of mutation sta-

tus [35]–[37]. Moderate computation complexity is another

merit of STF. The federated filter (FF) is a near-optimal esti-

mator for decentralized, multi-sensor data fusion. Its parti-

tioned estimation architecture is based on theoretically sound

information-sharing principles. FF consists of one or more

sensor-dedicated local filters, generally operating in parallel,

plus a master combining filter. The master filter periodi-

cally fuses the outputs of the local filters to get the global

estimation.

In this paper, we propose a novel GPS/INS/DVL hybrid

positioning method using robust adaptive federated strong

tracking Kalman filter (RAFSTKF). One of the key contri-

butions of our research is that we use 3D position infor-

mation of GPS and 3D velocity information of DVL as the

reference information to correct the INS navigation error at

the same time. In addition, we also propose a RAFSTKF

algorithm based on least square principle, which is capa-

ble of providing stable navigation information even when

it is under poor conditions. The algorithm is comprised of

the following parts: 1) local filter: we establish two local

filters based on STF. The measurement input of the first

local filter is the position information difference between

INS and GPS, while the measurement input of the second

local filter is the velocity information difference between INS

and DVL. 2) master filter: master filter is based on adaptive

weighted least square principle. We adaptively adjust the

outputs of the two local filters by using information sharing

factors to get the optimum estimation. 3) feedback: once

the optimum estimation is obtained, we feed it back to the

INS. Therefore the INS module outputs accurate navigation

information. The proposed algorithm and architecture are

assessed by simulations conducted through a self-developed

platformwhich is capable of providing whole-procedure sim-

ulation from trajectory generation to performance evaluation.

Simulation results demonstrate that the proposed federated

GPS/INS/DVL system based on the RAFSTKF algorithm can

improve the navigation accuracy significantly. In addition,

we find that the sampling interval is an important factor

related to the accuracy, in general the shorter the sampling

interval is, the better the navigation result.

The remainder of the paper is organized as follows.

In section II, we present brief introductions about the fed-

erated filter and strong tracking filter. Section III introduces

the multi-sensor integrated navigation method using adap-

tive robust federated strong tracking Kalman filter algorithm.

Simulation results are presented and the system performance

is discussed in section IV, followed by the conclusions sum-

marized in section V.

II. BASIC PRINCIPLE

A. FEDERATED FILTER

As depicted in Fig. 1, FF is a two-stage data processing

technique in which the outputs of local sensor-related filters

are subsequently processed and combined by a larger mas-

ter filter [38]. We consider the system state vector X that

propagates from (k-1)-th to k-th time instant according to the

following dynamic model

Xk = Fk,k−1Xk−1 +Wk−1. (1)

The observation equation of i-th subsystem is given by

Zik = HikXk + Vik , (2)

where Fk,k−1 is the system transition matrix and Hik is the

observationmatrix. It should be noted thatWk andVik are pro-

cess noise and measurement noise, respectively. Wk and Vik
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FIGURE 1. The general structure of federated filter.

satisfy the following statistical properties

E [Wk ] = 0, (3)

E [Vik ] = 0, (4)

E
[

WkV
T
ik

]

= 0, (5)

E
[

WkW
T
j

]

= Qkδkj, (6)

E
[

VikV
T
ij

]

= Rikδkj, (7)

where Qk is the covariance matrix of process noise, Rik is

the covariance matrix of measurement noise, and δkj is the

Kronecker-delta function.

Assuming the estimation outputs of N local filters are

X̂1, X̂2, · · · , X̂N and the corresponding covariance matrices

of estimation error are P1,P2, · · · ,PN , then the information

fusion of the master filter can be described as follows

P−1
g =

N
∑

i=1

P−1
i , (8)

X̂g = Pg

N
∑

i=1

P−1
i X̂i. (9)

The feedback information from master filter to local fil-

ter is state estimation of master filter X̂g and estimation

covariance ξ−1
i Pg. ξi is the information sharing factor which

satisfies the following condition

N
∑

i=1

ξi = 1. (10)

B. STRONG TRACKING FILTER

To improve the stability and enhance robustness for model

uncertainty of traditional KF, we consider the STF algorithm.

