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Robust Guided Image Filtering Using
Nonconvex Potentials

Bumsub Ham, Member, IEEE, Minsu Cho, and Jean Ponce, Fellow, IEEE

Abstract—Filtering images using a guidance signal, a process called guided or joint image filtering, has been used in various tasks in

computer vision and computational photography, particularly for noise reduction and joint upsampling. This uses an additional guidance

signal as a structure prior, and transfers the structure of the guidance signal to an input image, restoring noisy or altered image

structure. The main drawbacks of such a data-dependent framework are that it does not consider structural differences between

guidance and input images, and that it is not robust to outliers. We propose a novel SD (for static/dynamic) filter to address these

problems in a unified framework, and jointly leverage structural information from guidance and input images. Guided image filtering is

formulated as a nonconvex optimization problem, which is solved by the majorize-minimization algorithm. The proposed algorithm

converges quickly while guaranteeing a local minimum. The SD filter effectively controls the underlying image structure at different

scales, and can handle a variety of types of data from different sensors. It is robust to outliers and other artifacts such as gradient

reversal and global intensity shift, and has good edge-preserving smoothing properties. We demonstrate the flexibility and

effectiveness of the proposed SD filter in a variety of applications, including depth upsampling, scale-space filtering, texture removal,

flash/non-flash denoising, and RGB/NIR denoising.

Index Terms—Guided image filtering, joint image filtering, nonconvex optimization, majorize-minimization algorithm.

✦

1 INTRODUCTION

M ANY tasks in computer vision and computational photog-

raphy can be formulated as ill-posed inverse problems,

and thus theoretically and practically require filtering and reg-

ularization to obtain a smoothly varying solution and/or ensure

stability [1]. Image filtering is used to suppress noise and/or

extract structural information in many applications such as image

restoration, boundary detection, and feature extraction. In this

setting, an image is convolved with a spatially invariant or variant

kernel. Linear translation invariant (LTI) filtering uses spatially

invariant kernels such as Gaussian and Laplacian ones. Spatially

invariant kernels enable an efficient filtering process, but do not

consider the image content, smoothing or enhancing both noise

and image structure evenly.

Recent work on joint image filtering (or guided image filter-

ing) [2], [3], [4] uses an additional guidance image to construct a

spatially variant kernel. The basic idea is that the structural infor-

mation of the guidance image can be transferred to an input image,

e.g., for preserving salient features such as corners and boundaries

while suppressing noise. This provides a new perspective on the

filtering process, with a great variety of applications including

stereo correspondence [5], [6], optical flow [5], [7], semantic

flow [8], [9], joint upsampling [3], [10], [11], [12], dehazing [2],

noise reduction [4], [13], and texture removal [14], [15], [16].

Joint image filtering has been used with either static or

dynamic guidance images. Static guidance filtering (e.g., [2])

modulates the input image with a weight function depending only

on features of the guidance image, as in the blue box of Fig. 1.
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Fig. 1. SD filtering for depth upsampling: Static guidance filtering con-
volves an input image (a low-resolution depth image) with a weight
function computed from a fixed guidance signal (a high-resolution color
image), as in the blue box. Dynamic guidance filtering uses weight
functions that are repeatedly obtained from filtered input images, as
in the red box. We have observed that static and dynamic guidance
complement each other, and exploiting only one of them is problematic,
especially in the case of data from different sensors (e.g., depth and
color images). The SD filter takes advantage of both, and addresses the
problems of current joint image filtering. (Best viewed in colour.)

This guidance signal is fixed during the optimization. It can reflect

internal properties of the input image itself, e.g., its gradients [3],

[17], or be another signal aligned with the input image, e.g., a near

infrared (NIR) image [4]. This approach assumes the structure of

the input and guidance images to be consistent with each other,

and does not consider structural (or statistical) dependencies and

inconsistencies between them. This is problematic, especially in

the case of data from different sensors (e.g., depth and color

images). Dynamic guidance filtering (e.g., [16]) uses weight

functions that are repeatedly obtained from filtered input images,

as in the red box of Fig. 1. It is assumed that the weight between
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neighboring pixels can be determined more accurately from the

filtered input image than from the initial one itself [16], [18].

