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The growth-optimal portfolio is designed to have maximum expected log-return over the next rebalancing

period. Thus, it can be computed with relative ease by solving a static optimization problem. The growth-

optimal portfolio has sparked fascination among finance professionals and researchers because it can be

shown to outperform any other portfolio with probability 1 in the long run. In the short run, however, it is

notoriously volatile. Moreover, its computation requires precise knowledge of the asset return distribution,

which is not directly observable but must be inferred from sparse data. By using methods from distribu-

tionally robust optimization, we design fixed-mix strategies that offer similar performance guarantees as the

growth-optimal portfolio but for a finite investment horizon and for a whole family of distributions that share

the same first and second-order moments. We demonstrate that the resulting robust growth-optimal portfo-

lios can be computed efficiently by solving a tractable conic program whose size is independent of the length

of the investment horizon. Simulated and empirical backtests show that the robust growth-optimal portfolios

are competitive with the classical growth-optimal portfolio across most realistic investment horizons and for

an overwhelming majority of contaminated return distributions.

Key words : Portfolio optimization, growth-optimal portfolio, distributionally robust optimization,
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1. Introduction

Consider a portfolio invested in various risky assets and assume that this portfolio is self-financing

in the sense that there are no cash withdrawals or injections after the initial endowment. Loosely

speaking, the primary management objective is to design an investment strategy that ensures

steady portfolio growth while controlling the fund’s risk exposure. Modern portfolio theory based

on the pioneering work by Markowitz (1952) suggests that in this situation investors should seek

an optimal trade-off between the mean and variance of portfolio returns. The Markowitz approach

has gained enormous popularity as it is intuitively appealing and lays the foundations for the

celebrated capital asset pricing model due to Sharpe (1964), Mossin (1966) and Lintner (1965).

Another benefit is that any mean-variance efficient portfolio can be computed rapidly even for a

large asset universe by solving a tractable quadratic program.
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Unfortunately, however, the Markowitz approach is static. It plans only for the next rebalancing

period and ignores that the end-of-period wealth will be reinvested. This is troubling because

of Roll’s insight that a number of mean-variance efficient portfolios lead to almost sure ruin if

the available capital is infinitely often reinvested and returns are serially independent (Roll 1973,

p. 551). The Markowitz approach also burdens investors with specifying their utility functions,

which are needed to find the portfolios on the efficient frontier that are best aligned with their

individual risk preferences. In this context Roy (1952) aptly noted that ‘a man who seeks advice

about his actions will not be grateful for the suggestion that he maximize expected utility.’

Some of the shortcomings of the Markowitz approach are alleviated by the Kelly strategy, which

maximizes the expected portfolio growth rate, that is, the logarithm of the total portfolio returns’

geometric mean over a sequence of consecutive rebalancing intervals. If the asset returns are serially

independent and identically distributed, the strong law of large numbers implies that the portfolio

growth rate over an infinite investment horizon equals the expected logarithm (i.e., the expected

log-utility) of the total portfolio return over any single rebalancing period; see e.g. Cover and

Thomas (1991) or Luenberger (1998) for a textbook treatment of the Kelly strategy. Kelly (1956)

invented his strategy to determine the optimal wagers in repeated betting games. The strategy

was then extended to the realm of portfolio management by Latané (1959). Adopting standard

terminology, we refer to the portfolio managed under the Kelly strategy as the growth-optimal

portfolio. This portfolio displays several intriguing properties that continue to fascinate finance

professionals and academics alike. First and foremost, in the long run the growth-optimal portfolio

can be shown to accumulate more wealth than any other portfolio with probability 1. This powerful

result was first proved by Kelly (1956) in a binomial setting and then generalized by Breiman (1961)

to situations where returns are stationary and serially independent. Algoet and Cover (1988) later

showed that Breiman’s result remains valid even if the independence assumption is relaxed. The

growth-optimal portfolio also minimizes the expected time to reach a preassigned monetary target

V asymptotically as V tends to infinity, see Breiman (1961) and Algoet and Cover (1988), and it

maximizes the median of the investor’s fortune, see Ethier (2004). Hakansson and Miller (1975)

further established that a Kelly investor never risks ruin. Maybe surprisingly, Dempster et al.

(2008) could construct examples where the growth-optimal portfolio creates value even though

every tradable asset becomes almost surely worthless in the long run. Hakansson (1971b) pointed

out that the growth-optimal portfolio is myopic, meaning that the current portfolio composition

only depends on the distribution of returns over the next rebalancing period. This property has

computational significance as it enables investors to compute the Kelly strategy, which is optimal

across a multi-period investment horizon, by solving a single-period convex optimization problem.

A comprehensive list of properties of the growth-optimal portfolio has recently been compiled by
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MacLean et al. (2010). Moreover, Poundstone (2005) narrated the colorful history of the Kelly

strategy in gambling and speculation, while Christensen (2012) provided a detailed review of the

academic literature. Remarkably, some of the most successful investors like Warren Buffet, Bill

Gross and John Maynard Keynes are reported to have used Kelly-type strategies to manage their

funds; see e.g. Ziemba (2005).

The almost sure asymptotic optimality of the Kelly strategy has prompted a heated debate

about its role as a normative investment rule. Latané (1959), Hakansson (1971a) and Thorp (1971)

attributed the Kelly strategy an objective superiority over other strategies and argued that every

investor with a sufficiently long planning horizon should hold the growth-optimal portfolio. Samuel-

son (1963, 1971) and Merton and Samuelson (1974) contested this view on the grounds that the

growth-optimal portfolio can be strictly dominated under non-logarithmic preferences, irrespective

of the length of the planning horizon. Nowadays there seems to be a consensus that whether or not

the growth-optimal portfolio can claim a special status depends largely on one’s definition of ratio-

nality. In this context Luenberger (1993) has shown that Kelly-type strategies enjoy a universal

optimality property under a natural preference relation for deterministic wealth sequences.

Even though the growth-optimal portfolio is guaranteed to dominate any other portfolio with

probability 1 in the long run, it tends to be very risky in the short term. Judicious investors

might therefore ask how long it will take until the growth-optimal portfolio outperforms a given

benchmark with high confidence. Unfortunately, there is evidence that the long run may be long

indeed. Rubinstein (1991) demonstrates, for instance, that in a Black Scholes economy it may take

208 years to be 95% sure that the Kelly strategy beats an all-cash strategy and even 4,700 years to

be 95% sure that it beats an all-stock strategy. Investors with a finite lifetime may thus be better

off pursuing a strategy that is tailored to their individual planning horizon.

The Kelly strategy also suffers from another shortcoming that is maybe less well recognized: the

computation of the optimal portfolio weights requires perfect knowledge of the joint asset return

distribution. In the academic literature, this distribution is often assumed to be known. In prac-

tice, however, it is already difficult to estimate the mean returns to within workable precision, let

alone the complete distribution function; see e.g. § 8.5 of Luenberger (1998). As estimation errors

are unavoidable, the asset return distribution is ambiguous. Real investors have only limited prior

information on this distribution, e.g. in the form of confidence intervals for its first and second-

order moments. As the Kelly strategy is tailored to a single distribution, it is ignorant of ambiguity.

Michaud (1989), Best and Grauer (1991) and Chopra and Ziemba (1993) have shown that portfolios

optimized in view of a single nominal distribution often perform poorly in out-of-sample experi-

ments, that is, when the data-generating distribution differs from the one used in the optimization.

Therefore, ambiguity-averse investors may be better off pursuing a strategy that is optimized
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against all distributions consistent with the given prior information. We emphasize that ambiguity-

aversion enjoys strong justification from decision theory, see Gilboa and Schmeidler (1989).

The family of all return distributions consistent with the available prior information is referred

to as the ambiguity set. In this paper we will assume that the asset returns follow a weak sense

white noise process, which means that the ambiguity set contains all distributions under which

the asset returns are serially uncorrelated and have period-wise identical first and second-order

moments. No other distributional information is assumed to be available. To enhance realism, we

will later generalize this basic ambiguity set to allow for moment ambiguity.

The goal of this paper is to design robust growth-optimal portfolios that offer similar guarantees

as the classical growth-optimal portfolio—but for a finite investment horizon and for all return

distributions in the ambiguity set. The classical growth-optimal portfolio maximizes the return

level one can guarantee to achieve with probability 1 over an infinite investment horizon and for a

single known return distribution. As it is impossible to establish almost sure guarantees for finite

time periods, we strive to construct a portfolio that maximizes the return level one can guarantee to

achieve with probability 1−ε over a given finite investment horizon and for every return distribution

in the ambiguity set. The tolerance ε ∈ (0,1) is chosen by the investor and reflects the acceptable

violation probability of the guarantee. While the guaranteed return level for short periods of time

and small violation probabilities ε is likely to be negative, we hope that attractive return guarantees

will emerge for longer investment horizons even if ε remains small.

The overwhelming popularity of the classical Markowitz approach is owed, at least partly, to its

favorable computational properties. A similar statement holds true for the classical growth-optimal

portfolio, which can be computed with relative ease due to its myopic nature, see, e.g., Estrada

(2010) and § 2.1 of Christensen (2012). As computational tractability is critical for the practical

usefulness of an investment rule, we will not attempt to optimize over all causal portfolio strategies

in this paper. Indeed, this would be a hopeless undertaking as general causal policies cannot even be

represented in a computer. Instead, we will restrict attention to memoryless fixed-mix strategies that

keep the portfolio composition constant across all rebalancing dates and observation histories. This

choice is motivated by the observation that fixed-mix strategies are optimal for infinite investment

horizons. Thus, we expect that the best fixed-mix strategy will achieve a similar performance as

the best causal strategy even for finite (but sufficiently long) investment horizons.

The main contributions of this paper can be summarized as follows.

• We introduce robust growth-optimal portfolios that offer similar performance guarantees as

the classical growth-optimal portfolio but for finite investment horizons and ambiguous return

distributions. Robust growth-optimal portfolios maximize a quadratic approximation of the

growth rate one can guarantee to achieve with probability 1− ε by using fixed-mix strategies.
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This guarantee holds for a finite investment horizon and for all asset return distributions in

the ambiguity set. Equivalently, the robust growth-optimal portfolios maximize the worst-case

value-at-risk at level ε of a quadratic approximation of the portfolio growth rate over the given

investment horizon, where the worst case is taken across all distributions in the ambiguity set.

• Using recent results from distributionally robust chance constrained programming by Zymler

et al. (2013a), we show that the worst-case value-at-risk of the quadratic approximation of

the portfolio growth rate can be expressed as the optimal value of a tractable semidefinite

program (SDP) whose size scales with the number of assets and the length of the investment

horizon. We then exploit temporal symmetries to solve this SDP analytically. This allows us

to show that any robust growth-optimal portfolio can be computed efficiently as the solution

of a tractable second-order cone program (SOCP) whose size scales with the number of assets

but is independent of the length of the investment horizon.

• We show that the robust growth-optimal portfolios are near-optimal for isoelastic utility func-

tions with relative risk aversion parameters %& 1. Thus, they can be viewed as fractional Kelly

strategies, which have been suggested as heuristic remedies for over-betting in the presence of

model risk, see, e.g., Christensen (2012). Our analysis provides a theoretical justification for

using fractional Kelly strategies and offers a systematic method to select the fractional Kelly

strategy that is most appropriate for a given investment horizon and violation probability ε.

• In simulated and empirical backtests we show that the robust growth-optimal portfolios are

competitive with the classical growth-optimal portfolio across most realistic investment hori-

zons and for most return distributions in the ambiguity set.

Robust growth-optimal portfolio theory is conceptually related to the safety first principle intro-

duced by Roy (1952), which postulates that investors aim to minimize the ruin probability, that is,

the probability that their portfolio return falls below a prescribed safety level. Roy studied port-

folio choice problems in a single-period setting and assumed—as we do—that only the first and

second-order moments of the asset return distribution are known. By using a Chebyshev inequality,

he obtained an analytical expression for the worst-case ruin probability, which closely resembles

the portfolio’s Sharpe ratio. This work was influential for many later developments in behavioral

finance and risk management. Our work can be seen as an extension of Roy’s model to a multi-

period setting, which is facilitated by recent results on distributionally robust chance constrained

programming by Zymler et al. (2013a). For a general introduction to distributionally robust opti-

mization we refer to Delage and Ye (2010), Goh and Sim (2010) or Wiesemann et al. (2014).

Portfolio selection models based on the worst-case value-at-risk with moment-based ambiguity sets

have previously been studied by El Ghaoui et al. (2003), Natarajan et al. (2008), Natarajan et al.

(2010) and Zymler et al. (2013b). Moreover, Doan et al. (2013) investigate distributionally robust
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portfolio optimization models using an ambiguity set in which some marginal distributions are

known, while the global dependency structure is uncertain, and Meskarian and Xu (2013) study a

distributionally robust formulation of a reward-risk ratio optimization problem. However, none of

these papers explicitly accounts for the dynamic effects of portfolio selection.

The universal portfolio algorithm by Cover (1991) offers an alternative way to generate a dynamic

portfolio strategy without knowledge of the data-generating distribution. In its basic form, the

algorithm distributes the available capital across all fixed-mix strategies. Initially each fixed-mix

strategy is given the same weight, but the weights are gradually adjusted according to the empirical

performance of the different strategies. The resulting universal portfolio strategy can be shown to

perform at least as well as the best fixed-mix strategy selected in hindsight. As for the classical

growth-optimal portfolio, however, any performance guarantees are asymptotic, and in the short

run universal portfolios are susceptible to error maximization phenomena. A comprehensive survey

of more sophisticated universal portfolio algorithms is provided by Györfi et al. (2012).

The rest of the paper develops as follows. In Section 2 we review the asymptotic properties of clas-

sical growth-optimal portfolios, and in Section 3 we introduce the robust growth-optimal portfolios

and discuss their performance guarantees. An analytical formula for the worst-case value-at-risk

of the portfolio growth rate is derived in Section 4, and extensions of the underlying probabilis-

tic model are presented in Section 5. Numerical results are reported in Section 6, and Section 7

concludes.

Notation. The space of symmetric (symmetric positive semidefinite) matrices in Rn×n is denoted

by Sn (Sn+). For any X,Y ∈ Sn we let 〈X,Y〉 = Tr(XY) be the trace scalar product, while the

relation X �Y (X �Y) implies that X−Y is positive semidefinite (positive definite). The set

of eigenvalues of X ∈ Sn is denoted by eig (X). We also define 1 as the vector of ones and I as

the identity matrix. Their dimensions will usually be clear from the context. Random variables

are represented by symbols with tildes, while their realizations are denoted by the same symbols

without tildes. The set of all probability distributions on Rn is denoted by Pn0 . Moreover, we define

log(x) as the natural logarithm of x if x > 0; =−∞ otherwise. Finally, we define the Kronecker

delta through δij = 1 if i= j; = 0 otherwise.