STF utilizes a suboptimal fading factor λk to decrease the

influence of preceeding data, making the orthogonality prin-

ciple (OP) valid all the way [39]

E
[

γk+jγ
T
k

]

= 0, k = 0, 1, 2, · · · , j = 1,2, · · ·, (11)

where

γk = Zk − Hk X̂k,k−1. (12)

Hence, the STFmethods can still provide reliable real-time

tracking ability, estimate the position with satisfactory preci-

sion even when statistical information is not sufficient, and

subsequently yield a predicted trajectory that matches the

actual trajectory.

The covariance matrix of one step prediction of state error

is modified as

Pk,k−1 = λkFk,k−1Pk−1F
T
k,k−1 + Qk−1. (13)

Meanwhile, the gain matrix is transformed into the follow-

ing form

Kk = Pk,k−1H
T
k

[

HkPk,k−1H
T
k + Rk

]−1
. (14)

As Pk,k−1 is related to λk , then Kk is also related to λk .

According to [31], in order to deduce λk , we substitute (13)

and (14) into (11)

Pk,k−1H
T
k

[

I −
(

HkPk,k−1H
T
k + Rk

)−1
Vok

]

= 0, (15)

where

Vok = E
[

γkγ
T
k

]

. (16)

Then we get

λkHkFk,k−1Pk−1F
T
k,k−1H

T
k = Vok − HkQk−1H

T
k − Rk .

(17)

Here we define

Mk = HkFk,k−1Pk−1F
T
k,k−1H

T
k , (18)

Nk = Vok − HkQk−1H
T
k − Rk . (19)

The fading factor is determined by the following way [40]

λk =

{

λ0,k , λ0,k > 1

1, λ0,k < 1
(20)

λ0,k =
Tr(Nk )

Tr(Mk )
. (21)

Accordingly, Vok can be given by

Vok =







γ1γ
T
1 , k = 0

ρVok−1 + γkγ
T
k

1 + ρ
, k > 1

(22)

where ρ is a forgetting factor and 0.95 6 ρ 6 0.995. Usually,

we set ρ to be 0.95 as a rule of thumb [41].

The fading factor λk is of great importance in the STF

method. Introducing λk helps to strength the effect of new

information and decrease the influence of preceeding data,

and keeps the convergence of the filter. Meanwhile, an appro-

priate value will increase the accuracy of the system and

measurement models by minimizing the impact of obsolete

data. When the mobile terminal (MT) moves with a high

speed, we usually set λk > 1 to strengthen the effect of

new information. When MT moves at a normal speed, we let

λk = 1 owing to accuracy of the system and observationmod-

els, and STF becomes the standard KF at the moment [42].
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FIGURE 2. Diagram of GPS/INS/DVL navigation mechanism.

III. MULTI-SENSOR INTEGRATED NAVIGATION METHOD

USING ADAPTIVE ROBUST FEDERATED STRONG

TRACKING KALMAN FILTER ALGORITHM

Based on the introduction of navigation sensors in section I

and the basic principle in section II, the multi-sensor inte-

grated navigation method for GPS/INS/DVL using the adap-

tive robust federated strong tracking Kalman filter algorithm

is proposed in this section. In this method, INS module acts

as the main system, and GPS as well as DVL are introduced

as subsystems. As a result, the GPS position information and

the DVL velocity information are used to compensate INS

navigation errors. The diagram of the multi-sensor integrated

navigation method is shown in Fig. 2.

In consideration of gyro drifts and accelerometer biases,

state variables of system can be defined as

X = [φE φN φU δVE δVN δVU δL

δλ δh εrx εry εrz ∇E ∇N ∇U ]
T , (23)

where φE , φN , φU are the attitude errors about east, north

and vertical (up) axes of the platform, respectively. δVE , δVN ,

δVU are the velocity errors along east, north and vertical

direction, respectively. δL, δλ, δh are errors of latitude, longi-

tude and height, respectively. εrx , εry, εrz describe gyro drifts,

and ∇E , ∇N , ∇U represent accelerometer biases.