This method is inherently iterative, and the dynamic guidance

signal (the filtered input image, i.e., a potential output image)

is updated at every step until convergence. Dynamic guidance

filtering takes into account the properties of the input image, but

ignores the additional information available in the static guidance

image, which can be used to impose image structures lost in the

input data, e.g., in joint upsampling [3], [10], [11], [12].

We present in this paper a unified framework for joint image

filtering taking advantage of both static and dynamic guidance,

called the SD filter (Fig. 1). We address the aforementioned

problems by adaptively fusing data from the static and dynamic

guidance signals, rather than unilaterally transferring the structure

of the guidance image to the input one. To this end, we combine

static guidance image weighting with a nonconvex penalty on the

gradients of dynamic guidance, which makes joint image filtering

robust to outliers. The SD filter has several advantages over current

joint image filters: First, it effectively controls image structures at

different scales, and can handle a variety of types of data from

different sensors. Second, it has good edge-preserving properties,

and is robust to artifacts, such as gradient reversal and global

intensity shift [2].

Contributions. The main contributions of this paper can be

summarized as follows:

• We formulate joint image filtering as a nonconvex optimization

problem, where Welsch’s function [19] (or correntropy [20])

is used for a nonconvex regularizer. We solve this problem by

the majorize-minimization algorithm, and propose to use an l1
regularizer to compute an initial solution of our solver, which

accelerates the convergence speed (Section 3).

• We analyze several properties of the SD filter including scale

adjustment, runtime, filtering behavior, and its connection to

other filters (Section 4).

• We demonstrate the flexibility and effectiveness of the SD

filter in several computer vision and computational photography

applications including depth upsampling, scale-space filtering,

texture removal, flash/non-flash denoising, and RGB/NIR de-

noising (Section 5).

A preliminary version of this work appeared in [21]. This

version adds (1) an in-depth presentation of the SD filter; (2)

a discussion on its connection to other filtering methods; (3) an

analysis of runtime; (4) an extensive experimental evaluation and

comparison of the SD filter with several state-of-the-art methods;

and (5) an evaluation on the localization accuracy of depth edges

for depth upsampling. To encourage comparison and future work,

the source code of the SD filter is available at our project webpage:

http://www.di.ens.fr/willow/research/sdfilter.

2 RELATED WORK

2.1 Image filtering and joint image filtering

Joint image filters can be derived from minimizing an objective

function that usually involves a fidelity term (e.g., [2], [3], [22]),

a prior smoothness (regularization) term (e.g., [17]), or both

(e,g., [15], [23], [24]). Regularization is implicitly imposed on

the objective function with the fidelity term only. The smoothness

term encodes an explicit regularization process into the objective

function. We further categorize joint image filtering (static or dy-

namic guidance filtering) into implicit and explicit regularization

methods. The SD filter belongs to the explicit regularization that

takes advantage of both static and dynamic guidance.

Implicit regularization stems from a local filtering framework.

The input image is filtered using a weight function that depends

on the similarity of features within a local window in the guidance

image [3], allowing the structure of the guidance image to be

transferred to the input image. The bilateral filter (BF) [22], guided

filter (GF) [2], weighted median filter (WMF) [11], and weighted

mode filter (WModF) [25] are well-known implicit regulariza-

tion methods, and they have been successfully adapted to static

guidance filtering. They regularize images through a weighted

averaging process [2], [22], a weighted median process [11],

or a weighted mode process [25]. Two representative filtering

methods using dynamic guidance are iterative nonlocal means

(INM) [18] and the rolling-guidance filter (RGF) [16]. These

methods share the same filtering framework, but differ in that

INM aims at preserving textures during noise reduction, while

RGF aims at removing them through scale-space filtering. The

implicit regularization involved is simple and easy to implement,

but it has some drawbacks. For example, it has difficulties handling

sparse input data (e.g., in image colorization [26]), and often

introduces artifacts (e.g., halos and gradient reversal [2]) due to

its local nature. Accordingly, implicit regularization has mainly

been applied in highly controlled conditions, and is typically used

as pre- and/or post-processing for further applications [11], [27].