2. Growth-Optimal Portfolios

Assume that there is a fixed pool of n assets available for investment and that the portfolio

composition may only be adjusted at prescribed rebalancing dates indexed by t= 1, . . . , T , where

T represents the length of the investment horizon. By convention, period t is the interval between

the rebalancing dates t and t+ 1, while the relative price change of asset i over period t, that is,

the asset’s rate of return, is denoted by r̃t,i ≥−1. Based on the common belief that markets are
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information efficient, it is often argued that the asset returns r̃t = (r̃t,1, . . . , r̃t,n)ᵀ for t = 1, . . . , T

are governed by a white noise process in the sense of the following definition.

Definition 1 (Strong Sense White Noise). The random vectors (r̃t)
T
t=1 form a strong

sense white noise process if they are mutually independent and identically distributed.

A portfolio strategy (wt)
T
t=1 is a rule for distributing the available capital across the given pool of

assets at all rebalancing dates within the investment horizon. Formally, wt,i denotes the proportion

of capital allocated to asset i at time t, while wt = (wt,1, . . . ,wt,n)ᵀ encodes the portfolio held

at time t. As all available capital must be invested, we impose the budget constraint 1ᵀwt = 1.

Moreover, we require wt ≥ 0 to preclude short sales. For notational simplicity, the budget and short

sales constraints as well as any other regulatory or institutional portfolio constraints are captured by

the abstract requirementwt ∈W, whereW represents a convex polyhedral subset of the probability

simplex in Rn. We emphasize that the portfolio composition is allowed to change over time and may

also depend on the asset returns observed in the past, but not on those to be revealed in the future.

In general, the portfolio at time t thus constitutes a causal function wt =wt(r1, . . . ,rt−1) of the

asset returns observed up to time t. Due to their simplicity and attractive theoretical properties,

fixed-mix strategies represent an important and popular subclass of all causal portfolio strategies.

Definition 2 (Fixed-Mix Strategy). A portfolio strategy (wt)
T
t=1 is a fixed-mix strategy if

there is a w ∈W with wt(r1, . . . ,rt−1) =w for all (r1, . . . ,rt−1)∈Rn×(t−1) and t= 1, . . . , T .

Fixed-mix strategies are also known as constant proportions strategies. They are memoryless

and keep the portfolio composition fixed across all rebalancing dates and observation histories. We

emphasize, however, that fixed-mix strategies are nonetheless dynamic as they necessitate periodic

trades at the rebalancing dates. Indeed, the proportions of capital invested in the different assets

change randomly over any rebalancing period. Assets experiencing above average returns will have

larger weights at the end of the period and must undergo a divestment to revert back to the

weights prescribed by the fixed-mix strategy, while assets with a below average return require a

recapitalization. This trading pattern is often condensed into the maxim ‘buy low, sell high.’ By

slight abuse of notation, we will henceforth use the same symbol w ∈ W to denote individual

portfolios as well as the fixed-mix strategies that they induce.

The end-of-horizon value of a portfolio with initial capital 1 that is managed under a generic

causal strategy (wt)
T
t=1 can be expressed as

ṼT =
T∏
t=1

[1 +wt(r̃1, . . . , r̃t−1)ᵀr̃t] ,
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where the factors in square brackets represent the total portfolio returns over the rebalancing

periods. The portfolio growth rate is then defined as the natural logarithm of the geometric mean

of the absolute returns, which is equivalent to the arithmetic mean of the log-returns.

γ̃T = log T

√√√√ T∏
t=1

[1 +wt(r̃1, . . . , r̃t−1)ᵀr̃t] =
1

T

T∑
t=1

log [1 +wt(r̃1, . . . , r̃t−1)ᵀr̃t] (1)

The reverse formula ṼT = eγ̃T T highlights that there is a strictly monotonic relation between the

terminal value and the growth rate of the portfolio. Thus, our informal management objective

of maximizing terminal wealth is equivalent to maximizing the growth rate. Unfortunately, this

maximization is generally ill-defined as γ̃T is uncertain. However, when the portfolio is managed

under a fixed-mix strategy w ∈W and the asset returns r̃t, t= 1, . . . , T , follow a strong sense white

noise process, then γ̃T is asymptotically deterministic for large T .

Proposition 1 (Asymptotic Growth Rate). If w ∈ W is a fixed-mix strategy, while the

asset returns (r̃t)
T
t=1 follow a strong sense white noise process, then

lim
T→∞

γ̃T =E (log (1 +wᵀr̃1)) with probability 1. (2)

Proof. The claim follows immediately from (1) and the strong law of large numbers.

Proposition 1 asserts that the asymptotic growth rate of a fixed-mix strategy w ∈W coincides

almost surely with the expected log-return of portfolio w over a single (without loss of generality,

the first) rebalancing period. A particular fixed-mix strategy of great conceptual and intuitive

appeal is the Kelly strategy, which is induced by the growth-optimal portfolio w∗ that maximizes

the right hand side of (2). We henceforth assume that there are no redundant assets, that is, the

second-order moment matrix of r̃t is strictly positive definite for all t.

Definition 3 (Kelly Strategy). The Kelly strategy is the fixed-mix strategy induced by the

unique growth-optimal portfolio w∗ = arg maxw∈W E (log (1 +wᵀr̃1)).

By construction, the Kelly strategy achieves the highest asymptotic growth rate among all fixed-

mix strategies. Maybe surprisingly, it also outperforms all other causal portfolio strategies in a

sense made precise in the following theorem.

Theorem 1 (Asymptotic Optimality of the Kelly Strategy). Let γ̃∗T and γ̃T represent

the growth rates of the Kelly strategy and any other causal portfolio strategy, respectively. If (r̃t)
T
t=1

is a strong sense white noise process, then limsupT→∞ γ̃T − γ̃∗T ≤ 0 with probability 1.

Proof. See e.g. Theorem 15.3.1 of Cover and Thomas (1991).
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Even though the Kelly strategy has several other intriguing properties, which are discussed at

length by MacLean et al. (2010), Theorem 1 lies at the root of its popularity. The theorem asserts

that, in the long run, the Kelly strategy accumulates more wealth than any other causal strategy to

first order in the exponent, that is, eγ̃T T ≤ eγ̃∗T T+o(T ), with probability 1. However, the Kelly strategy

has also a number of shortcomings that limit its practical usefulness. First, Rubinstein (1991) shows

that it may take hundreds of years until the Kelly strategy starts to dominate other investment

strategies with high confidence. Moreover, the computation of the growth-optimal portfolio w∗

requires precise knowledge of the asset return distribution P, which is never available in reality

due to estimation errors (Luenberger 1998, § 8.5). This is problematic because Michaud (1989)

showed that the growth-optimal portfolio corresponding to an inaccurate estimated distribution P̂

may perform poorly under the true data-generating distribution P. Finally, even if P was known,

Theorem 1 would require the asset returns to follow a strong sense white noise process under

P. This is an unrealistic requirement as there is ample empirical evidence that stock returns are

serially dependent; see e.g. Jegadeesh and Titman (1993). Even though the definition of the Kelly

strategy as well as Theorem 1 have been generalized by Algoet and Cover (1988) to situations

where the asset returns are serially dependent, the Kelly strategy ceases to belong to the class of

fixed-mix strategies in this setting and may thus no longer be easy to compute.

3. Robust Growth-Optimal Portfolios

In this section we extend the growth guarantees of Theorem 1 to finite investment horizons and

ambiguous asset return distributions. In order to maintain tractability, we restrict attention to

the class of fixed-mix strategies. As this class contains the Kelly strategy, which is optimal for

an infinite investment horizon, we conjecture that it also contains policies that are near-optimal

for finite horizons. We first observe that the portfolio growth rate γ̃T (w) = 1
T

∑T

t=1 log (1 +wᵀr̃t)

of any given fixed-mix strategy w constitutes a (non-degenerate) random variable whenever the

investment horizon T is finite. As γ̃T (w) may have a broad spectrum of very different possible

outcomes, it cannot be maximized per se. However, one can maximize its value-at-risk (VaR) at

level ε∈ (0,1), which is defined in terms of the chance-constrained program

P-VaRε(γ̃T (w)) = max
γ∈R

{
γ : P

(
1

T

T∑
t=1

log (1 +wᵀr̃t)≥ γ

)
≥ 1− ε

}
.

The violation probability ε of the chance constraint reflects the investor’s risk aversion and is

typically chosen as a small number . 10%. If γ∗ denotes the optimal solution to the above chance-

constrained program, then, with probability 1 − ε, the value of a portfolio managed under the

fixed-mix strategy w will grow at least by a factor eTγ
∗

over the next T rebalancing periods. Of

course, the VaR of the portfolio growth rate γ̃T (w) can only be computed if the distribution P of
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the asset returns is precisely known. In practice, however, P may only be known to belong to an

ambiguity set P, which contains all asset return distributions that are consistent with the investor’s

prior information. In this situation, an ambiguity-averse investor will seek protection against all

distributions in P. This is achieved by using the worst-case VaR (WVaR) of γ̃T (w) to assess the

performance of the fixed-mix strategy w.

WVaRε(γ̃T (w)) = min
P∈P

P-VaRε(γ̃T (w))

= max
γ∈R

{
γ : P

(
1

T

T∑
t=1

log (1 +wᵀr̃t)≥ γ

)
≥ 1− ε ∀P∈P

}
(3)

In the remainder of this paper, we refer to the portfolios that maximize WVaR as robust growth-

optimal portfolios. They offer the following performance guarantees.

Observation 1 (Performance Guarantees). Let w∗ be the robust growth-optimal port-

folio that maximizes WVaRε(γ̃T (w)) over W and denote by γ∗ its objective value. Then, with

probability 1− ε, the value of a portfolio managed under the fixed-mix strategy w∗ will grow at

least by eTγ
∗

over T periods. This guarantee holds for all distributions in the ambiguity set P.

Proof. This is an immediate consequence of the definition of WVaR.

We emphasize that the portfolio return in any given rebalancing period displays significant vari-

ability. Thus, the guaranteed return level γ∗ corresponding to a short investment horizon is typically

negative. However, positive growth rates can be guaranteed over longer investment horizons even

for ε≤ 5%.

In the following we will assume that the asset returns are only known to follow a weak sense

white noise process.

Definition 4 (Weak Sense White Noise). The random vectors (r̃t)
T
t=1 form a weak sense

white noise process if they are mutually uncorrelated and share the same mean values EP (r̃t) =µ

and second-order moments EP (r̃tr̃
ᵀ
t ) = Σ +µµᵀ for all 1≤ t≤ T .

Note that every strong sense white noise process in the sense of Definition 1 is also a weak

sense white noise process, while the converse implication is generally false. By modeling the asset

returns as a weak sense white noise process we concede that they could be serially dependent (as

long as they remain serially uncorrelated). Moreover, we deny to have any information about the

return distribution except for its first and second-order moments. In particular, we also accept

the possibility that the marginal return distributions corresponding to two different rebalancing

periods may differ (as long as they have the same means and covariance matrices). In his celebrated

article on the safety first principle for single-period portfolio selection, Roy (1952) provides some

implicit justification for the weak sense white noise assumption. Indeed, he postulates that the

first and second-order moments of the asset return distribution ‘are the only quantities that can be
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distilled out of our knowledge of the past.’ Moreover, he asserts that ‘the slightest acquaintance with

problems of analysing economic time series will suggest that this assumption is optimistic rather

than unnecessarily restrictive.’ It is thus natural to define

P =

{
P∈PnT0 :

EP (r̃t) =µ ∀t : 1≤ t≤ T

EP (r̃sr̃
ᵀ
t ) = δstΣ +µµᵀ ∀s, t : 1≤ s≤ t≤ T

}
,

where the mean value µ ∈Rn and the covariance matrix Σ ∈ Sn+ are given parameters. Note that

the asset returns follow a weak sense white noise process under any distribution from within P.

We remark that, besides its conceptual appeal, the moment-based ambiguity set P has distinct

computational benefits that will become apparent in Section 4. More general ambiguity sets where

the moments µ and Σ are also subject to uncertainty or where the asset return distribution is

supported on a prescribed subset of RnT will be studied in Section 5.

In a single-period setting, worst-case VaR optimization problems with moment-based ambiguity

sets have previously been studied by El Ghaoui et al. (2003), Natarajan et al. (2008, 2010) and

Zymler et al. (2013b).

Remark 1 (Support Constraints). The ambiguity set P could safely be reduced by includ-

ing the support constraints P (r̃t ≥−1) = 1 ∀t : 1≤ t≤ T , which ensure that the stock prices remain

nonnegative. Certainly, these constraints are satisfied by the unknown true asset return distribu-

tion, and ignoring them renders the worst-case VaR in (3) more conservative. In order to obtain

a clean model, we first suppress these constraints but emphasize that problem (3) remains well-

defined even without them. Recall that, by convention, the logarithm is defined as an extended

real-valued function on all of R. Support constraints will be studied in Section 5.1.

4. Worst-Case Value-at-Risk of the Growth Rate

Weak sense white noise ambiguity sets of the form (3) are not only physically meaningful but

also computationally attractive. We will now demonstrate that useful approximations of the cor-

responding robust growth-optimal portfolios can be computed in polynomial time. More precisely,

we will show that the worst-case VaR of a quadratic approximation of the portfolio growth rate

admits an explicit analytical formula. In the remainder we will thus assume that the growth rate

γ̃T (w) of the fixed-mix strategy w can be approximated by

γ̃′T (w) =
1

T

T∑
t=1

(
wᵀr̃t−

1

2
(wᵀr̃t)

2

)
,

which is obtained from (1) by expanding the logarithm to second order in wᵀr̃t. This Taylor

approximation has found wide application in portfolio analysis (Samuelson (1970)) and is accurate

for short rebalancing periods, in which case the probability mass of wᵀr̃t accumulates around 0.
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Additional theoretical justification in the context of growth-optimal portfolio selection is provided

by Kuhn and Luenberger (2010). To assess the approximation quality one can expect in practice,

we have computed the relative difference between γ̃T (w) and γ̃′T (w) for each individual asset and

for 100,000 randomly generated fixed-mix strategies based on the 10 Industry Portfolios and the 12

Industry Portfolios from the Fama French online data library.1 For a ten year investment horizon

the approximation error was uniformly bounded by 1% under monthly and by 5% under yearly

rebalancing, respectively, and in most cases the errors were much smaller than these upper bounds.

From now on we will also impose two non-restrictive assumptions on the moments of the asset

returns.

(A1) The covariance matrix Σ is strictly positive definite.

(A2) For all w ∈W, we have 1−wᵀµ>
√

ε
(1−ε)T

∥∥Σ1/2w
∥∥.