The system equation of local filter is

Ẋ (t) = F(t)X (t) +W (t), (24)

where F(t) denotes state transition matrix,W (t) is the system

noise vector with the covariance matrix Q(t).

The measurement equation of STF1 is

Z1,k = H1Xk + V1,k , (25)

whereH1 is the measurement matrix,V1,k is the measurement

noise vector of STF1 with the covariance matrix R1,k .

H1 =
[

O3×6 I3×3 O3×6

]

. (26)

Z1,k , the difference between the position of INS and the

position of GPS, is the observation of the measurement

equation in STF1, and it can be written as

Z1,k =





LINS − LGPS
λINS − λGPS
hINS − hGPS



 . (27)

The measurement equation of STF2 is

Z2,k = H2Xk + V2,k , (28)

whereH2 is the measurement matrix,V2,k is the measurement

noise vector of STF2 with the covariance matrix R2,k .

H2 =
[

O3×3 I3×3 O3×9

]

. (29)

Z2,k , the difference between the velocity of INS and the

velocity of DVL, is the observation of the measurement equa-

tion in STF2, and it can be written as

Z2,k =







vINSE − vDVLE

vINSN − vDVLN

vINSU − vDVLU






. (30)

Based on the system equation and measurement equation of

STF1, we get the optimum state estimation X̂1,k of X and

the covariance matrix of optimum state estimation error P1,k
according to STF algorithm as summarized in Algorithm 1.

Similarly X̂2,k and P2,k can also be obtained from the algo-

rithm based on system equation and measurement equation

of STF2. Then the estimated INS error results X̂i,k (i = 1, 2)

and the covariance matrix of optimum state estimation error

Pi,k (i = 1, 2) of the two local strong tracking filters are the

input information of the main filter. In addition, we also put

one step prediction of state X̂k,k−1 and covariance matrix of

Algorithm 1 the calculation process of STF

INITIALIZE (i represents i-th STF):

initial state vector X̂i,0 and covariance matrix Pi,0
CALCULATE(as for k moment):

Input: X̂k−1, Zi,k , Pk−1, Fk,k−1, Hi, Qk−1, Ri,k , Vi,0k−1,

ρi;

Output:

1. one step prediction of state: X̂k,k−1 = Fk,k−1X̂k−1;

2. residual of observation: γi,k = Zi,k − HiX̂k,k−1;

3. covariance of γi,k : Vi,0 =
ρVi,0k−1+γi,kγ

T
i,k

1+ρi
;

4. calculation of Mi,k : Mi,k = HiFk,k−1Pk−1F
T
k,k−1H

T
i ;

5. calculation of Ni,k : Ni,k = Vi,0k − HiQk−1H
T
i − Ri,k ;

6. calculation of λi,0k : λi,0k =
Tr(Ni,k )

Tr(Mi,k )
;

7. covariance matrix of one step prediction of state error:

Pk,k−1 = λi,kFk,k−1Pk−1F
T
k,k−1 + Qk−1;

8. gain matrix:

Ki,k = Pk,k−1H
T
i

[

HiPk,k−1H
T
i + Ri,k

]−1
;

9. state estimation:

X̂i,k = X̂k,k−1 + Ki,k

[

Zi,k − HiX̂k,k−1

]

;

10. covariance matrix of state estimation error:

Pi,k =
[

I − Ki,kHi
]

Pk,k−1

[

I−Ki,kHi
]T

+ Ki,kRi,kK
T
i,k .
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one step prediction of state error Pk,k−1 into the main filter to

collaborate with X̂i,k (i = 1, 2) and Pi,k (i = 1, 2) to obtain the

final optimum state estimation. The final estimation results

are fed back and compensated to correct the INS navigation

information. In the meantime, the final estimation results of

the main filter are fed back to the two local filters.