An alternative approach is to explicitly encode the regular-

ization process into the objective function, while taking advan-

tage of the guidance image. The weighted least-squares (WLS)

framework [23] is the most popular explicit regularization method

in static guidance filtering [12]. The objective function typically

consists of two parts: A fidelity term captures the consistency

between input and output images, and a regularization term,

modeled using a weighted l2 norm [23], encourages the output

image to have a similar structure to the guidance one. Many other

regularization terms, e.g., l1 norm in total generalized variation

(TGV) [10], l0 norm in l0 norm minimization [24], or relative

total variation (RTV) [15], have also been employed, so that the

filtered image is forced to have statistical properties similar to

those of the desired solution. Anisotropic diffusion (AD) [17]

is an explicit regularization framework using dynamic guidance.

In contrast to INM [18] and RGF [16], AD updates both input

and guidance images at every step. Filtering is performed itera-

tively with the filtered input and updated guidance images. This

explicit regularization enables formulating a task-specific model,

with more flexibility than implicit regularization. Furthermore, it

overcomes several limitations of implicit regularization, such as

halos and gradient reversal for example, at the cost of global

intensity shift [2], [23].

Existing image filtering methods typically apply to a lim-

ited range of applications and suffer from various artifacts: For

example, RGF is applicable to scale-space filtering only, and

suffers from poor edge localization [16]. In contrast, our approach

provides a unified model for many applications, gracefully han-

dles most artifacts, and outperforms the state of the art in all

the applications considered in the paper. Although the proposed

model is superficially similar to WLS [23] and RGF [16], our

nonconvex objective function requires a different solver, which

gives theoretical reasoning for RGF. Our model is also related to a

diffusion-reaction equation [28], the steady-state solution of which

has a similar form to the SD filter. However, the SD filter has

an additional weight function using static guidance, as described
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(a) Color image. (b) Depth image. (c) Static guidance. (d) Dynamic guidance. (e) Our model.

Fig. 2. Comparison of static and dynamic guidance filtering methods. Given (a) a high-resolution color image, (b) a low-resolution depth image is
upsampled (×8) by our model in (1) using (c) static guidance only (e.g., [23]), (d) dynamic guidance only (e.g., [16]), and (e) joint static and dynamic
guidance. Static guidance filtering restores smoothed depth edges, as in the red boxes of (c). However, this method transfers all the structural
information of the color image to the depth image, such as the weak color edges between the board and background and the color stripes on the
tablecloth in the blue boxes of (c). Dynamic guidance filtering avoids this problem, as in the blue boxes of (d), but this method does not use the
structural information of the high-resolution color image, smoothing or even eliminating depth edges as in the red boxes of (d). The SD filter jointly
uses the structure of color and depth images, and does not suffer from these problems as in the blue and red boxes of (e). See Section 5.1 for
details. (Best viewed in colour.)

in Section 4.4 in detail. While Badri et al. [29] used a similar

nonconvex objective function for image smoothing, our model

provides a more generalized objective for joint image filtering.

Shen et al. [30] used the common structure in input and guidance

images, but the local filtering formulation of the filter introduces

halo artifacts and limits the applicability. The closest work to

ours is a recently introduced a learning-based joint filter [31]

using convolutional neural networks (CNNs). This deep joint filter

considers the structures of both input and guidance images, but

requires a large number of annotated images for training the deep

model for each task.