Assumption (A1) ensures that the robust growth-optimal portfolio for a particular T and ε is

unique, and Assumption (A2) delineates the set of moments for which the quadratic approximation

of the portfolio growth-rate is sensible. As the exact growth rate γ̃T (w) is increasing and concave

in wᵀr̃t, its worst-case VaR must be increasing in wᵀµ and decreasing in wᵀΣw. Assumption (A2)

ensures that the worst-case VaR of the approximate growth rate γ̃′T (w) inherits these monotonicity

properties and is also increasing in wᵀµ and decreasing in wᵀΣw. Note that the Assumptions (A1)

and (A2) are readily satisfied in most situations of practical interest, even if T = 1. Assumption (A1)

holds whenever there is no risk-free asset or portfolio, while (A2) is automatically satisfied when

µ and Σ are small enough, which can always be enforced by shortening the rebalancing intervals.

In fact, (A2) holds even for yearly rebalancing intervals if the means and standard deviations of

the asset returns fall within their typical ranges reported in § 8 of Luenberger (1998).

In the rest of this section we compute the worst-case VaR of the approximate growth rate

WVaRε(γ̃
′
T (w)) = max

γ∈R
{γ : P (γ̃′T (w)≥ γ)≥ 1− ε ∀P∈P} (4)

for some fixed w ∈ W, T ∈ N and ε ∈ (0,1). By exploiting a known tractable reformulation of

distributionally robust quadratic chance constraints with mean and covariance information (see

Theorem 6 in Appendix A), we can re-express problem (4), which involves infinitely many con-

straints parameterized by P∈P, as a finite semidefinite program (SDP). Thus, we obtain

WVaRε(γ̃
′
T (w)) = max γ

s. t. M∈ SnT+1, β ∈R, γ ∈R

β+ 1
ε
〈Ω,M〉 ≤ 0, M� 0

M−

 1
2

∑T

t=1 Pᵀ
tww

ᵀPt − 1
2

∑T

t=1 Pᵀ
tw

− 1
2

(∑T

t=1 Pᵀ
tw
)ᵀ

γT −β

� 0,

(5)

1 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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where

Ω =


Σ +µµᵀ µµᵀ · · · µµᵀ µ
µµᵀ Σ +µµᵀ · · · µµᵀ µ

...
...

. . .
...

...
µµᵀ µµᵀ · · · Σ +µµᵀ µ
µᵀ µᵀ . . . µᵀ 1

∈ SnT+1

denotes the matrix of first and second-order moments of (r̃ᵀ1, . . . , r̃
ᵀ
T )ᵀ , while the truncation oper-

ators Pt ∈ Rn×nT are defined via Pt(r
ᵀ
1, . . . ,r

ᵀ
T )ᵀ = rt, t= 1, . . . , T . As (5) constitutes a tractable

SDP, the worst-case VaR of any fixed-mix strategy’s approximate growth rate can be evaluated in

time polynomial in the number of assets n and the investment horizon T , see e.g. Ye (1997).

Remark 2 (Maximizing the Worst-Case VaR). In practice, we are not only interested in

evaluating the worst-case VaR of a fixed portfolio, but we also aim to identify portfolios that

offer attractive growth guarantees. Such portfolios can be found by treating w ∈W as a decision

variable in (5). In this case, the last matrix inequality in (5) becomes quadratic in the decision

variables, and (5) ceases to be an SDP. Fortunately, however, one can convert (5) back to an SDP

by rewriting the quadratic matrix inequality as

2M−
[

0 0
0 2γT −T − 2β

]
�

T∑
t=1

[
Pᵀ
tw
−1

][
Pᵀ
tw
−1

]ᵀ
=

[
Pᵀ

1w Pᵀ
2w · · · P

ᵀ
Tw

−1 −1 · · · −1

][
Pᵀ

1w Pᵀ
2w · · · P

ᵀ
Tw

−1 −1 · · · −1

]ᵀ
,

which is satisfied whenever there are V ∈ SnT , v ∈RnT and v0 ∈R with

M =

[
V v
vᵀ v0

]
,


2V 2v Pᵀ

1w · · · P
ᵀ
Tw

2vᵀ 2v0− 2γT +T + 2β −1 · · · −1
wᵀP1 −1 1 · · · 0

...
...

...
. . .

...
wᵀPT −1 0 · · · 1

� 0

by virtue of a Schur complement argument.

Even though SDPs are polynomial-time solvable in theory, problem (5) will quickly exhaust the

capabilities of state-of-the-art SDP solvers when the asset universe and the investment horizon

become large. Indeed, the dimension of the underlying matrix inequalities scales with n and T , and

many investors will envisage a planning horizon of several decades with monthly or weekly granu-

larity and an asset universe comprising several hundred titles. However, we will now demonstrate

that the approximate worst-case VaR problem (4) admits in fact an analytical solution.

Theorem 2 (Worst-Case Value-at-Risk). Under Assumptions (A1) and (A2) we have

WVaRε(γ̃
′
T (w)) = 1

2

(
1−

(
1−wᵀµ+

√
1−ε
εT

∥∥Σ1/2w
∥∥)2

− T−1
εT
wᵀΣw

)
. (6)
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The proof of Theorem 2 relies on a dimensionality reduction in three steps. We first exploit a

projection property for moment-based ambiguity sets to reformulate the approximate worst-case

VaR problem (4) in terms the portfolio returns η̃t =wᵀr̃t as the fundamental random variables. The

resulting worst-case VaR problem is equivalent to an SDP whose size scales with T but not with n.

Next, we exploit the temporal permutation symmetry of this SDP to demonstrate that the matrix

variable appearing in the SDP constraints has only four degrees of freedom. This insight can be used

to show that the SDP involves essentially only six different decision variables. However, the matrices

in the matrix inequalities still have a dimension of the order of T . Finally, by explicitly diagonalizing

these matrices one can show that the SDP constraints admit an equivalent reformulation in terms

of only nine traditional scalar constraints. In summary, the worst-case VaR problem (4) can be

shown to be equivalent to a convex nonlinear program with six variables and nine constraints.

Theorem 2 then follows by analytically solving the Karush-Kuhn-Tucker optimality conditions of

this nonlinear program. A detailed formal proof of Theorem 2 is relegated to Appendix B.

If the set W of admissible portfolios is characterized by a finite number of linear constraints,

then the portfolio optimization problem maxw∈WWVaRε(γ̃
′
T (w)) reduces to a tractable SOCP

whose size is independent of the investment horizon. In order to avoid verbose terminology, we will

henceforth refer to the unique optimizer of this SOCP as the robust growth-optimal portfolio, even

though it maximizes only an approximation of the true growth rate. Maybe surprisingly, computing

the robust growth-optimal portfolio is almost as easy as computing a Markowitz portfolio. However,

the robust growth-optimal portfolios offer precise performance guarantees over finite investment

horizons and for a wide spectrum of different asset return distributions.

Note that the worst-case VaR (6) is increasing in the portfolio mean return wᵀµ and decreasing

in the portfolio variance wᵀΣw as long as w satisfies Assumption (A2). Thus, any portfolio that

maximizes the worst-case VaR is mean-variance efficient. This is not surprising as the worst-case

VaR is calculated solely on the basis of mean and covariance information. Markowitz investors

choose freely among all mean-variance efficient portfolios based on their risk preferences, that is,

they solve the Markowitz problem maxw∈Ww
ᵀµ− %

2
wᵀΣw corresponding to their idiosyncratic risk

aversion parameter %≥ 0. In contrast, a robust growth-optimal investor chooses the unique mean-

variance efficient portfolio tailored to her investment horizon T and violation probability ε. We can

thus define a function %(T, ε) with the property that the robust growth-optimal portfolio tailored to

T and ε coincides with the solution of the Markowitz problem with risk aversion parameter %(T, ε).

By comparing the optimality conditions of the Markowitz and robust growth-optimal portfolio

problems, one can show that

%(T, ε) =

√
1− ε
εT
· 1

‖Σ1/2w‖
+

T − 1

εT
(

1−wᵀµ+
√

1−ε
εT
‖Σ1/2w‖

) , (7)
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where w denotes the robust growth-optimal portfolio, which depends on both T and ε and can only

be computed numerically. The function %(T, ε) will be investigated further in Section 6.1. From the

point of view of mean-variance analysis, a robust growth-optimal investor becomes less risk-averse

as ε or T increases. Indeed, one can use Assumption (A2) to prove that WVaRε(γ̃
′
T (w)) is increasing

(indicating that %(T, ε) is decreasing) in ε and T . We emphasize that the robust growth-optimal

portfolios may lose mean-variance efficiency when the ambiguity set of the asset return distribution

is no longer described in terms of exact first and second-order moments. Such situations will be

studied in Section 5.

The classical growth-optimal portfolio is perceived as highly risky. Indeed, if the rebalancing

intervals are short enough to justify a quadratic expansion of the logarithmic utility function,

then the classical growth-optimal portfolio can be identified with the Markowitz portfolio corre-

sponding to the aggressive risk aversion parameter %= 1. In fact, the two portfolios are identical

in the continuous-time limit if the asset prices follow a multivariate geometric Brownian motion

(Luenberger 1998, § 15.5). The Markowitz portfolios associated with more moderate levels of risk

aversion %& 1 are often viewed as ad hoc alternatives to the classical growth-optimal portfolio that

preserve some of its attractive growth properties but mitigate its short-term variability.

According to standard convention, a fractional Kelly strategy with risk-aversion parameter κ≥ 1

blends the classical Kelly strategy and a risk-free asset in constant proportions of 1/κ and (κ−1)/κ,

respectively. Fractional Kelly strategies have been suggested as heuristic remedies for over-betting

in the presence of model risk, see e.g. Christensen (2012). As pointed out by MacLean et al.

(2005), the fractional Kelly strategy corresponding to κ emerges as a maximizer of the Merton

problem with constant relative risk aversion κ if the prices of the risky assets follow a multivariate

geometric Brownian motion in continuous time. In a discrete-time market without a risk-free asset it

is therefore natural to define the fractional Kelly strategy corresponding to κ through the portfolio

that maximizes the expected isoelastic utility function 1
1−κE[(1 + wᵀr̃1)1−κ]. By expanding the

utility function around 1, this portfolio can be closely approximated by wκ = arg maxw∈W wᵀµ−
κ
2
wᵀ (Σ +µµᵀ)w, which is mean-variance efficient with risk-aversion parameter %= κ/(1 +κwᵀ

κµ)

wheneverwᵀ
κµ≤ 1/κ. Note that the last condition is reminiscent of Assumption (A2) and is satisfied

for typical choices of ε, T µ and Σ. It then follows from (7) that the robust growth-optimal portfolio

tailored to the investment horizon T and violation probability ε coincides with the (approximate)

fractional Kelly strategy corresponding to the risk-aversion parameter

κ(T, ε) =

(
1−wᵀµ+

√
1−ε
εT

∥∥Σ1/2w
∥∥)√(1− ε)εT + (T − 1)

∥∥Σ1/2w
∥∥(

1−wᵀµ+
√

1−ε
εT
‖Σ1/2w‖

)(
εT ‖Σ1/2w‖−

√
(1− ε)εTwᵀµ

)
− (T − 1)wᵀµ‖Σ1/2w‖

,
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where the robust growth-optimal portfolio w must be computed numerically. Our work thus offers

evidence for the near-optimality of fractional Kelly strategies under distributional ambiguity and

provides systematic guidelines for tailoring fractional Kelly strategies to specific investment hori-

zons and violation probabilities. The function κ(T, ε) will be studied further in Section 6.1.

Remark 3. (Relation to Worst-Case VaR by El Ghaoui et al. (2003)) Theorem 2

generalizes a result by El Ghaoui et al. (2003) for worst-case VaR problems in a single-period

investment setting. Indeed, for T = 1 the portfolio optimization problem maxw∈WWVaRε(γ̃
′
1(w))

reduces to

max
w∈W

1
2

(
1−

(
1−wᵀµ+

√
1−ε
ε

∥∥Σ1/2w
∥∥)2

)
⇐⇒ max

w∈W
wᵀµ−

√
1− ε
ε

∥∥Σ1/2w
∥∥ .

Under Assumption (A2), the objective functions of the above problems are related through a

strictly monotonic transformation. Thus, both problems share the same optimal solution (but have

different optimal values). The second problem is readily recognized as the SOCP equivalent to the

static worst-case VaR optimization problem by El Ghaoui et al. (2003).

Remark 4. (Long-Term Investors) In the limit of very long investment horizons, the worst-

case VaR (6) reduces to

lim
T→∞

WVaRε(γ̃
′
T (w)) = 1

2
− 1

2
(1−wᵀµ)

2− 1
2ε
wᵀΣw ,

which can be viewed as the difference between the second-order Taylor approximation of the port-

folio growth rate in the nominal scenario, log (1 +wᵀµ), and a risk premium, which is inversely

proportional to the violation probability ε.

Remark 5. (Worst-Case Conditional VaR) We could use the worst-case conditional VaR

(CVaR) instead of the worst-case VaR in (4) to quantify the desirability of the fixed-mix strategyw.

The CVaR at level ε ∈ (0,1) of a random reward is defined as the conditional expectation of the

ε× 100% least favorable reward realizations below the VaR. CVaR is sometimes considered to be

superior to the VaR because it constitutes a coherent risk measure in the sense of Artzner et al.

(1999). However, it has been shown in Theorem 2.2 of Zymler et al. (2013a) that the worst-case

VaR and the worst-case CVaR under mean and covariance information are actually equal on the

space of reward functions that are quadratic in the uncertain parameters. As the approximate

portfolio growth rate γ̃′T (w) is quadratic in the uncertain asset returns, its worst-case VaR thus

coincides with its worst-case CVaR.

In order to perform systematic contamination or stress test experiments, it is essential to know

the extremal distributions from within P under which the actual VaR of the approximate portfolio

growth rate γ̃′T (w) coincides with WVaRε(γ̃
′
T (w)). We will now demonstrate that the worst case is
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not attained by a single distribution. However, we can explicitly construct a sequence of asset return

distributions that attain the worst-case VaR asymptotically. A general computational approach to

construct extremal distributions for distributionally robust optimization problems is described by

Bertsimas et al. (2010). In contrast, the construction presented here is completely analytical.

By Proposition 2 in Appendix B, we have

WVaRε(γ̃
′
T (w)) = sup

γ
γ

s. t. P

(
1

T

T∑
t=1

(
η̃t−

1

2
η̃2
t

)
≥ γ

)
≥ 1− ε ∀P∈Pη̃(w),

(8)

where the projected ambiguity set

Pη̃(w) =

{
P∈PT0 :

EP (η̃t) =wᵀµ ∀t : 1≤ t≤ T

EP (η̃sη̃t) = δstw
ᵀΣw+ (wᵀµ)

2 ∀s, t : 1≤ s≤ t≤ T

}

contains all distributions on RT under which the portfolio returns η̃ = (η̃1, . . . , η̃T )ᵀ follow a weak

sense white noise process with (period-wise) mean wᵀµ and variance wᵀΣw. For a fixed w ∈W,

we first construct a sequence of portfolio return distributions Pε′ ∈ Pη̃(w), ε′ ∈ (ε,1), that attains

the worst case in problem (8) as ε′ approaches ε.