In order to get the optimum fusion result, we first consider

the direct fusionmethod. The error equation for one-step state

prediction vector X̂k,k−1 can be given by

V
X̂k,k−1

= X̂0
k − X̂k,k−1. (31)

The error equation for the outputs of STF1 X̂1,k becomes

V
X̂1,k

= X̂0
k − X̂1,k . (32)

The error equation for the outputs of STF2 X̂2,k becomes

V
X̂2,k

= X̂0
k − X̂2,k , (33)

where X̂0
k is direct fusion value at the k-th moment.

Then the objective function on the basis of the least square

principle can be written as follows

min
{X̂0

k }

�k =min
{X̂0

k }

V T

X̂k,k−1
P−1
k,k−1VX̂k,k−1

+ V T

X̂1,k
P−1
1,kVX̂1,k

+ V T

X̂2,k
P−1
2,kVX̂2,k

. (34)

Through the derivation of (34), we can get the constrained

relationship of X̂0
k as follows

d�k

dX̂0
k

= 2V T

X̂k,k−1
P−1
k,k−1 + 2V T

X̂1,k
P−1
1,k+ 2V T

X̂2,k
P−1
2,k =0. (35)

Transposing and simplifying above equation result in

P−1
k,k−1(X̂

0
k−X̂k,k−1)+P

−1
1,k (X̂

0
k −X̂1,k )+P

−1
2,k (X̂

0
k−X̂2,k )=0,

(36)

X̂0
k = P

X̂0
k
(P−1

k,k−1X̂k,k−1 + P−1
1,k X̂1,k + P−1

2,k X̂2,k ), (37)

and

P−1

X̂0
k

= P−1
k,k−1 + P−1

1,k + P−1
2,k , (38)

where P
X̂0
k
is the covariance matrix of direct fused estimation

error. As is shown in (37), X̂0
k can be obtained in the fusion

process of the main filter, and it’s the global estimation of the

state. Then the main filter distributes the global estimation

information to each sub-filter according to the principle of

information conservation as shown in Fig. 1. In the direct

fusion filter, the sharing factor is a fixed value, which is the

reciprocal of the sum of the local filters, and the change of

state in dynamic environment is neglected.

In order to optimally balance the weights of the local

filter information outputs and priori estimation based on

the above system model, we can adaptively determine the

weights according to the direct fusion results. As a result,

we can get the final optimum state estimation. We establish

the target function based on the least square principle

min
{X̂k }

Tk = min
{X̂k }

β0,k

(

X̂k−X̂k,k−1

)T
P−1
k,k−1

(

X̂k−X̂k,k−1

)

+β1,k

(

X̂k − X̂1,k

)T
P−1
1,k

(

X̂k − X̂1,k

)

+β2,k

(

X̂k − X̂2,k

)T
P−1
2,k

(

X̂k − X̂2,k

)

, (39)

where β0,k denotes the adaptive factor of one-step state pre-

diction, β1,k denotes the adaptive factor of STF1, and β2,k

denotes the adaptive factor of STF2. The adaptive factors are

related to the discrepancy between the direct fusion vector

and the one-step state prediction, the outputs of local filters.

The smaller the deviation is, the larger the adaptive factor.

Based on the above assumption, we can consider the adaptive

factor as follows

β0,k =

1

||X̂k,k−1−X̂
0
k ||2

1

||X̂k,k−1−X̂
0
k ||2

+ 1

||X̂1,k−X̂
0
k ||2

+ 1

||X̂2,k−X̂
0
k ||2

, (40)

β1,k =

1

||X̂1,k−X̂
0
k ||2

1

||X̂k,k−1−X̂
0
k ||2

+ 1

||X̂1,k−X̂
0
k ||2

+ 1

||X̂2,k−X̂
0
k ||2

, (41)

β2,k =

1

||X̂k,k−1−X̂
0
k ||2

1

||X̂k,k−1−X̂
0
k ||2

+ 1

||X̂1,k−X̂
0
k ||2

+ 1

||X̂2,k−X̂
0
k ||2

, (42)

β0,k + β1,k + β2,k = 1. (43)

By solving (39), we can get

X̂k =P
X̂k
(β0,kP

−1
k,k−1

X̂k,k−1+β1,kP
−1
1,kX̂1,k+β2,kP

−1
2,kX̂2,k ),(44)

then

P−1

X̂k
= β0,kP

−1
k,k−1

+ β1,kP
−1
1,k + β2,kP

−1
2,k , (45)

where X̂k is the final fusion results fed back to the INS to give

the optimum position and velocity estimation.