2.2 Joint image filtering for high-level vision

Joint image filtering has shown great success in low-level vision

tasks, but little attention has been paid to applying it to high-

level vision problems. Motivated by the fact that contrast-sensitive

potentials [32] typically used in conditional random fields (CRFs)

have a similar role to static guidance image weighting (e.g., see

(5) in [32]), Krähenbühl and Koltun [33] used joint image filtering

for an efficient message passing scheme, enabling an approximate

inference algorithm for fully connected CRF models. In a similar

manner that joint image filtering is used for many applications

(e.g., joint upsampling), the CRF model has been widely used to

refine low-resolution CNN outputs, e.g., in semantic segmenta-

tion [34], [35]. Recent works [36], [37] learn parameters of both

a joint image filter and a CNN model in an end-to-end manner

to upsample low-resolution network outputs. As in existing joint

image filters, however, the refinement methods use the structure of

high-resolution color images (static guidance) only, while ignoring

additional information available in the CNN outputs. We believe

that using the SD filter will improve the refinement by considering

the structures of both inputs and outputs of the CNN in the end-

to-end learning.

3 PROPOSED APPROACH

3.1 Motivation and problem statement

There are pros and cons in filtering images under static or dynamic

guidance. Let us take the example of depth upsampling in Fig. 2,

where a high-resolution color image (the guidance image) in (a)

is used to upsample (×8) an input low-resolution depth image in

(b). Static guidance filtering reconstructs destroyed depth edges

using the color image with high signal-to-noise ratio (SNR) [3],

[10], as in the red boxes of (c). However, this approach does not

handle differences in structure between depth and color images,

transferring all the structural information of the color image to

the depth image, as in the blue boxes of (c). For regions of high-

contrast in the color image, the depth image is altered according

to the texture pattern, resulting in texture-copying artifacts [38].

Similarly, depth edges are smoothed in low-contrast regions on

the color image (e.g., weak color edges), causing jagged artifacts

in scene reconstruction [39]. Dynamic guidance filtering utilizes

the content of the depth image1, avoiding the drawbacks of static

guidance filtering, as in the blue boxes of (d). The depth edges

are preserved, and unwanted structures are not transferred, but

dynamic guidance does not take full advantage of the abundant

structural information in the color image. Thus, depth edges are

smoothed, and even eliminated for regions of low-contrast in the

depth image, as in the red boxes of (d).

This example illustrates the fact that static and dynamic

guidance complement each other, and exploiting only one of them

is not sufficient to infer high-quality structural information from

the input image. This problem becomes even worse when input

and guidance images come from different data with different

statistical characteristics. The SD filter proposed in this paper

jointly leverages the structure of static (color) and dynamic (depth)

guidance, taking advantage of both, as shown in (e).

1. Dynamic guidance is initialized with the interpolated depth image using
static guidance as shown in Fig. 2(c), not with the low-resolution depth image
itself.
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3.2 Model

Given the input image f , the static guidance g, and the output

image u (dynamic guidance), we denote by fi, gi, and ui the cor-

responding image values at pixel i, with i ranging over the image

domain I ⊂ N
2. Our objective is to infer the structure of the input

image by jointly using static and dynamic guidance, and to make

joint image filtering robust to outliers in a unified framework.

The influence of the guidance images on the input image varies

spatially, and is controlled by weight functions that measure the

similarity between adjacent pixels in the guidance images. Various

features (e.g., spatial location, intensity, and texture [12], [40]) and

metrics (e.g., Euclidian and geodesic distances [7], [23]) can be

used to represent distinctive characteristics of pixels on images

and measure their similarities.

We minimize an objective function of the form:

E(u) =
∑

i

ci(ui − fi)
2 + λΩ(u, g), (1)

which consists of fidelity and regularization terms, balanced by

the regularization parameter λ. The first (fidelity) term helps

the solution u to harmonize well with the input image f with

confidence ci ≥ 0. The regularization term makes the solution

u smooth while preserving salient features (e.g., boundaries). We

propose the following regularizer:

Ω(u, g) =
∑

i,j∈N

φµ(gi − gj)ψν(ui − uj), (2)

where

ψν(x) = (1− φν(x))/ν, (3)

and

φǫ(x) = exp(−ǫx2). (4)