To construct the distribution Pε′ for a fixed ε′ ∈ (ε,1), we set

∆ = σp

√
T

ε′
, b= µp +

√
ε′

(1− ε′)T
σp, u= µp−

∆

T
−
√

1− ε′
ε′T

σp, d= u+
2∆

T

and introduce 2T + 1 portfolio return scenarios ηb, {ηut }Tt=1 and {ηdt }Tt=1, defined through

ηb = (ηb1, . . . , η
b
T )ᵀ where ηbs = b ∀s= 1, . . . , T,

ηut = (ηut,1, . . . , η
u
t,T )ᵀ where ηut,s = u+ ∆δts ∀t, s= 1, . . . , T,

ηdt = (ηdt,1, . . . , η
d
t,T )ᵀ where ηdt,s = d−∆δts ∀t, s= 1, . . . , T.

We then define Pε′ as the discrete distribution on RT with

Pε
′ (
η̃= ηb

)
= 1− ε′

Pε
′
(η̃= ηut ) =

ε′

2T
∀t= 1, . . . , T,

Pε
′ (
η̃= ηdt

)
=

ε′

2T
∀t= 1, . . . , T.

Theorem 3 below asserts that the distributions Pε′ attain the worst case in (8) as ε′ ↓ ε. Before

embarking on the proof of this result, we examine the properties of Pε′ . Note that in scenario ηb

the portfolio returns are constant over time. Moreover, in scenarios ηut and ηdt the portfolio returns

are constant except for period t, in which they spike up and down, respectively. If T � 1 and/or

ε′� 1, then we have ∆� 1. In this case the ηdt scenarios can spike below −1. The distributions Pε′
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may therefore be unduly pessimistic. However, this pessimism is manifestation that we err on the

side of caution. It is the price we must pay for computational (and analytical) tractability. Less

pessimistic worst-case distributions can be obtained by enforcing more restrictive distributional

properties in the definition of the ambiguity set P. Examples include support constraints as studied

in Section 5.

Theorem 3. The portfolio return distributions Pε′, ε′ ∈ (ε,1), have the following properties.

(i) Pε′ ∈Pη̃(w) ∀ε′ ∈ (ε,1).

(ii) If γ̃ηT = 1
T

∑T

t=1(η̃t− 1
2
η̃2
t ), then lim

ε′↓ε
Pε
′
-VaRε(γ̃

η
T ) = WVaRε(γ̃

′
T (w)).

The proof is relegated to Appendix C. As ε′ tends to ε, the distributions Pε′ converge weakly

to Pε, where Pε is defined in the same way as Pε′ for ε′ ∈ (ε,1). We emphasize, however, that Pε

fails to be a worst-case distribution. As the scenarios ηut and ηdt for t= 1, . . . , T have total weight

ε under Pε, the VaR at level ε of γ̃ηT , which adopts its largest value in scenario η̃ = ηb, is equal

to b− 1
2
b2, which implies that Pε-VaRε(γ̃

η
T )>WVaRε(γ̃

′
T (w)) (see Appendix C for more details).

Hence, P-VaRε(γ̃
η
T ) is discontinuous in P at P= Pε.

So far we have constructed a sequence of portfolio return distributions that asymptotically

attain the worst-case VaR in (8). Next, we construct a sequence of asset return distributions that

asymptotically attain the worst-case VaR in (4). To this end, we assume that the portfolio return

process (η̃1, . . . , η̃T )ᵀ ∈ RT is governed by a distribution Pε′ of the type constructed above, where

ε′ ∈ (ε,1). Moreover, we denote by (m̃ᵀ
1, . . . ,m̃

ᵀ
T )

ᵀ ∈RnT an auxiliary stochastic process that obeys

any distribution under which the m̃t are serially independent and each have the same mean µ

and covariance matrix Σ, respectively. Then, we denote by Qε′ the distribution of the asset return

process (r̃ᵀ1, . . . , r̃
ᵀ
T )

ᵀ ∈RnT defined through

r̃t =
Σw

wᵀΣw
η̃t +

(
I− Σwwᵀ

wᵀΣw

)
m̃t ∀t= 1, . . . , T.

Corollary 1. The asset return distributions Qε′, ε′ ∈ (ε,1), have the following properties.

(i) Qε′ ∈P ∀ε′ ∈ (ε,1).

(ii) lim
ε′↓ε

Qε′-VaRε(γ̃
′
T (w)) = WVaRε(γ̃

′
T (w)).

Proof. This is an immediate consequence of Theorem 3, as well as Theorem 1 of Yu et al.

(2009).

5. Extensions

The basic model of Section 3 can be generalized to account for support information or moment

ambiguity. The inclusion of support information shrinks the ambiguity set and thus mitigates

the conservatism of the basic model. In contrast, accounting for moment ambiguity enlarges the

ambiguity set and enhances the realism of the basic model in situations when there is not enough

raw data to obtain high-quality estimates of the means and covariances.
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5.1. Support Information

Assume that, besides the usual first and second-order moment information, the asset returns

(r̃ᵀ1, . . . , r̃
ᵀ
T )ᵀ are known to materialize within an ellipsoidal support set of the form

Ξ =

{
(rᵀ1, . . . ,r

ᵀ
T )ᵀ ∈RnT :

1

T

T∑
t=1

(rt−ν)
ᵀ
Λ−1 (rt−ν)≤ δ

}
,

where ν ∈ Rn determines the center, Λ ∈ Sn (Λ � 0) the shape and δ ∈ R (δ > 0) the size of Ξ.

By construction, the ellipsoid Ξ is invariant under permutations of the rebalancing intervals t =

1, . . . , T . This permutation symmetry is instrumental to ensure that any robust growth-optimal

portfolio can be computed by solving a tractable conic program of size independent of T . If the

usual moment information is complemented by support information, we must replace the standard

ambiguity set P with the (smaller) ambiguity set

PΞ =


EP (r̃t) =µ ∀t : 1≤ t≤ T

P∈PnT0 : EP (r̃sr̃
ᵀ
t ) = δstΣ +µµᵀ ∀s, t : 1≤ s≤ t≤ T

P ((r̃ᵀ1, . . . , r̃
ᵀ
T )ᵀ ∈Ξ) = 1


when computing the worst-case VaR (4). By using a tractable conservative approximation for

distributionally robust chance constraints with mean, covariance and support information (see

Theorem 6 in Appendix A), we can lower bound this generalized worst-case VaR by the optimal

value of a tractable SDP.

WVaRε(γ̃
′
T (w)) ≥ max γ

s. t. M∈ SnT+1, α∈R, β ∈R, γ ∈R, λ∈R

α≥ 0, β ≤ 0, λ≥ 0, β+ 1
ε
〈Ω,M〉 ≤ 0

M� α

 −∑T

t=1 Pᵀ
tΛ
−1Pt

∑T

t=1 Pᵀ
tΛ
−1ν(∑T

t=1 Pᵀ
tΛ
−1ν

)ᵀ

T (δ−µᵀΛ−1µ)


M−

 1
2

∑T

t=1 Pᵀ
tww

ᵀPt − 1
2

∑T

t=1 Pᵀ
tw

− 1
2

(∑T

t=1 Pᵀ
tw
)ᵀ

γT −β

�
λ

 −∑T

t=1 Pᵀ
tΛ
−1Pt

∑T

t=1 Pᵀ
tΛ
−1ν(∑T

t=1 Pᵀ
tΛ
−1ν

)ᵀ

T (δ−µᵀΛ−1µ)



(9)

Here, the truncation operators Pt, t= 1, . . . , T , are defined as in Section 3. We emphasize that even

though the SDP (9) offers only a lower bound on the true worst-case VaR with support information,

it still provides an upper bound on the worst-case VaR of Section 3 without support information.

This can be seen by fixing α = λ = 0, in which case (9) reduces to the SDP (5). Note that the

SDP (9) is polynomial-time solvable in theory but computationally burdensome in practice because

the dimension of the underlying matrix inequalities scales with n and T . We will now show that (9)

can be substantially simplified by exploiting its inherent temporal symmetry.
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Theorem 4 (Support Information). A lower bound on WVaRε(γ̃
′
T (w)) under the ambiguity

set PΞ is provided by the SDP (9), which is equivalent to

max γ

s. t. A∈ Sn, B∈ Sn, c∈Rn, d∈R, α∈R, β ∈R, γ ∈R, λ∈R

α≥ 0, β ≤ 0, λ≥ 0

β+ 1
ε

(T 〈A,Σ +µµᵀ〉+T (T − 1) 〈B,µµᵀ〉+ 2Tcᵀµ+ d)≤ 0[
A + (T − 1)B c

cᵀ d
T

]
� α

[
−Λ−1 Λ−1ν
νᵀΛ−1 δ−νᵀΛ−1ν

]
A−B�−αΛ−1A + (T − 1)B +λΛ−1 c−λΛ−1ν w

cᵀ−λνᵀΛ−1 1
2

+ d+β
T
− γ−λ(δ−νᵀΛ−1ν) −1

wᵀ −1 2

� 0

[
A−B +λΛ−1 w

wᵀ 2

]
� 0.

(10)

Note that the size of the SDP (10) scales only with the number of assets n but not with T .

Theorem 4 implies that one can maximize WVaRε(γ̃
′
T (w)) approximately over w ∈W by solving a

tractable SDP, and thus the robust growth-optimal portfolios can be approximated efficiently even

in the presence of support information. The proof of Theorem 4 is relegated to Appendix D.

5.2. Moment Ambiguity

Assume that µ̂ and Σ̂ are possibly inaccurate estimates of the true mean µ and covariance matrix

Σ of the asset returns, respectively. Assume further that µ and Σ are known to reside in a convex

uncertainty set of the form

U =
{

(µ,Σ)∈Rn×Sn : (µ− µ̂)
ᵀ
Σ̂−1 (µ− µ̂)≤ δ1, δ3Σ̂�Σ� δ2Σ̂

}
, (11)

where δ1 ≥ 0 reflects our confidence in the estimate µ̂, while the parameters δ2 and δ3, δ2 ≥ 1≥ δ3 >

0, express our confidence in the estimate Σ̂. Guidelines for selecting µ̂, Σ̂, δ1, δ2 and δ3 based on

historical data are provided by Delage and Ye (2010). If the asset returns follow a weak sense white

noise process with ambiguous means and covariances described by the uncertainty set U and if the

Assumptions (A1) and (A2) are satisfied for all (µ,Σ) ∈ U , then, by Theorem 2, the worst-case

VaR of the approximate portfolio growth rate γ̃′T (w) is given by

WVaRε(γ̃
′
T (w)) = min

(µ,Σ)∈U

1

2

(
1−

(
1−wᵀµ+

√
1− ε
εT

∥∥Σ1/2w
∥∥)2

− T − 1

εT
wᵀΣw

)
.

We will now demonstrate that the above minimization problem admits an analytical solution.
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Theorem 5. If (A1) and (A2) hold for all (µ,Σ)∈ U , then

WVaRε(γ̃
′
T (w)) =

1

2

(
1−

(
1−wᵀµ̂+

(√
δ1 +

√
(1− ε) δ2

εT

)∥∥∥Σ̂1/2w
∥∥∥)2

− δ2 (T − 1)

εT
wᵀΣ̂w

)
.

Proof. Recall that under Assumptions (A1) and (A2) the worst-case VaR (6) is increasing in

the portfolio mean return wᵀµ and decreasing in the portfolio standard deviation
∥∥Σ1/2w

∥∥. Thus,

the worst case of (6) is achieved at the minimum portfolio mean return

min
(µ,Σ)∈U

wᵀµ = wᵀµ̂−
√
δ1

∥∥∥Σ̂1/2w
∥∥∥

and at the maximum portfolio standard deviation

max
(µ,Σ)∈U

∥∥Σ1/2w
∥∥ =

√
δ2

∥∥∥Σ̂1/2w
∥∥∥ .

The claim now follows by substituting the above expressions into (6).

We remark that maximizing WVaRε(γ̃
′
T (w)) overw ∈W gives rise to a tractable SOCP, and thus

the robust growth-optimal portfolios can be computed efficiently even under moment ambiguity.

We further remark that the Assumptions (A1) and (A2) hold for all (µ,Σ)∈ U if and only if

δ3Σ̂� 0 and wᵀµ̂+
√
δ1

∥∥∥Σ̂1/2w
∥∥∥+

√
εδ2

(1− ε)T

∥∥∥Σ̂1/2w
∥∥∥< 1.

These semidefinite and second-order conic constraints can be verified efficiently.

6. Numerical Experiments

We now assess the robust growth-optimal portfolios in several synthetic and empirical backtests.

The emerging second-order cone and semidefinite programs are solved with SDPT3 using the MAT-

LAB interface Yalmip by Löfberg (2004). On a 3.4 GHz machine with 16.0 GB RAM, all portfolio

optimization problems of this section are solved in less than 0.40 seconds. Thus, the runtimes are

negligible for practical purposes. All experiments rely on one of the following time series with

monthly resolution. The 10 Industry Portfolios (10Ind) and 12 Industry Portfolios (12Ind) datasets

from the Fama French online data library2 comprise U.S. stock portfolios grouped by industries.

The Dow Jones Industrial Average (DJIA) dataset is obtained from Yahoo Finance3 and comprises

the 30 constituents of the DJIA index as of August 2013. The iShares Exchange-Traded Funds

(iShares) dataset is also obtained from Yahoo Finance and comprises the following nine funds:

EWG (Germany), EWH (Hong Kong), EWI (Italy), EWK (Belgium), EWL (Switzerland), EWN

(Netherlands), EWP (Spain), EWQ (France) and EWU (United Kingdom).

2 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

3 http://finance.yahoo.com
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We will consistently use the shrinkage estimators proposed by DeMiguel et al. (2013) to estimate

the mean µ and the covariance matrix Σ of a time series. The shrinkage estimator of µ (Σ)

constitutes a weighted average of the sample mean µ̂ (sample covariance matrix Σ̂) and the vector

of ones scaled by 1ᵀµ̂
n

(the identity matrix scaled by Tr(Σ̂)

n
). The underlying shrinkage intensities are

obtained via the bootstrapping procedure proposed by DeMiguel et al. (2013) using 500 bootstrap

samples. Shrinkage estimators have been promoted as a means to combat the impact of estimation

errors in portfolio selection. We emphasize that the moments estimated in this manner satisfy the

technical Assumptions (A1) and (A2) for all data sets considered in this section.