IV. EXPERIMENTAL RESULTS AND

PERFORMANCE ANALYSIS

A. GENERATION OF TRAJECTORY

Firstly, we generate the real motion information of the vehi-

cle. We set the initial motion parameter of the vehicle as

initial =
[

0 0 0 5 5 0 36.67 116.98 0
]

, (46)

where initial(1 : 3) represents the initial attitude is 0◦, 0◦, 0◦,

initial(4 : 6) represents the initial velocity is 5m/s, 5m/s,

0m/s, and initial(7 : 9) represents the initial position is

36.6◦N , 116.98◦E , 0m.

The vehicle’s state information and the trajectory are

shown in Table 1 and Fig. 3, respectively.

B. THE PARAMETER SETTING OF THE INTEGRATED

NAVIGATION BASED ON RAFSTKF

Through the discussion of section IV, we put the INS error as

state variable whose initial value is set as

X
1,0

= X
2,0

= [O1×15]
T , (47)

where X
1,0

represents the initial state value of STF1,

and X
2,0

represents that of STF2. Apart from the state vari-

ables, we also set the covariance matrix of estimation as
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TABLE 1. Vehicle’s state information.

FIGURE 3. The real trajectory of vehicle, where ’*’ represents the starting
point, and ’·’ represents the ending point.

follows

P1,0 = P2,0 = diag([1.7 × 10−3 1.7 × 10−3 1.7 × 10−2

×0.1 0.1 0.1 1.6 × 10−6 1.6 × 10−6

×10−3 4.8 × 10−7 4.8 × 10−7 4.8 × 10−7

×9.8 × 10−3 9.8 × 10 9.8 × 10−3]2), (48)

where P1,0 and P2,0 represent estimation covariance matrix

of STF1 and STF2, respectively.

Q0 is the initial covariance matrix of the system noise,

which can be given by

Q0 = diag([4.8 × 10−8 4.8 × 10−8 4.8 × 10−8

×9.8 × 10−4 9.8 × 10−4 9.8 × 10−4

×1.6 × 10−7 1.6 × 10−7 1 O1×6]
2). (49)

R1 is the covariance matrix of system position measure-

ment noise, andR2 is the covariancematrix of system velocity

measurement noise. Both of them are white Gaussian noise

and the initial values are set as

R1,0 = diag([5 × 10−5 5 × 10−5 10]2), (50)

R2,0 = diag([0.1 0.1 0.1]2). (51)

C. SIMULATION RESULTS ANALYSIS

Owing to the influence of multipath and the geometry of the

satellite positions, GPS is insensitive to attitude. Although

DVL has the advantage of getting measured speed in high

accuracy, but it cannot give attitude information. Besides,

as can be seen from the measurement equations, we mainly

focus on the velocity errors of the INS/DVL integrated sub-

system and the position errors of the INS/GPS integrated

subsystem. We sacrifice attitude information to a certain

extent so as to get better position and trajectory. In the

meantime, we find that the proposed method has limited

improvement in attitude in the simulations. At the same time,

considering the fact that the accurate position and tracking

are the most important factors cared about in practical appli-

cations, the results of the attitude errors are not given in this

section.

FIGURE 4. Comparison of hybrid federated filter KF based and STF based
with accurate model.