Here, µ and ν control the smoothness bandwidth, and N is the

set of image adjacencies, defined in our implementation on a local

8-neighborhood system. The first term, φµ in the regularizer is a

weight function using intensity difference between adjacent pixels

in the guidance g. This function approaches to zero as the gradient

of the guidance g becomes larger (e.g., at the discontinuities of g),

preventing smoothing the output image u in those regions. That is,

the weight function φµ transfers image structures from the static

guidance g to the output image u. The second one ψν , called

Welsch’s function [19], regularizes the output image u, and makes

joint filtering robust to outliers, due to its nonconvex shape and

the fact that it saturates at 1 (Fig. 4). Note that convex potentials

in existing joint image filters regularize the structure of the output

image u and bring the structure through static guidance image

weighting φµ. In contrast, the nonconvex potential ψν penalizes

large gradients of the output image u (dynamic guidance) less

than a convex one during filtering [17], [41], [42], and preserves

features having high-frequency structures (e.g., edges and corners)

better. This means the use of nonconvex potentials relax the strict

dependence of the existing joint image filters on the static guidance

g, and allows to leverage the structure of the dynamic guidance

u as well. Accordingly, by combining static guidance image

weighting φµ with the nonconvex penalty ψν on the gradients

of the dynamic guidance u, the SD filter adaptively fuses data

from the static and dynamic guidances. This effectively reflects

structural differences between guidance and input images, and

makes joint image filtering robust to outliers. Although nonconvex

potentials preserve some noise, the static guidance g with high

SNR in our model alleviates this problem. Note that in order to

E(u)Q
k
(u)

u
k

u
k+1

Fig. 3. Sketch of the majorize-minimization algorithm. At step k, a
surrogate function Qk is constructed given some estimate u

k of the
minimum of E , such that Qk(uk) = E(uk) and Qk(u) ≥ E(u). At step
k + 1, the next estimate u

k+1 is obtained by minimizing Qk. These two
steps are repeated until convergence.

adaptively fuse data from the static and dynamic guidances, one

might attempt to add a weight function φν using the dynamic

guidance u in the regularizer as follows:

Ω(u, g) =
∑

i,j

φµ(gi − gj)φν(ui − uj)ψν(ui − uj). (5)

This regularizer, however, is hard to optimize and may be unstable.

3.3 Optimization algorithm

Let f = [fi]N×1
, g = [gi]N×1

, and u = [ui]N×1
denote

vectors representing the input image, static guidance and the

output image (or dynamic guidance), respectively, where N = |I|
is the size of the images. Let Wg = [φµ(gi − gj)]N×N

,

Wu = [φν(ui − uj)]N×N
, and C = diag ([c1, . . . , cN ]). Wg

and Wu denote weight matrices of the 8-neighborhood system for

static and dynamic guidances, respectively. We can rewrite our

objective function in matrix/vector form as:

E(u) = (u− f)
T C (u− f) +

λ

ν
1
T (Wg −W)1, (6)

where W = Wg ◦ Wu, and ◦ denotes the Hadamard product of

the matrices defined as the element-wise multiplication of their

elements. 1 is a N × 1 vector, where all the entries are 1. The

diagonal entries ci of C are confidence values for the pixels i in

the input image.

3.3.1 The majorize-minimization algorithm

Our objective function is not convex, and thus it is non-trivial

to minimize the objective function of (6). In this work, we

compute a local minimum of (6) by iteratively computing a convex

upper bound (surrogate function) and solving the corresponding

convex optimization problems. Concretely, we use the majorize-

minimization algorithm (Fig. 3) [43], [44], [45], which guarantees

convergence to a local minimum of the nonconvex objective

function [46]. This algorithm consists of two repeated steps: In

the majorization step, given some estimate uk of the minimum of

E at step k, a convex surrogate function Qk is constructed, such

that ∀ u
{

Qk(uk) = E(uk)
Qk(u) ≥ E(u)

. (7)

In the minimization step, the next estimate uk+1 is then computed

by minimizing Qk. These steps are repeated until convergence.
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Fig. 4. Welsch’s function ψν and its surrogate functions Ψy
ν , when ν

is set to 1. The convex surrogate function Ψy
ν(x) is an upper bound on

ψν(x) and coincides with ψν(x) only when x is equal to y. (Best viewed
in colour.)