We henceforth distinguish two different Kelly investors. Ambiguity-neutral investors believe that

the asset returns follow the unique multivariate lognormal distribution Pln consistent with the

mean µ and covariance matrix Σ. Note that in this model the asset prices follow a discrete-time

geometric Brownian motion. We assume that the ambiguity-neutral investors hold the classical

growth-optimal portfolio wgo, which is defined as the unique maximizer of EPln
(log(1 +wᵀr̃t))

over w ∈ W = {w ∈ Rn : w ≥ 0, 1ᵀw = 1}. By using the second-order Taylor expansion of the

logarithm around 1, we may approximate wgo with ŵgo = arg maxw∈Ww
ᵀµ− 1

2
wᵀ (Σ +µµᵀ)w.

This approximation is highly accurate under a lognormal distribution if the rebalancing intervals

are of the order of a few months or shorter, see Kuhn and Luenberger (2010). Ambiguity-averse

investors hold the robust growth-optimal portfolio wrgo, which is defined as the unique maximizer

of WVaRε(γ̃
′
T (w)) over W for ε = 5%. Unless otherwise stated, the worst-case VaR is evaluated

with respect to the weak sense white noise ambiguity set P with known first and second-order

moments but without support information.

6.1. Synthetic Experiments

We first illustrate the relation between the parameters T and ε of the robust-growth optimal

portfolio and the risk-aversion parameters %(T, ε) and κ(T, ε) of the Markowitz and fractional Kelly

portfolios, respectively. Afterwards, we showcase the benefits of accounting for horizon effects and

distributional ambiguity when designing portfolio strategies. In all synthetic experiments we set

n= 10 and assume that the true mean µ and covariance matrix Σ of the asset returns coincide with

the respective estimates obtained from the 120 samples of the 10Ind dataset between 01/2003 and

12/2012. In this setting the growth-optimal portfolio wgo and its approximation ŵgo are virtually

indistinguishable. We may thus identify the growth-optimal portfolio with ŵgo.

In Section 4 we have seen that each robust growth-optimal portfolio tailored to an investment

horizon T and violation probability ε is identical to a Markowitz portfolio w% = arg maxw∈Ww
ᵀµ−

%
2
wᵀΣw for some risk aversion parameter %= %(T, ε). Table 1 shows %(T, ε) for different values of

T and ε, based on the means and covariances obtained from the 10Ind dataset. As expected from
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Table 1 Markowitz risk-aversion parameter %(T, ε) implied by the robust growth-optimal portfolio that is

tailored to the investment horizon T (in months) and the violation probability ε. The reported values are specific

to the 10Ind dataset.
HHH

HHHT
ε

5% 10% 15% 20% 25%
HHH

HHHT
ε

5% 10% 15% 20% 25%

24 46.87 28.80 21.66 17.64 14.97 336 27.45 15.16 10.76 8.44 6.97
48 39.20 23.40 17.35 13.99 11.79 360 27.20 14.99 10.62 8.32 6.87
72 35.77 20.98 15.42 12.36 10.38 384 26.98 14.83 10.50 8.22 6.78
96 33.71 19.54 14.26 11.39 9.53 408 26.78 14.69 10.39 8.12 6.69
120 32.30 18.54 13.47 10.72 8.95 432 26.60 14.56 10.29 8.04 6.62
144 31.25 17.81 12.88 10.23 8.53 456 26.42 14.44 10.19 7.95 6.55
168 30.44 17.25 12.43 9.85 8.19 480 26.27 14.33 10.11 7.88 6.49
192 29.78 16.79 12.06 9.53 7.92 504 26.12 14.23 10.02 7.82 6.43
216 29.24 16.41 11.76 9.28 7.70 528 25.98 14.13 9.94 7.75 6.37
240 28.77 16.08 11.50 9.06 7.51 552 25.86 14.04 9.88 7.69 6.32
264 28.38 15.80 11.28 8.88 7.34 576 25.74 13.97 9.81 7.63 6.27
288 28.03 15.56 11.09 8.71 7.21 600 25.62 13.88 9.75 7.58 6.22
312 27.72 15.35 10.91 8.56 7.08

the discussion after Theorem 2, %(T, ε) is decreasing in T and ε. Note that %(T, ε) exceeds the risk

aversion parameter of the classical growth-optimal portfolio (% = 1) uniformly for all investment

horizons up to 50 years and for all violations probabilities up to 25%. We have also observed that

all robust growth-optimal portfolios under consideration are distributed over the leftmost decile of

the efficient frontier in the mean-standard deviation plane. Thus, even though they are significantly

more conservative than the classical growth-optimal portfolio, the robust growth-optimal portfolios

display a significant degree of heterogeneity across different values of T and ε.

In Section 4 we have also seen that the robust growth-optimal portfolio tailored to T and ε can

be interpreted as a fractional Kelly strategy wκ = arg maxw∈W wᵀµ− κ
2
wᵀ (Σ +µµᵀ)w for some

risk aversion parameter κ = κ(T, ε). Table 2 shows κ(T, ε) for different values of T and ε in the

context of the 10Ind dataset. The fractional Kelly and Markowitz risk-aversion parameters display

qualitatively similar dependencies on T and ε.

Horizon Effects We assume that the asset returns follow the multivariate lognormal distribu-

tion Pln, implying that the beliefs of the ambiguity-neutral investors are correct. In contrast, the

ambiguity-averse investors have only limited distributional information and are therefore at a dis-

advantage. Figure 1(a) displays the 5% VaR of the portfolio growth rate over T months for the

classical and the robust growth-optimal portfolios, where the VaR is computed on the basis of

50,000 independent samples from Pln. Recall that only the robust growth-optimal portfolios are

tailored to T . Thus, under the true distribution Pln the robust growth-optimal portfolios offer supe-

rior performance guarantees (at the desired 95% confidence level) to the classical growth-optimal

portfolio across all investment horizons of less than 170 years. Note that longer investment horizons

are only of limited practical interest.
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Table 2 Fractional Kelly risk-aversion parameter κ(T, ε) implied by the robust growth-optimal portfolio that is

tailored to the investment horizon T (in months) and the violation probability ε. The reported values are specific

to the 10Ind dataset.
HHH

HHHT
ε

5% 10% 15% 20% 25%
HHH

HHHT
ε

5% 10% 15% 20% 25%

24 74.35 37.26 26.14 20.50 16.98 336 35.05 17.22 11.77 9.04 7.38
48 56.76 28.70 20.10 15.73 13.01 360 34.65 17.00 11.60 8.91 7.26
72 49.83 25.15 17.55 13.70 11.31 384 34.29 16.80 11.46 8.79 7.16
96 45.92 23.10 16.07 12.51 10.31 408 33.96 16.62 11.32 8.68 7.07
120 43.34 21.73 15.07 11.71 9.64 432 33.67 16.46 11.20 8.58 6.99
144 41.48 20.73 14.35 11.13 9.14 456 33.39 16.30 11.09 8.49 6.91
168 40.06 19.97 13.78 10.68 8.76 480 33.14 16.16 10.98 8.41 6.84
192 38.93 19.35 13.34 10.32 8.45 504 32.91 16.03 10.89 8.33 6.77
216 38.01 18.85 12.96 10.02 8.20 528 32.69 15.91 10.80 8.26 6.71
240 37.23 18.42 12.65 9.76 7.99 552 32.49 15.80 10.72 8.19 6.65
264 36.57 18.06 12.39 9.55 7.80 576 32.30 15.70 10.64 8.13 6.60
288 36.00 17.75 12.15 9.36 7.64 600 32.13 15.60 10.56 8.07 6.55
312 35.49 17.47 11.95 9.19 7.50

We also compare the realized Sharpe ratios of the classical and robust growth-optimal portfolios

along 50,000 sample paths of length T drawn from Pln. The Sharpe ratio along a given path is

defined as the ratio of the sample mean and the sample standard deviation of the monthly portfolio

returns on that path. It can be viewed as a signal-to-noise ratio of the portfolio return process and

therefore constitutes a popular performance measure for investment strategies. The random ex post

Sharpe ratios display a high variability for small T but converge almost surely to the deterministic

a priori Sharpe ratios µᵀwrgo/
√
wᵀ

rgoΣwrgo and µᵀwgo/
√
wᵀ

goΣwgo, respectively, when T tends to

infinity. The boxplot in Figure 1(b) visualizes the distribution of

ŜRrgo− ŜRgo∣∣∣ŜRrgo

∣∣∣+ ∣∣∣ŜRgo

∣∣∣ ,
where ŜRrgo and ŜRgo denote the ex post Sharpe ratios of the robust and the classical growth-

optimal portfolios, respectively. We observe that the Sharpe ratio of the robust growth-optimal

portfolio exceeds that of the classical growth-optimal portfolio by 14.24% on average.

As they are tailored to the investment horizon T , the robust growth-optimal portfolios can

offer higher performance guarantees and ex post Sharpe ratios than the classical growth-optimal

portfolios even though they are ignorant of the exact data-generating distribution Pln.

Ambiguity Effects We now perform a stress test inspired by Bertsimas et al. (2010), where we

contamine the lognormal distribution Pln with the worst-case distributions for the classical and

robust growth-optimal portfolios, respectively. More precisely, by Corollary 3 we can construct two

near-worst-case distributions Pgo and Prgo satisfying

Pgo-VaR5%(γ̃T (wgo)) ≤ WVaR5%(γ̃T (wgo)) + δ,
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(a) 5% VaR of the monthly portfolio growth rates for

the classical and robust growth-optimal portfolios.

(b) Relative difference of realized Sharpe-ratios (shown

are the 10%, 25%, 50%, 75% and 90% quantiles and

outliers)

Figure 1 Comparison of the classical and robust growth-optimal portfolios under the lognormal distribution Pln.

Prgo-VaR5%(γ̃T (wrgo)) ≤ WVaR5%(γ̃T (wrgo)) + δ,

where δ is a small constant such as 10−6. We can then construct a contaminated distribution

P=ψgo Pgo +ψrgo Prgo + (1−ψgo−ψrgo)Pln (12)

using the contamination weights ψgo,ψrgo ≥ 0 with ψgo + ψrgo ≤ 1. Note that P ∈ P because

Pgo,Prgo,Pln ∈P, which implies that the ambiguity-averse investors hedge against all distributions

of the form (12). In contrast, the ambiguity-neutral investors exclusively account for the distribu-

tion with ψgo =ψrgo = 0. In order to assess the benefits of an ambiguity-averse investment strategy,

we evaluate the relative advantage of the robust growth-optimal portfolios over their classical

counterparts in terms of their performance guarantees. Thus, we compute

P-VaR5%(γ̃T (wrgo))−P-VaR5%(γ̃T (wgo))

|P-VaR5%(γ̃T (wrgo))|+ |P-VaR5%(γ̃T (wgo))|

for all distributions of the form (12), where each VaR is evaluated using 250,000 samples from P.

The resulting percentage values are reported in Tables 3, 4, and 5 for investment horizons of 120

months, 360 months and 1,200 months, respectively.

We observe that the robust growth-optimal portfolios outperform their classical counterparts

under all contaminated probability distributions of the form (12). Even for ψgo =ψrgo = 0 the robust

portfolios are at an advantage because they are tailored to the investment horizon. As expected,

their advantage increases with the contamination level and is more pronounced for short investment

horizons. Only for unrealistically long horizons of more than 100 years and for low contamination

levels the classical growth-optimal portfolio becomes competitive.
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Table 3 Relative advantage (in %) of the robust growth-optimal portfolios in terms of 5% VaR (T = 120

months)
PPPPPPPψrgo

ψgo
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 63.87 62.41 65.83 63.28 65.61 68.20 71.18 67.20 98.19 100.0 72.65
0.1 62.89 63.52 67.78 63.96 71.03 64.81 77.36 78.47 100.0 58.41
0.2 64.16 64.70 66.56 69.35 68.64 72.99 83.81 100.0 53.81
0.3 68.97 67.98 68.42 71.10 74.59 90.50 100.0 52.44
0.4 64.84 66.94 69.93 76.00 88.32 100.0 50.13
0.5 68.43 72.95 73.92 79.92 100.0 49.85
0.6 70.19 73.53 89.97 100.0 47.97
0.7 74.08 71.88 100.0 43.69
0.8 100.0 100.0 41.11
0.9 100.0 34.76
1.0 8.52

Table 4 Relative advantage (in %) of the robust growth-optimal portfolios in terms of 5% VaR (T = 360

months)
PPPPPPPψrgo

ψgo
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 11.60 11.65 11.53 11.50 11.58 11.80 11.90 12.09 13.27 16.30 81.01
0.1 11.61 11.54 11.60 11.87 12.00 12.09 12.41 12.21 16.71 68.62
0.2 11.42 11.61 11.49 11.46 12.12 12.08 12.05 18.26 65.81
0.3 11.42 12.05 12.20 12.56 12.87 13.12 16.20 63.49
0.4 11.37 12.12 11.76 12.00 13.15 18.69 65.79
0.5 11.58 12.06 12.75 13.17 15.96 61.86
0.6 12.07 11.90 12.61 17.24 60.05
0.7 12.19 13.62 16.27 59.91
0.8 12.78 16.01 58.52
0.9 15.40 48.91
1.0 14.75

Table 5 Relative advantage (in %) of the robust growth-optimal portfolios in terms of 5% VaR (T = 1,200

months)
PPPPPPPψrgo

ψgo
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 2.49 2.53 2.48 2.50 2.41 2.59 2.58 2.72 2.96 3.03 91.56
0.1 2.52 2.44 2.46 2.47 2.50 2.46 2.68 3.00 3.87 84.23
0.2 2.48 2.48 2.41 2.57 2.54 2.78 2.74 3.34 82.83
0.3 2.51 2.54 2.67 2.71 2.66 2.84 3.74 82.98
0.4 2.56 2.61 2.61 2.64 2.55 3.56 80.90
0.5 2.59 2.53 2.64 2.70 2.82 80.70
0.6 2.52 2.69 2.87 3.90 78.64
0.7 2.46 2.61 4.48 79.01
0.8 2.93 3.26 75.02
0.9 3.48 69.17
1.0 23.57

6.2. Empirical Backtests

We now assess the performance of the robust growth-optimal portfolio without (RGOP) and with

(RGOP+) moment uncertainty on different empirical datasets. RGOP+ optimizes the worst-case

VaR over all means and covariance matrices in the uncertainty set (11). We compare the robust
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growth-optimal portfolios against the equally weighted portfolio (1/n), the classical growth-optimal

portfolio (GOP), the fractional Kelly strategy corresponding to the risk-aversion parameter κ= 2

(1/2-Kelly), two mean-variance efficient portfolios corresponding to the risk-aversion parameters

% = 1 and % = 3 (MV) and Cover’s universal portfolio (UNIV). The equally weighted portfolio

contains all assets in equal proportions. This seemingly näıve investment strategy is immune to esti-

mation errors and surprisingly difficult to outperform with optimization-based portfolio strategies,

see DeMiguel et al. (2009). In the presence of a risk-free instrument, the fractional Kelly strategy

corresponding to κ = 2 invests approximately half of the capital in the classical growth-optimal

portfolio and the other half in cash. This so-called ‘half-Kelly’ strategy enjoys wide popularity

among investors wishing to trade off growth versus security, see e.g. MacLean et al. (2005). The

Markowitz portfolio corresponding to %= 1 closely approximates the classical growth-optimal port-

folio, while the Markowitz portfolio corresponding to %= 3 provides a more conservative alternative.