1) COMPARISON OF THE HYBRID FEDERATED

FILTER KF BASED AND STF BASED

The GPS/INS/DVL integrated navigation simulation results

are shown in Fig. 4 and Fig. 5. As depicted in Fig. 4, the STF

based method and the KF based method play almost the same

role in state estimation when the established system model

can faithfully describe the vehicle’s motion. However, when

we add a bias to the system transition matrix representing that

the system model is inaccurate, it is not difficult to find that

the hybrid federated filter STF based method outperforms the

KF based one in Fig. 5. Although the estimations of STF

and KF both have a bias under the case of inaccurate system

model, it’s easy to find that the error of KF accumulates as

time goes by, whereas the error of STF doesn’t accumulate,

which demonstrates STF still has strong tracking ability even

when the system model is inaccurate.

Comparing the trajectory in Fig. 6, we can find that there

are some differences between the adaptive fusion results

based on the proposed method and INS measurement. At the

beginning of the vehicle movement, the proposed method has

minor error compared with the real trajectory. The reason

is that the influence of the measurement noise has not been
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FIGURE 5. Comparison of hybrid federated filter KF based and STF based
with inaccurate model.

FIGURE 6. Trajectory comparison of INS and adaptive fusion.

FIGURE 7. Comparison of east velocity error (Ts = 0.1s).

adjusted. However as time goes by, the adaptive fusion result

gets closer to the real trajectory, whereas INS measurement

still has large errors comparedwith the real trajectory. In addi-

tion, it’s observed that at several turning point, the estimated

result of the proposed method is not ideal. The bigger the

turning angle is, the worse the result it will get. It can be

explained that during the turning periods, the system model

established in this paper has much uncertainty and can not

describe the vehicle motion accurately.

FIGURE 8. Comparison of north velocity error (Ts = 0.1s).

FIGURE 9. Comparison of latitude error (Ts = 0.1s).

FIGURE 10. Comparison of longitude error (Ts = 0.1s).

2) SIMULATION RESULTS OF RAFSTKF

From the results in Fig. 7 to Fig. 10, it can be found that the

proposed method can estimate the actual velocity and posi-

tion error of INS accurately, meanwhile the final navigation

results can correct the errors. It is observed in Fig. 7 and Fig. 8

that the estimated velocity errors barely have biases compared

with the actual INS errors, whereas the estimated latitude and

longitude errors have bigger deviations from the actual one at

the beginning as is shown in Fig. 9 and Fig. 10. That’s because
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FIGURE 11. Comparison of east velocity error (Ts = 1s).

FIGURE 12. comparison of north velocity error (Ts = 1s).

the measurement noise plays an important role in simulation

results when noise added to velocity is smaller than that added

to the position. However, the estimated latitude and longitude

error curves get closer to the actual one as time goes by,

which demonstrates the proposed adaptive fusion method can

improve the positioning accuracy no matter how large the

deviation is in the beginning. In addition, although the INS

error accumulates over time, the proposed method can correct

it accurately.

TABLE 2. MMSE of position.

To further analyze the proposed adaptive fusion method,

we compare the direct fusion method with the adaptive fusion

method in Table 2. From the experimental results, we can

find that both methods have smaller MMSE than the real

one. In addition, the proposed adaptive fusion method still

shows superiority over the direct fusion method in latitude,

longitude and height.

FIGURE 13. Comparison of latitude error (Ts = 1s).

TABLE 3. MMSE of position in different sampling intervals.

3) THE INFLUENCE OF SAMPLING INTERVAL

From the simulation results, it can be found that the sam-

pling interval also has significant impact on the simulation

results. Fig. 7 to Fig. 10 are generated with sampling interval

Ts = 0.1s, while Fig. 11 to Fig. 14 are generated under the

condition of sampling interval Ts = 1s. Fig. 11 shows that

the estimated east velocity error of INS has jitter whereas the

estimated north velocity error of INS in Fig. 12 has slight

bias. When these inaccurate estimations feedback to INS,

it will export imprecise navigation information. However,

when the sampling interval is 0.1s, the INS velocity error

can be accurately estimated, which will contribute to the

final precise navigation. In conclusion, the shorter sampling

interval is, the smaller the velocity deviation. We can find

the same conclusion in INS position error estimation. As is

shown in Fig. 13 and Fig. 14, both the estimated latitude error

of INS and estimated longitude error of INS have biases with

the actual INS errors, whereas the estimated INS position

error converges to the actual one in Fig. 9 and Fig. 10.