3.3.2 Implementation details

The nonconvexity of our objective function comes from Welsch’s

function ψν . As shown in Appendix A, a convex surrogate

function Ψy
ν for ψν , such that ∀x, y,

{
Ψy

ν(y) = ψν(y)
Ψy

ν(x) ≥ ψν(x)
, (8)

is given by

Ψy
ν(x) = ψν(y) + (x2 − y2)(1− νψν(y)). (9)

The surrogate function Ψy
ν(x) is an upper bound on ψν(x) and

coincides with ψν(x) only when x is equal to y (Fig. 4).

Majorization step: Let us now use this result to compute the

surrogate function Qk for E by substituting ψν with Ψy
ν in (2) as

follows:

Qk(u) = uT
[

C + λLk
]

u− 2fT Cu+ fT Cf (10)

− λukTLkuk +
λ

ν
1
T
(

Wg −Wk
)

1.

Lk = Dk −Wk is a dynamic Laplacian matrix at step k, where

Wk = Wg ◦ Wuk and Dk = diag
([
dk1 , . . . , d

k
N

])
where dki =

∑N
j=1 φµ(gi − gj)φν(u

k
i − ukj ).

Minimization step: We then obtain the next estimate uk+1

by minimizing the surrogate function Qk w.r.t. u as follows2:

uk+1 = argmin
u

Qk(u) = (C + λLk)−1Cf . (11)

The above iterative scheme decreases the value of E monotonically

in each step, i.e.,

E(uk+1) ≤ Qk(uk+1) ≤ Qk(uk) = E(uk), (12)

where the first and the second inequalities follow from (7) and

(11), respectively, and converges to a local minimum of E [46].

The static guidance affinity matrix Wg is fixed regardless of steps,

while the dynamic guidance matrix Wuk is iteratively updated.

Thus, we jointly use the structure of static and dynamic guidance

to compute the solution u. Note that all previous joint image

filters (e.g., [2], [3], [11], [25]) except recently proposed ones [30],

2. In case of a color image, the linear system is solved in each channel.

[31] determine the structure of the output image by the weight

function of the static guidance image (Wg) only. We overcome

this limitation by using an additional weight function of the

dynamic guidance image (Wuk) in each round of an intermediate

output uk, thus reflecting the structures of both static and dynamic

guidance images simultaneously during the optimization process.

The majorize-minimization algorithm generalizes other well-

known optimization methods [47], e.g., the expectation-

maximization (EM) algorithm [48], iteratively reweighted least-

squares (IRLS) [49], the Weiszfeld’s method [50], and the half-

quadratic (HQ) minimization [51], [52]. Nikolova and Chan [53]

have shown that the method where the solution of the objective

function is computed by iteratively solving linear systems at each

step as in our solver is equivalent to the HQ minimization (of

multiplicative form). That is, both methods give exactly the same

iterations. Thus, our solver gives an identical solution to the HQ

minimization (of multiplicative form) for (6), if initializations are

the same.

Algorithm 1 summarizes the optimization procedure.

Algorithm 1 The SD filter.

1: Input:

f (an input image); g (a static guidance image);

u0 (an initial estimate for a dynamic guidance image).

2: Parameters:

µ (a bandwidth parameter for g);

ν (a bandwidth parameter for u);

λ (a regularization parameter);

K (the maximum number of steps).

3: Compute a confidence matrix C = diag ([c1, . . . , cN ]) where

ci ≥ 0.

4: Compute an affinity matrix for the static guidance image g,

Wg = [φµ(gi − gj)]N×N
, where φµ(x) = exp(−µx2).

5: for k = 0, . . . ,K do

6: Compute an affinity matrix for the dynamic guidance image

uk, Wuk =
[

φν(u
k
i − ukj )

]

N×N
.