Moreover, the universal portfolio by Cover (1991) learns adaptively the best fixed-mix strategy

from the history of observed asset returns. We compute the universal portfolio using a weighted

average of 106 portfolios chosen uniformly at random from W where the weights are proportional

to their empirical performance; see Blum and Kalai (1999).

To increase the practical relevance of our experiments, we evaluate all investment strategies

under proportional transaction costs of c= 50 basis points per dollar traded. Note that the RGOP,

RGOP+, GOP, MV and 1/2-Kelly strategies all depend on estimates µ̂ and Σ̂ of the (unknown) true

mean µ and covariance matrix Σ of the asset returns, respectively. The RGOP+ strategy further

depends on estimates of the confidence parameters δ1, δ2 and δ3 characterizing the uncertainty

set (11). All moments and confidence parameters are re-estimated every 12 months using the

most recent 120 observations. Accordingly, the portfolio weights of all fixed-mix strategies are

recalculated every 12 months based on the new estimates and (in the case of RGOP and RGOP+)

a shrunk investment horizon. Strictly speaking, the resulting investment strategies are thus no

longer of fixed-mix type. Instead, the portfolio weights are periodically updated in a greedy fashion.

We stress that our numerical results do not change qualitatively if we use a shorter re-estimation

interval of 6 months or a longer interval of 24 months. For the sake of brevity, we only report the

results for a re-estimation window of 12 months.

We choose δ1 and δ2 such that the moment uncertainty set (11) constructed from the estimates µ̂

and Σ̂ contains the true mean µ and covariance matrix Σ with confidence 95%. This is achieved via

the bootstrapping procedure proposed by Delage and Ye (2010), implemented with 500 iterations

and two bootstrap datasets of size 120 per iteration. The parameter δ3 defines a lower bound on

the covariance matrix that is never binding; see also Remark 1 of Delage and Ye (2010). Thus, we

can set δ3 = 0 without loss of generality.
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We evaluate the performance of the different investment strategies on the 10Ind, 12Ind, iShares

and DJIA datasets. We denote by w−t and wt the portfolio weights before and after rebalancing

at the beginning of interval t, respectively. Thus, wt represents the target portfolio prescribed by

the underlying strategy. The following performance measures are recorded for every strategy:

1. Mean return:

r̂p =
1

T

T∑
t=1

(
(1 +wᵀ

trt)

(
1− c

n∑
i=1

∣∣wt,i−w−t,i∣∣
)
− 1

)
.

2. Standard deviation:

σ̂p =

√√√√ 1

T − 1

T∑
t=1

(
(1 +wᵀ

trt)

(
1− c

n∑
i=1

∣∣wt,i−w−t,i∣∣
)
− 1− r̂p

)2

.

3. Sharpe ratio:

ŜR=
r̂p
σ̂p
.

4. Turnover rate:

T̂R=
1

T

T∑
t=1

n∑
i=1

∣∣wt,i−w−t,i∣∣ .
5. Net Aggregate Return:

N̂R= V̂T , V̂t =
t∏

s=1

(1 +wᵀ
srs)

(
1− c

n∑
i=1

∣∣ws,i−w−s,i∣∣
)
.

6. Maximum drawdown:

M̂DD= max
1≤s<t≤T

V̂s− V̂t
V̂s

.

The results of the empirical backtests are reported in Table 6. We observe that the robust growth-

optimal portfolios with and without moment uncertainty consistently outperform the other strate-

gies in terms of out-of-sample Sharpe ratios and thus generate the smoothest wealth dynamics.

Moreover, the robust growth-optimal portfolios achieve the lowest standard deviation and the low-

est maximum drawdown (maximum percentage loss over any subinterval of the backtest period)

across all datasets. These results suggest that the robust growth-optimal portfolios are only mod-

erately risky. The universal portfolio as well as the equally weighted portfolio achieve the lowest

turnover rate, which determines the total amount of transaction costs incurred by an investment

strategy. This is not surprising as these two portfolios are independent of the investors’ changing

beliefs about the future asset returns. Nonetheless, the robust growth-optimal portfolios achieve

higher terminal wealth than the equally weighted portfolio in the majority of backtests. Maybe

surprisingly, despite its theoretical appeal, the classical growth-optimal portfolio is strictly domi-

nated by most other strategies. In fact, it is highly susceptible to error maximization phenomena

as it aggressively invests in assets whose estimated mean returns are high.
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We also tested whether the Sharpe ratio of the RGOP+ strategy statistically exceeds those

of the other strategies by using a significance test proposed in Jobson and Korkie (1981) and

Memmel (2003). The corresponding one-sided p-values are reported in Table 6 (in parenthesis).

Star symbols (*) identify p-values that are significant at the 5% level. We observe that the RGOP+

strategy achieves a significantly higher Sharpe ratio than all other benchmarks in the majority of

experiments.

Table 6 Out-of-sample performance of different investment strategies. The first column specifies the dataset

used in the respective experiment as well as the underlying backtest period (excluding the ten-year estimation

window prior to the first rebalancing interval). The best performance measures found in each experiment are

highlighted by gray shading.

Dataset Portfolio r̂p σ̂p ŜR T̂R N̂R M̂DD

10Ind
(01/2000−
12/2012)

RGOP 0.0062 0.0360 0.1718 0.0437 2.3628 0.3555
RGOP+ 0.0064 0.0361 0.1775 0.0433 2.4465 0.3544
1/n 0.0050 0.0444 0.1130* (0.0311) 0.0325 1.8714 0.4818
GOP 0.0008 0.0583 0.0143* (0.0105) 0.0812 0.8681 0.6738
1/2-Kelly 0.0015 0.0502 0.0301* (0.0113) 0.0760 1.0352 0.6319
MV (%= 1) 0.0009 0.0583 0.0150* (0.0107) 0.0805 0.8740 0.6731
MV (%= 3) 0.0025 0.0442 0.0555* (0.0133) 0.0706 1.2550 0.5617
UNIV 0.0050 0.0441 0.1139* (0.0310) 0.0323 1.8763 0.4796

12Ind
(01/2000−
12/2012)

RGOP 0.0063 0.0359 0.1744 0.0445 2.3925 0.3605
RGOP+ 0.0065 0.0361 0.1805 0.0444 2.4875 0.3606
1/n 0.0049 0.0449 0.1097* (0.0207) 0.0320 1.8374 0.4966
GOP 0.0013 0.0585 0.0225* (0.0134) 0.0763 0.9338 0.6457
1/2-Kelly 0.0018 0.0499 0.0368* (0.0134) 0.0763 1.0920 0.6146
MV (%= 1) 0.0013 0.0584 0.0231* (0.0136) 0.0761 0.9395 0.6451
MV (%= 3) 0.0026 0.0437 0.0596* (0.0135) 0.0712 1.2897 0.5489
UNIV 0.0049 0.0446 0.1103* (0.0206) 0.0318 1.8402 0.4951

iShares
(04/2006−
07/2013)

RGOP 0.0033 0.0573 0.0575 0.0388 1.1548 0.5867
RGOP+ 0.0033 0.0573 0.0576 0.0388 1.1555 0.5865
1/n 0.0029 0.0689 0.0425 (0.3086) 0.0321 1.0466 0.6045
GOP 0.0032 0.0628 0.0503 (0.3723) 0.0649 1.1042 0.6165
1/2-Kelly 0.0030 0.0592 0.0505 (0.2482) 0.0514 1.1114 0.6022
MV (%= 1) 0.0032 0.0627 0.0505 (0.3753) 0.0646 1.1054 0.6154
MV (%= 3) 0.0030 0.0582 0.0516 (0.1695) 0.0457 1.1195 0.5964
UNIV 0.0030 0.0687 0.0431 (0.3141) 0.0321 1.0509 0.6045

DJIA
(04/2000−
07/2013)

RGOP 0.0049 0.0381 0.1296 0.0668 1.9569 0.3966
RGOP+ 0.0057 0.0381 0.1498 0.0651 2.2118 0.4000
1/n 0.0066 0.0460 0.1424 (0.4230) 0.0527 2.4017 0.4824
GOP −0.0025 0.0801 −0.0313* (0.0107) 0.1034 0.3831 0.8389
1/2-Kelly −0.0029 0.0685 −0.0430* (0.0055) 0.1002 0.4105 0.8269
MV (%= 1) −0.0025 0.0805 −0.0308* (0.0109) 0.1024 0.3828 0.8398
MV (%= 3) −0.0009 0.0563 −0.0160* (0.0068) 0.0931 0.6605 0.7325
UNIV 0.0066 0.0459 0.1434 (0.4333) 0.0527 2.4153 0.4804

7. Conclusions

The classical growth-optimal portfolio maximizes the growth-rate of wealth that can be guaranteed

with certainty over an infinite planning horizon if the asset return distribution is precisely known.
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The robust growth-optimal portfolios introduced in this paper maximize the growth-rate of wealth

that can be guaranteed with probability 1− ε over a finite investment horizon of T periods if the

asset return distribution is ambiguous. We show that any robust growth-optimal portfolio can be

computed almost as efficiently as a Markowitz portfolio by solving a convex optimization problem

whose size is constant in T . If the distributional uncertainty is captured by a weak-sense white

noise ambiguity set, then the robust growth-optimal portfolios can naturally be identified with

classical Markowitz portfolios or fractional Kelly strategies. However, in contrast to Markowitz

and fractional Kelly investors, robust growth-optimal investors are absolved from the burden of

determining their risk-aversion parameter. Instead, they only have to specify their investment hori-

zon T and violation tolerance ε, both of which admit a simple physical interpretation. Simulated

backtests indicate that the robust growth-optimal portfolio tailored to a finite investment horizon

T can outperform the classical growth-optimal portfolio in terms of Sharpe ratio and growth guar-

antees for all investment horizons up to ∼ 170 years even if the classical growth-optimal portfolio

has access to the true data-generating distribution. The outperformance becomes more dramatic

if the out-of-sample distribution deviates from the in-sample distribution used to compute the

classical growth-optimal portfolio. Empirical backtests suggest that robust growth-optimal port-

folios compare favorably against popular benchmark strategies such as the 1/n portfolio, various

Markowitz portfolios, the classical growth-optimal portfolio, the half-Kelly strategy and Cover’s

universal portfolio. The 1/n portfolio achieves a lower turnover rate but is dominated by the robust

growth-optimal portfolio in terms of the realized Sharpe ratio, realized net return and several

other indicators even in the presence of high proportional transaction costs of 50 basis points. Our

backtest experiments further showcase the benefits of accounting for moment ambiguity.
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Appendix A: Distributionally Robust Quadratic Chance Constraints

Theorem 6. Let P be the set of all probability distributions of ξ̃ ∈Rn that share the same mean µ ∈Rn

and covariance matrix Σ∈ Sn+, Σ� 0. Moreover, let P(Ξ) be the subset of P that contains only distributions

supported on the ellipsoid Ξ = {ξ ∈ Rn : (ξ− ν)ᵀΛ−1(ξ− ν)≤ δ}, where Λ ∈ Sn, Λ� 0, ν ∈ Rn and δ ∈ R,

δ > 0. Then, for Q∈ Sn, q ∈Rn and q0 ∈R we find:

(i) the distributionally robust chance constraint infP∈P P
(
ξ̃ᵀQξ̃+ ξ̃ᵀq+ q0 ≤ 0

)
≥ 1− ε with moment infor-

mation is equivalent to

∃M∈ Sn+1, β ∈R : β+
1

ε
〈Ω,M〉 ≤ 0 , M� 0, M�

[
Q 1

2
q

1
2
qᵀ q0−β

]
; (13)

(ii) the distributionally robust chance constraint infP∈P(Ξ) P
(
ξ̃ᵀQξ̃+ ξ̃ᵀq+ q0 ≤ 0

)
≥ 1−ε with moment and

support information is implied (conservatively approximated) by

∃M∈ Sn+1, α∈R, β ∈R, λ∈R :

β+
1

ε
〈Ω,M〉 ≤ 0 , M� α

[
−Λ−1 Λ−1ν

(Λ−1ν)ᵀ δ−µᵀΛ−1µ

]
,

M�

[
Q 1

2
q

1
2
qᵀ q0−β

]
+λ

[
−Λ−1 Λ−1ν

(Λ−1ν)ᵀ δ−µᵀΛ−1µ

]
.

(14)

In the above expressions, Ω is a notational shorthand for the second-order moment matrix of ξ̃,

Ω =

[
Σ +µµᵀ µ
µᵀ 1

]
.

Proof. Assertion (i) follows from Vandenberghe et al. (2007) or Theorem 2.3 of Zymler et al. (2013b).

Assertion (ii) is an immediate consequence of Theorem 3.7 of Zymler et al. (2013b). Note that (14) reduces

to (13) if we set α= λ= 0.

Appendix B: Proof of Theorem 2

In order to prove Theorm 2, we simplify the semidefinite program (4) in several steps. We first notice that

the random asset returns r̃t enter problem (4) only in the form of the portfolio return wᵀr̃t. We can thus use

a well-known projection property of moment-based ambiguity sets to perform a dimensionality reduction.

Proposition 2 (General Projection Property). Let ξ̃ and ζ̃ be random vectors valued in Rp and Rq,

respectively, and define the ambiguity sets Pξ̃ and Pζ̃ as

Pξ̃ =
{
P∈Pp0 : EP

([
ξ̃ᵀ 1

]ᵀ [
ξ̃ᵀ 1

])
= Ωξ̃

}
and

Pζ̃ =
{
P∈Pq0 : EP

([
ζ̃ᵀ 1

]ᵀ [
ζ̃ᵀ 1

])
= Ωζ̃

}
,

where the moment matrices Ωξ̃ ∈ S
p+1
+ and Ωζ̃ ∈ S

q+1
+ are related through

Ωζ̃ =

[
Λ 0
0ᵀ 1

]
Ωξ̃

[
Λ 0
0ᵀ 1

]ᵀ
for some matrix Λ∈Rq×p. Then, for any Borel measurable function f : Rq→R, we have

inf
P∈P

ζ̃

P
(
f(ζ̃)≤ 0

)
= inf

P∈P
ξ̃

P
(
f(Λξ̃)≤ 0

)
.
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Proof. This is an immediate consequence of Theorem 1 of Yu et al. (2009).