We compare the MMSE of position in four different sam-

pling durations to rigorously analyze the impact of sampling

frequency in Table 3. It is clear that with the increase of the

sampling frequency, the MMSE of position becomes smaller

and smaller. If the sampling frequency is high, that is to say

we can get more information from the measurement, which

is advantageous for data update. Moreover, high sampling

frequency plays a key role in the establishment of an accu-

rate system model. All of these factors make high sampling

frequency output precise navigation information.
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FIGURE 14. Comparison of longitude error (Ts = 1s).

FIGURE 15. The vehicle trajectory in Qingdao campus of Shandong
University.

FIGURE 16. Comparisons of east and north velocity errors.

D. PRACTICAL EXPERIMENTAL AND RESULT ANALYSIS

The experiment test was conducted in August 2018 in Qing-

dao campus of Shandong University, along the street of the

campus where dense and tall buildings stand on the side of

FIGURE 17. Comparisons of latitude and longitude errors.

TABLE 4. MMSE of position in the experiment.

the road. All the sensors were mounted on the vehicle to

collect the raw data of optic gyro based inertial measurement

units, including data of gyros and accelerators. The vehicle

initial position is the north latitude 36.36◦, and the east lon-

gitude 120.69◦. The trajectory is shown in Fig. 15. Both the

traditional KF and the proposed algorithm are performed to

compare the performance of the federated filters in this test.

The filtering parameters for the two filters are the same as in

simulative study.

Since the proposed algorithm has very limited improve-

ment in attitude, we only consider the velocity errors and

position errors in this subsection. Fig. 16 and Fig. 17 present

the navigation results estimated by the two algorithms in

the experiment. As is known, the closer the curve is to

zero, the better the effect of the estimation is. It is observed

in Fig. 16 that the velocity errors of the two algorithms

have slight biases, and the latitude and longitude errors that

estimated by the two methods have bigger deviations from

each other during the filtering period in Fig. 17. This result

is consistent with the conclusion we reached in section IV

that the noise added to velocity is smaller than that added to

the position. In the meantime, the big jitters in the picture

occur around the corners, which is caused by the uncertainty

of the system model during the turning periods. Furthermore,

the vehicle is easily affected by the hybrid of Gaussian noise

and non-Gaussian noise in the natural environment, so there

are some deviations in the filtering compared with the results

in relatively gentle simulation environment. Table 4 gives

the experimental results that can be used to compare the

performance of the direct fusion method and the adaptive

fusion method. From the experimental results, we can find
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that the results are a little higher than that in Table 2, yet we

still can get the conclusion that the proposed adaptive fusion

method shows superiority over the direct fusion method in

latitude, longitude and height.

V. CONCLUSION

In this paper, we propose a novel multi-sensor integrated nav-

igation algorithm based on hybrid GPS/INS/DVL module,

which can still provide precise navigation information even

when the vehicle moves in less-than-ideal circumstances. The

integrated navigation system utilizes the state information

of GPS and DVL to correct the INS errors to improve the

navigation accuracy. An efficient RAFSTKF algorithm is

also presented for data fusion, which has the advantage of

robustness with respect to the uncertainty of system model.

This paper also introduces the least square principle and

adaptively adjusts information sharing factors to obtain the

optimal estimation, which can improve the reliability of over-

all system. The simulation result and practical experiment

illustrate that the adaptive fusion method shows superiority

over the direct fusion method in terms of the MMSE of

position. In addition, the sampling interval also plays an

important role in the navigation results. A large number

of experimental results show that the shorter the sampling

interval is, the better the navigation result will be. Owing to

the influence of multipath and the geometry of the satellite

positions, GPS is insensitive to attitude, as well as the speed

sensitive DVL. The most important accessible performance

in this paper is the improvement for positions and trajectory,

however, the proposed method has limited improvement in

attitude. In the future work, we will focus on improving

the performance of the vehicle from three aspects, including

attitude, position and velocity.
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