7: Compute a dynamic Laplacian matrix Lk = Dk − Wk

where Wk = Wg ◦ Wuk and Dk = diag
([
dk1 , . . . , d

k
N

])

where dki =
∑N

j=1 φµ(gi − gj)φν(u
k
i − ukj ).

8: Update uk+1 by solving (C + λLk)uk+1 = Cf .

9: end for

10: Output: uK (a final estimate).

3.3.3 Initialization

Our solver finds a local minimum, and thus different initializations

for u0 (dynamic guidance at k = 0) may give different solutions.

In this work, we compute the initial estimate u0 by minimizing the

objective function of (1) and using an upper bound on Welsch’s

function in the regularizer (Fig. 5). Two functions are used for

initialization.

l2 initialization. Welsch’s function is upper bounded by an

l2 regularizer, i.e., ∀x, x2 ≥ ψν(x). This can be easily shown

by using the inequality exp(x) ≥ 1 + x. The initial estimate

u0 is computed by minimizing the objective function in (1)

with a weighted l2 norm as a regularizer, i.e., using the WLS

framework [23]:

Ωl2(u, g) =
∑

i,j∈N

φµ(gi − gj)(ui − uj)
2. (13)
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Fig. 5. Upper bounds on Welsch’s function ψν : An l2 regularizer x2 and
an l1 regularizer α|x| (a tight upper bound on ψν ), when ν is set to 1.
(Best viewed in colour.)

The l2 initialization is simple, but may yield a slow convergence

rate as illustrated by Fig. 6(a).

l1 initialization. A good initial solution accelerates the con-

vergence of our solver. We propose to use the following regularizer

to compute the initial estimate u0:

Ωl1(u, g) =
∑

i,j∈N

φµ(gi − gj)α|ui − uj |, (14)

where α is set to a positive constant, chosen so α|x| is a much

tighter upper bound on Welsch’s function than the l2 regularizer,

as shown in Fig. 5. This regularizer is convex, and thus the global

minimum3 is guaranteed [49].

4 ANALYSIS

In this section, we analyze the properties of the SD filter, including

runtime and scale adjustment, and illustrate its convergence rate

and filtering behavior with different initializations. A connection

to other filtering methods is also presented.

4.1 Runtime

The major computational cost of the SD filter comes from

solving the linear system of (11) repeatedly. We use a local 8-

neighborhood system, resulting in the sparse matrix (C + λLk).
This matrix has a positive diagonal and four sub-diagonals on each

side. These sub-diagonals are not adjacent, and their separation

is proportional to the image width. It is therefore not banded

with a fixed bandwidth. Yet, it is sparse and positive semidef-

inite, thus (11) can be solved efficiently using sparse Cholesky

factorization. We use the CHOLMOD solver [54] of MATLAB in our

implementation. Running k = 5 steps of our algorithm from an

l1 or l2 initialization takes about 2.5 seconds for an image of size

500 × 300 on a 4.0GHz CPU4. The l1 and l2 initializations take

about 1.2 and 0.4 seconds, respectively, on average for the same

image size.

3. We use IRLS [49] to find the solution.

4. The SD filter of (11) applies the very popular WLS filter [23] iteratively
with a fixed input image, allowing us to use many acceleration techniques for
WLS filtering [29], [55]. When using MEX implementation of the fast WLS
algorithm in [55], we obtain the filtering result with 0.1 seconds for the same
image size.

Number of Steps
10 20 30 40 50 60 70 80 90 100

#10
5

1

2

3
Energy Evolution

u0 = ul2

u0 = ul1
(a)

Number of Steps
1 2 3 4 5 6 7 8 9 10

#10
5

0

1

2
Sum of Intensity Differences Between Steps

u0 = ul2

u0 = ul1
(b)

(c) Input image. (d) u0 = ul2 , k = 30.

(e) u0 = ul1 , k = 7. (f) u0 = ul1 , k = 30.