Applying Proposition 2 to problem (4) yields

WVaRε(γ̃
′
T (w)) = sup

γ

γ

s. t. P

(
1

T

T∑
t=1

(
η̃t−

1

2
η̃2
t

)
≥ γ

)
≥ 1− ε ∀P∈Pη̃(w),

(15)

where the projected ambiguity set

Pη̃(w) =

{
P∈PT0 :

EP (η̃t) =wᵀµ ∀t : 1≤ t≤ T

EP (η̃sη̃t) = δstw
ᵀΣw+ (wᵀµ)

2 ∀s, t : 1≤ s≤ t≤ T

}

contains all distributions on RT under which the portfolio returns (η̃1, . . . , η̃T )ᵀ follow a weak sense white

noise process with (period-wise) mean wᵀµ and variance wᵀΣw. Problem (15) has the same structure as

the original problem (4), but the underlying probability space has only dimension T instead of nT . Thus,

it can be converted to a tractable SDP by using Theorem 6 to reformulate the underlying distributionally

robust chance constraint. We then obtain

WVaRε(γ̃
′
T (w)) = max γ

s. t. M∈ ST+1, β ∈R, γ ∈R

β+ 1
ε
〈Ω(w),M〉 ≤ 0, M� 0

M−

[
1
2
I − 1

2
1

− 1
2
1ᵀ γT −β

]
� 0,

(16)

where Ω(w)∈ ST+1 denotes the matrix of first and second-order moments of (η̃1, . . . , η̃T )ᵀ.

Ω(w) =


wᵀΣw+ (wᵀµ)2 (wᵀµ)2 · · · (wᵀµ)2 wᵀµ

(wᵀµ)2 wᵀΣw+ (wᵀµ)2 · · · (wᵀµ)2 wᵀµ
...

...
. . .

...
...

(wᵀµ)2 (wᵀµ)2 · · · wᵀΣw+ (wᵀµ)2 wᵀµ
wᵀµ wᵀµ · · · wᵀµ 1


The projected problem (15) can be further simplified by exploiting its compound symmetry.

Definition 5 (Compound Symmetry, Votaw (1948)). A matrix M ∈ ST+1 is compound symmetric

if there exist τ1, τ2, τ3, τ4 ∈R with

M =


τ1 τ2 · · · τ2 τ3
τ2 τ1 · · · τ2 τ3
...

...
. . .

...
...

τ2 τ2 · · · τ1 τ3
τ3 τ3 . . . τ3 τ4

 . (17)

Note that the second-order moment matrix Ω(w) is compound symmetric because of the temporal sym-

metry of the random returns. More generally, the second-order moment matrix of any univariate weak sense

white noise process is compound symmetric. The next proposition shows that there exists a matrix M that

is both optimal in (16) as well as compound symmetric.

Proposition 3. There exists a maximizer (M, β, γ) of (16) with M compound symmetric.
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Proof. Denote by ΠT+1 the set of all permutations π of the integers {1,2, . . . , T + 1} with π(T +1) = T +1.

For any π ∈ΠT+1 we define the corresponding permutation matrix Pπ ∈R(T+1)×(T+1) through (Pπ)ij = 1 if

π(i) = j; = 0 otherwise. Note that Pᵀ
π represents the permutation matrix corresponding to the inverse of π. A

matrix K∈ ST+1 is compound symmetric if and only if K = PπKPᵀ
π for all π ∈ΠT+1. Suppose that (M, β, γ)

is a maximizer of (16). Since the input matrices in (16) are compound symmetric and Pπ is non-singular,

we have

M−

[
1
2
I −1

2

−
(
1
2

)ᵀ
γT −β

]
� 0 ⇐⇒ Pπ

(
M−

[
1
2
I −1

2

−
(
1
2

)ᵀ
γT −β

])
Pᵀ
π � 0

⇐⇒ PπMPᵀ
π −

[
1
2
I −1

2

−
(
1
2

)ᵀ
γT −β

]
� 0.

The compound symmetry of Ω(w) and the cyclicity of the trace further imply

〈Ω(w),M〉= Tr (MΩ(w)) = Tr (MPᵀ
πΩ(w)Pπ) = Tr (PπMPᵀ

πΩ(w)) = 〈Ω(w),PπMPᵀ
π〉 .

Hence, (PπMPᵀ
π, β, γ) is feasible in (16) and has the same objective value as (M, β, γ). It is therefore a

maximizer of (16). As the set of maximizers is convex, the convex combination

M′ =
1

T !

∑
π∈ΠT+1

PπMPᵀ
π

is also a maximizer of (16). Moreover, M′ is compound symmetric because ρ(ΠT+1) = ΠT+1 and, a fortiori,

PρM
′Pᵀ

ρ = M′ for any ρ∈ΠT+1. Thus, the claim follows.

By Proposition 3, we may assume without loss of generality that M in (16) is compound symmetric. Thus,

each matrix inequality in (16) requires a compound symmetric matrix to be positive semidefinite. The next

proposition shows that semidefinite constraints involving compound symmetric matrices of any dimension

can be reduced to four simple scalar constraints.

Proposition 4. For any compound symmetric matrix M ∈ ST+1 of the form (17), the following equiva-

lence holds.

M� 0 ⇐⇒


τ1 ≥ τ2
τ4 ≥ 0

τ1 + (T − 1)τ2 ≥ 0

τ4 (τ1 + (T − 1)τ2)≥ Tτ2
3

(18a)

(18b)

(18c)

(18d)

Proof. We use the well-known fact that a symmetric matrix is positive semidefinite if and only if all of

its eigenvalues are nonnegative. First, it is easy to verify that any vector of the form v = [v1, v2, . . . , vT ,0]
ᵀ

with
∑T

i=1 vi = 0 constitutes an eigenvector of M with eigenvalue τ1− τ2. Indeed, we have

Mv=


τ1v1 + τ2(v2 + v3 + · · ·+ vT )
τ1v2 + τ2(v1 + v3 + · · ·+ vT )

...
τ1vT + τ2(v2 + v3 + · · ·+ vT−1)

τ3(v1 + v2 + · · ·+ vT )

=


(τ1− τ2)v1

(τ1− τ2)v2

...
(τ1− τ2)vT

0

= (τ1− τ2)v.

There are T − 1 linearly independent eigenvectors of the above type. Next, we assume first that τ3 = 0. In

this case, the two remaining eigenvectors can be chosen as [1,1, . . . ,1,0]
ᵀ

and [0,0, . . . ,0,1]
ᵀ

with eigenvalues
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τ1 + (T − 1)τ2 and τ4, respectively. Thus M � 0 if and only if (18a), (18b), and (18c) hold. Moreover,

(18d) is trivially implied by (18b) and (18c) whenever τ3 = 0. Assume now that τ3 6= 0. In this case, the

two remaining eigenvectors are representable as v = [1,1, . . . ,1, v]
ᵀ

for some v ∈ R. Observe that λ is a

corresponding eigenvalue if and only if Mv= λv, which is equivalent to

τ1 + (T − 1)τ2 + vτ3 = λ, Tτ3 + vτ4 = λv.

The second equation above thus implies that v(λ − τ4) = Tτ3 6= 0, and thus v = Tτ3
λ−τ4

. Substituting this

expression for v into the first equation above, we obtain

τ1 + (T − 1)τ2 +
Tτ2

3

λ− τ4
= λ.

Solving this equation for λ yields the two eigenvalues

λ=
1

2

(
τ1 + (T − 1)τ2 + τ4±

√
(τ1 + (T − 1)τ2 + τ4)2 + 4 (Tτ2

3 − τ4(τ1 + (T − 1)τ2))

)
(19a)

=
1

2

(
τ1 + (T − 1)τ2 + τ4±

√
(τ1 + (T − 1)τ2− τ4)2 + 4Tτ2

3

)
. (19b)

From equation (19b) it is evident that the square root term constitutes a strictly positive real number. The

two eigenvalues are thus nonnegative if and only if

τ1 + (T − 1)τ2 + τ4 ≥ 0, (τ1 + (T − 1)τ2) τ4 ≥ Tτ2
3 . (20)

The second inequality in (20) ensures that the square root term in (19a) does not exceed τ1 + (T −1)τ2 + τ4,

which implies (18d). By (20), both the product and the sum of τ1 + (T −1)τ2 and τ4 are nonnegative, which

implies that each of them must be individually nonnegative, i.e., (18b) and (18c) hold. The claim now follows

from the fact that (18b)–(18d) also imply (20).

Note that the inequalities (18b), (18c) and (18d) represent a hyperbolic constraint and are therefore

second-order cone representable; see Exercise 4.26 of Boyd and Vandenberghe (2004).

We now demonstrate that the semidefinite program (16), which involves O(T ) decision variables, can be

reduced to an equivalent non-linear program with only six decision variables. First, by Proposition 3, we may

assume without any loss of generality that the decision variable M in (16) is of the form (17) for some τ ∈R4.

Thus, we can use Proposition 4 to re-express both semidefinite constraints in (16) in terms of one non-linear

and three linear constraints, respectively. Using the notational shorthands µp =wᵀµ and σp =
√
wᵀΣw for

the mean and the standard deviation of the portfolio return, we obtain the following non-linear program.

WVaRε(γ̃
′
T (w)) = max γ

s. t. τ ∈R4, β ∈R, γ ∈R

β+ 1
ε

[
T
(
σ2

p +µ2
p

)
τ1 +T (T − 1)µ2

pτ2 + 2Tµpτ3 + τ4

]
≤ 0 (21a)

τ1 ≥ τ2 (21b)

τ4 ≥ 0 (21c)

τ1 + (T − 1)τ2 ≥ 0 (21d)
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τ4 (τ1 + (T − 1)τ2)≥ Tτ2
3 (21e)(

τ1− 1
2

)
≥ τ2 (21f)

τ4− γT +β ≥ 0 (21g)(
τ1− 1

2

)
+ (T − 1)τ2 ≥ 0 (21h)

(τ4− γT +β)
((
τ1− 1

2

)
+ (T − 1)τ2

)
≥ T

(
τ3 + 1

2

)2
(21i)

Note that (21a) corresponds to the trace inequality, while (21b)–(21e) encodes the positive semidefiniteness

of M, and (21f)–(21i) is a reformulation of the last matrix inequality in (16).

We first note that (21a) is binding at optimality. Indeed, if (21a) is not binding at (τ , β, γ), then (τ , γ +

∆
T
, β + ∆) remains feasible but has a higher objective value for a sufficiently small ∆> 0. Moreover, (21b)

and (21d) are redundant in view of (21f) and (21h) and can thus be dropped. Finally, there exists an

optimal solution for which (21f) is binding. Indeed, if (21f) is not binding at (τ , β, γ), then (
τ1+(T−1)τ2− 1

2

T
+

1
2
,
τ1+(T−1)τ2− 1

2

T
, τ3, τ4, γ, β) remains feasible with the same objective value but satisfies (21f) as an equality.

Without loss of generality, we can thus eliminate the decision variable τ1 by using the substitution τ1 = τ2 + 1
2
.

In summary, we have

WVaRε(γ̃
′
T (w)) = max γ

s. t. τ2 ∈R, τ3 ∈R, τ4 ∈R, β ∈R, γ ∈R

β+ 1
ε

[
T
2

(
σ2

p +µ2
p

)
+T

(
σ2

p +Tµ2
p

)
τ2 + 2Tµpτ3 + τ4

]
= 0

τ4 ≥ 0

τ4− γT +β ≥ 0

τ2 ≥ 0

τ4
(
τ2 + 1

2T

)
≥ τ2

3

(τ4− γT +β) τ2 ≥
(
τ3 + 1

2

)2
.

(22)

Problem (22) can be written more compactly as

WVaRε(γ̃
′
T (w)) = − min aw+ bx+ cy+ dz+ e

s. t. w,x, y, z ∈R

w≥ 0, x≥ 0, y≥ 1

( 1
2
z+ 1)2 ≤w(y+ 1)

( 1
2
z− 1)2 ≤ x(y− 1),

(23)

where the decision variables w, x, y and z in (23) are related to the variables τ2, τ3, τ4, β and γ in (22)

through the transformations

w=
4τ4
T
, x=

4 (τ4− γT +β)

T
, y= 4Tτ2 + 1, z =−8τ3− 2,
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while the objective function coefficients are given by a= 1
4ε
− 1

4
, b= 1

4
, c=

σ2
p+Tµ2

p

4εT
, d=−µp

4ε
and e=

µ2
p

4ε
−

µp

2ε
+

σ2
p

2ε
− σ2

p

4εT
. Note that the inequality constraints in (22) correspond to the inequality constraints in (23)

in the same order, while the equality constraint in (22) has been eliminated via the following substitution.

γ = 1
4
(w−x) + β

T

= 1
4
(w−x)− 1

εT

(
T
2

(
σ2

p +µ2
p

)
+T

(
σ2

p +Tµ2
p

)
τ2 + 2Tµpτ3 + τ4

)
= 1

4
(w−x)− 1

εT

(
T
2

(
σ2

p +µ2
p

)
+ 1

4

(
σ2

p +Tµ2
p

)
(y− 1)− 1

4
Tµp(z+ 2) + 1

4
Tw
)

=−
((

1
4ε
− 1

4

)
w+

(
1
4

)
x+

(
σ2
p+Tµ2

p

4εT

)
y+

(
−µp

4ε

)
z+

µ2
p

4ε
− µp

2ε
+

σ2
p

2ε
− σ2

p

4εT

)
=−(aw+ bx+ cy+ dz+ e)

Problem (23) admits an explicit analytical solution as stated in the following lemma.

Lemma 1. For any given real numbers a, b, c and d that satisfy the conditions

(i) a, b, c > 0,

(ii) (a+ b)c > d2 and

(iii) a+ b+ d>∆
√
b/a, where ∆ =

√
(a+ b)c− d2 > 0,

the optimal value of the optimization problem

min aw+ bx+ cy+ dz

s. t. w,x, y, z ∈R

w≥ 0, x≥ 0, y≥ 1

( 1
2
z+ 1)2 ≤w(y+ 1)

( 1
2
z− 1)2 ≤ x(y− 1)

(24)

is given by
2bd+ d2 + ∆2 + 2∆

√
ab

a+ b
+

2
√
ab

(a+ b)2

(
∆− d

√
a/b
)(

a+ b+ d−∆
√
b/a
)
.

Proof. Assumption (i) ensures that problem (24) is bounded, while assumption (ii) guarantees that

∆ =
√

(a+ b)c− d2 is real. Assumption (iii) is not strictly needed, and problem (24) admits a generalized

closed-form solution even if this assumption is violated. However, this more general solution is not needed

for this paper, and therefore we will not derive it.

Note that (24) constitutes a (convex) SOCP with two hyperbolic constraints, and the Karush-Kuhn-Tucker

(KKT) optimality conditions are necessary and sufficient. We will now prove the lemma constructively by

showing that the candidate solution

y=
2− p− q
p− q

, z =
2(p+ q− 2pq)

p− q
, w=

(
1
2
z+ 1

)2
y+ 1

, x=

(
1
2
z− 1

)2
y− 1

with

p=
−d+ ∆

√
b/a

a+ b
, q=

−d−∆
√
a/b

a+ b

satisfies the KKT conditions and is thus optimal in (24). Note first that this solution is feasible. Indeed, by

the assumptions (i)–(iii) we have q < p< 1. We conclude that

y=
2− p− q
p− q

= 1 +
2(1− p)
p− q

> 1,
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which in turn implies that w ≥ 0 and x ≥ 0. The two hyperbolic constraints in (24) are binding by the

definition of w and x.

For later reference we state the following identities, which are easy to verify.

ap+ bq+ d= 0, ap2 + bq2 = c, p=
z+ 2

2y+ 2
, q=

z− 2

2y− 2
(25)

Moreover, we denote by α1, α2 and α3 the Lagrange multipliers of the three linear inequalities and by λ

and δ the Lagrange multipliers of the two hyperbolic constraints in (24), respectively. To prove that the

suggested candidate solution is indeed optimal, we show that it satisfies the KKT conditions with α1 = α2 =

α3 = 0, λ = a
y+1

> 0 and δ = b
y−1

> 0. Note that these Lagrange multipliers are dual feasible and satisfy

complementary slackness. By using (25) together with the explicit formulas for the candidate solution and

the Lagrange multipliers, we can further verify the stationarity conditions:

a−α1−λ(y+ 1) = 0

b−α2− δ(y− 1) = 0

c−α3−λw− δx= c− ap2− bq2 = 0

d+ 1
2
λ(z+ 2) + 1

2
δ(z− 2) = d+ ap+ bq= 0

As all KKT conditions are met, we conclude that the proposed candidate solution is optimal. In order to

evaluate the optimal objective value of problem (24), we first use (25) to show that w = p( 1
2
z + 1) and

x= q( 1
2
z− 1). This enables us to express the optimal objective value as

aw+ bx+ cy+ dz = ap
(

1
2
z+ 1

)
+ bq

(
1
2
z− 1

)
+ cy+ dz

= ap− bq+ cy+ 1
2
z (2d+ ap+ bq)

= ap− bq+ cy+ 1
2
dz,

where the last equality follows again from (25). As y and z are defined in terms of p and q, we can now

express the optimal objective value as a function of p and q only. The claim then follows by substituting the

definitions of p and q into the resulting formula.

We are now ready to prove Theorem 2.

Proof of Theorem 2. We know that the worst-case VaR of γ̃′T (w) is given by the optimal value of prob-

lem (23). By construction, the objective function coefficients a, b and c in (23) are strictly positive. More-

over, the square root discriminant ∆ =
√

(a+ b)c− d2 =
σp

4ε
√
T

is strictly positive by Assumption (A1), while

Assumption (A2) implies that

a+ b+ d=
1

4ε
(1−µp)>

1

4ε

√
ε

(1− ε)T
σp =

√
b/a∆.

As all conditions of Lemma 1 are satisfied, we may conclude that

WVaRε(γ̃
′
T (w)) =−

(
2bd+d2+∆2+2∆

√
ab

a+b
+ 2

√
ab

(a+b)2

(
∆− d

√
a/b
)(

a+ b+ d−∆
√
b/a
)

+ e
)
.

The claim then follows by substituting the definitions of a, b, c, d and e into the above expression and

rearranging terms.
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Appendix C: Proof of Theorem 3

We first establish some identities for the parameters ∆, b, u and d defined on page 17 that will be useful for

the proof of the two assertions. From the definition of d we conclude that

(T − 1)u2 + (u+ ∆)
2

= (T − 1)d2 + (d−∆)
2
, (26)

while the definitions of b and u imply that

(1− ε′)b+ ε′
(
u+

∆

T

)
= µp. (27)

For later reference we define

γ =
1

2

1−

(
1−µp +

√
1− ε′
ε′T

σp

)2

− T − 1

ε′T
σ2

p

 . (28)

By construction, γ is equal to the worst-case VaR of γ̃′T (w) at the tolerance level ε′; see Theorem 2. Basic

algebraic manipulations yield the following equation equivalent to (28).

(1− ε′)−
(
2µp−µ2

p−σ2
p− 2γε′

)
=

(√
(1− ε′)(1−µp)−

√
ε′

T
σp

)2

By using the definition of b, this equation can be reformulated as

b2− 2b+
2µp−µ2

p−σ2
p− 2γε′

1− ε′
= 0. (29)

Similarly, from the definition of u we obtain

u= µp−
∆

T
−
√

1− ε′
ε′T

σp

= 1− ∆

T
−
√

1− 2γ− T − 1

ε′T
σ2

p

= 1− ∆

T
−
√

1− 2γ+
∆2

T 2
− ∆2

T

=
2(T −∆)−

√
4(T −∆)2− 4T (2Tγ− 2∆ + ∆2)

2T
,

where the second equality uses (28) and the third equality the definition of ∆. Therefore, u can be viewed a

root of the quadratic equation

Tu2 + 2u (∆−T ) + 2Tγ− 2∆ + ∆2 = 0. (30)

We are now ready to prove assertion (i). We will show that the distributions Pε′ , ε′ ∈ (ε,1), satisfy the

moment conditions in the definition of Pη̃(w) on page 36. By construction, it is clear that Pε′ is indeed a

probability distribution. As for the first order moment conditions, we observe that

EPε′ (η̃t) = (1− ε′) b+
ε′

2T
(Tu+ ∆) +

ε′

2T
(Td−∆)

= (1− ε′) b+
ε′

T
(Tu+ ∆) = µp ∀t= 1, . . . , T,
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where the second equality follows from the definition of d, while the third equality exploits (27). As for the

second order moment conditions, we have

EPε′
(
η̃2
t

)
= (1− ε′) b2 +

ε′

2T

(
(T − 1)u2 + (u+ ∆)

2
)

+
ε′

2T

(
(T − 1)d2 + (d−∆)

2
)

= (1− ε′) b2 +
ε′

T

(
(T − 1)u2 + (u+ ∆)

2
)

= (1− ε′) b2 +
ε′

T

(
Tu2 + 2u∆ + ∆2

)
= (1− ε′)

(
2b−

2µp−µ2
p−σ2

p− 2γε′

1− ε′

)
+

2ε′

T
(uT −Tγ+ ∆)

= µ2
p +σ2

p− 2

(
µp− (1− ε′)b− ε′u− ε′∆

T

)
= µ2

p +σ2
p,

(31)

where the second equality follows from (26), the fourth equality exploits (29) to re-express b2 and (30) to

re-express Tu2 + 2u∆ + ∆2, and the last equality holds due to (27). Similarly, we find

EPε′ (η̃sη̃t) = (1− ε′) b2 +
ε′

2T

(
(T − 2)u2 + 2u (u+ ∆)

)
+

ε′

2T

(
(T − 2)d2 + 2d (d−∆)

)
= (1− ε′) b2 +

ε′

2T

(
(T − 1)

(
u2 + d2

)
+ (u+ ∆)

2
+ (d−∆)

2
)
− ε′

T
∆2 = µ2

p

for s 6= t. A comparison with (31) shows that the first two terms in the second line of the above expression

are equal to µ2
p +σ2

p. The third equality then follows from the definition of ∆. Thus, Pε′ ∈Pη̃(w).

To prove assertion (ii), we first evaluate the distribution of the (quadratic approximation of the) uncertain

portfolio growth rate γ̃ηT under Pε′ . Indeed, γ̃ηT will adopt only one of two different possible values depending

on whether the realization of η̃ is equal to ηb or any of the other scenarios (ηut or ηdt for any t= 1, . . . , T ),

respectively. If η̃= ηb, it is easy to verify that γ̃ηT = b− 1
2
b2. On the other hand, if η̃= ηut for any t= 1, . . . , T ,

then

γ̃ηT =
1

T

(
(T − 1)

(
u− 1

2
u2

)
+ (u+ ∆)− 1

2
(u+ ∆)2

)
=

1

2T

(
−Tu2− 2u (∆−T ) + 2∆−∆2

)
= γ,

where the second equality follows from basic manipulations, and the third equality holds due to (30). A

similar calculation shows that γ̃ηT is also equal to γ if η̃ = ηdt for any t = 1, . . . , T . Details are omitted for

brevity. Next, we will demonstrate that b− 1
2
b2 > γ, that is, the growth rate γ̃ηT adopts its largest value in

scenario η̃= ηb. To this end, we observe that

γ =
1

2

1−

(
1−µp +

√
1− ε′
ε′T

σp

)2

− T − 1

ε′T
σ2

p


=

1

2

(
1− (1−µp)

2− 2

√
1− ε′
ε′T

(1−µp)σp−
T − ε′

ε′T
σ2

p

)

<
1

2

(
1− (1−µp)

2− 2

T
σ2

p−
T − ε′

ε′T
σ2

p

)
<

1

2

(
1− (1−µp)

2−σ2
p

)
,

where the first inequality holds because of Assumption (A2) and because ε′ ∈ (ε,1). Thus,

1

2

(
1− (1−µp)

2−σ2
p

)
>γ ⇐⇒

2µp−µ2
p−σ2

p− 2γε′

2(1− ε′)
>γ ⇐⇒ b− 1

2
b2 >γ ,
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where the first equivalence follows from basic algebraic manipulations, while the second equivalence is due

to (29). In summary, we have shown that

Pε′(γ̃ηT = γ) = Pε′(η̃ 6= ηb) = ε′ and Pε′(γ̃ηT >γ) = Pε′(η̃= ηb) = 1− ε′

for all ε′ ∈ (ε,1). Together with the continuity of γ as a function of ε′, which follows from the definition of γ

in (28), we may thus conclude that

lim
ε′↓ε

Pε′ -VaRε(γ̃
η
T ) = WVaRε(γ̃

′
T (w)) .

This observation completes the proof.

Appendix D: Proof of Theorem 4

The proof of Theorem 4 parallels that of Theorem 2 and relies on three auxiliary propositions. We will first

show that the matrix M in (9) may be assumed to be block compound symmetric in the sense of the following

definition.

Definition 6 (Block Compound Symmetry). A matrix M ∈ SnT+1 is block compound symmetric

with blocks of size n×n if it is representable as

M =


A B · · · B c
B A · · · B c
...

...
. . .

...
...

B B . . . A c
cᵀ cᵀ · · · cᵀ d

 (32)

for some A∈ Sn, B∈ Sn, c∈Rn and d∈R.

Formally, we can prove the following result.

Proposition 5. There exists a maximizer (M, α,β, γ,λ) of (9) where M is block compound symmetric

with blocks of size n×n.

Proof. The proof widely parallels that of Proposition 3 in Appendix B and is thus omitted.

The next two propositions demonstrate that the positive semidefiniteness of a block compound symmetric

matrix M ∈ RnT+1 can be enforced by two linear matrix inequalities of dimensions only n and n + 1,

respectively.

Proposition 6. For any matrix K∈ SnT of the form

K =


A B · · · B
B A · · · B
...

...
. . .

...
B B · · · A

 (33)

for some A,B∈ Sn we have that eig(K) = eig (A−B)∪ eig(A + (T − 1)B).

Proof. We prove this proposition constructively by determining all eigenvalues as well as the correspond-

ing eigenvectors of K. Let {(vi, λi)}ni=1 denote all n pairs of eigenvectors and eigenvalues of the matrix

A + (T − 1)B. For any i= 1, . . . , n, we have

K


vi
vi
...
vi

=


(A + (T − 1)B)vi
(A + (T − 1)B)vi

...
(A + (T − 1)B)vi

= λi


vi
vi
...
vi

 ,
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which implies that [vᵀ
i ,v

ᵀ
i , . . . ,v

ᵀ
i ]

ᵀ
is an eigenvector of K with eigenvalue λi. Next, denote by {(ui, θi)}ni=1

the n pairs of eigenvectors and eigenvalues of the matrix A−B. For any i= 1, . . . , n and for any k ∈RT with

1ᵀk= 0 we have

K


k1ui
k2ui

...
kTui

=


k1 (A−B)ui
k2 (A−B)ui

...
kT (A−B)ui

= θi


k1ui
k2ui

...
kTui

 .
Thus, [k1u

ᵀ
i , k2u

ᵀ
i , . . . , kTu

ᵀ
i ]

ᵀ
is an eigenvector of K with eigenvalue θi. Hence, there are T − 1 linearly

independent eigenvectors that share the same eigenvalue θi. In summary, we have found all n+n(T −1) = nT

eigenvalues of K counted by their multiplicities, and we may thus conclude that eig(K) = eig (A−B) ∪

eig(A + (T − 1)B).

Proposition 7. For any block compound symmetric matrix M ∈ SnT+1 of the form (32), the following

equivalence holds.

M� 0 ⇐⇒


A�B[

A + (T − 1)B c
cᵀ d

T

]
� 0

Proof. For ease of exposition, we set

M =

[
K c′

c′ᵀ d

]
,

where c′ = [cᵀ,cᵀ, . . . ,cᵀ]
ᵀ
, and K is the block matrix defined in (33). Assume first that d= 0. Then, M� 0

if and only if c = 0 and K � 0, which in turn is equivalent to c = 0, A � B, and A + (T − 1)B � 0; see

Proposition 6. Thus, the claim follows. Assume next that d 6= 0. Then,

M� 0 ⇐⇒ d> 0, K� 1

d
c′c′ᵀ

⇐⇒ d> 0,


A− ccᵀ/d B− ccᵀ/d . . . B− ccᵀ/d
B− ccᵀ/d A− ccᵀ/d . . . B− ccᵀ/d

...
...

. . .
...

B− ccᵀ/d B− ccᵀ/d . . . A− ccᵀ/d

� 0

⇐⇒ d> 0, A�B, A + (T − 1)B� T

d
ccᵀ

⇐⇒ A�B,

[
A + (T − 1)B c

cᵀ d
T

]
� 0 ,

where the first and the last equivalences follow from standard Schur complement arguments, while the third

equivalence holds due to Proposition 6. Thus, the claim follows again.

We are now ready to prove Theorem 4.

Proof of Theorem 4. By Proposition 5, we may assume without any loss of generality that the decision

variable M in (9) is of the form (32), where A∈ Sn, B∈ Sn, c∈Rn and d∈R represent new auxiliary decision

variables to be used instead of M. Proposition 7 then allows us to re-express each (nT +1)-dimensional SDP

constraint in (9) in terms of two linear matrix inequalities of dimensions n and n+1. Using a standard Schur

complement argument to linearize all terms quadratic in w, we may conclude that the SDPs (9) and (10)

are equivalent. Thus, Theorem 4 follows.