Fig. 6. Examples of (a) energy evolution of (6) and (b) a sum of intensity
difference between successive steps (i.e., ‖uk − u

k+1‖1), given (c) the
input image. Our solver converges in fewer steps with the l1 initialization
(u0 = ul1 ) than with the l2 one (u0 = ul2 ), with faster overall speed.
In contrast to most filtering methods, it does not give a constant-value
image in the steady-state: (d) u0 = ul2 , k = 30, (e) u0 = ul1 , k = 7,
and (f) u0 = ul1 , k = 30. In this example, for removing textures, static
guidance is set to the Gaussian filtered version (standard deviation, 1)
of the input image (λ = 50, µ = 5, ν = 40). See Section 5.2 for details.

4.2 Influence of initialization

As explained earlier, the majorize-minimization algorithm is

guaranteed to converge to a local minimum of E in (6) [46].

In this section, we show the convergence rate of (11) as the

step index k increases, and observe its behavior with different

initializations, using ul2 and ul1 , the global minima of (1) using

Ωl2 and Ωl1 as regularizers, respectively. Figure 6 shows how

(a) the energy E of (6) and (b) the intensity differences (i.e.,

‖uk − uk+1‖1) evolve over steps for a sample input image

(Fig. 6(c)). In this example, our solver converges in fewer steps

with the l1 initialization (u0 = ul1 ) than with the l2 one

(u0 = ul2 ), with faster overall speed, despite the overhead of

the l1 minimization: Our solver with the l2 and l1 initializations

converges in 30 and 7 steps (Fig. 6(d) and (e)), taking 45 and

20 seconds (including initialization), respectively. Although our

solver with the l2 initialization converges more slowly, the per-
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pixel intensity difference still decreases monotonically in (b). Note

that after few steps (typically from 5), the solver gives almost

the same filtering results. For example, after 5 steps, the average

and maximum values of the per-pixel intensity difference are

9.4×10−5 and 1.7×10−3, respectively, with the l2 initialization,

and 4.3×10−5 and 8.7×10−4 with the l1 initialization5. It should

also be noted that most filtering methods, except the recently

proposed RGF [16], eventually give a constant-value image, if

they are performed repeatedly, regardless of whether the filters

have implicit or explicit forms (e.g., BF [22] and AD [17]). In

contrast, the SD filter does not give such an image no matter how

many steps are performed (Fig. 6(e) and (f)).

4.3 Scale adjustment

There are two approaches to incorporating scale information in

image filtering [16], [17], [23]. In implicit regularization methods,

an intuitive way to adjust the degree of smoothing is to use an

isotropic Gaussian kernel. Due to the spatially invariant properties

of the kernel, this approach regularizes both noise and features

evenly without considering image structure [17]. RGF addresses

this problem in two phases: Small-scale structures are removed by

the Gaussian kernel, and large-scale ones are then recovered [16].

Since RGF [16] is based on the Gaussian kernel, it inherits its

limitations. This leads to poor edge localization at coarse scales,

with rounded corners and shifted boundaries. The regularization

parameter is empirically used to adjust scales in explicit regular-

ization methods [23]. It balances the degree of influence between

fidelity and regularization terms in such a way that a large value

leads to more regularized results than a small one.

Now, we will show how the regularization parameter λ con-

trols scales in the SD filter. It follows from (11) that

(C + λDk)uk+1 − λWkuk+1 = Cf . (15)

Let us define diagonal matrices A and A′ as

A = (C + λDk)−1C, (16)

and

A′ = λ(C + λDk)−1Dk, (17)

such that A + A′ = I. By multiplying the left- and right-hand

sides of (15) by (C + λDk)−1, we obtain

uk+1 = (I− λ(C + λDk)
−1

Dk

︸ ︷︷ ︸

A′

Pk)−1 (C + λDk)
−1

C
︸ ︷︷ ︸

A=I−A′

f

(18)

= A(I−A′Pk)−1f ,

where Pk = (Dk)−1Wk. Note that this gives the exact same

form as random walk with restart [56], [57], [58], except that

Pk is updated at every step in our case. It has been shown that

the restarting probability A controls the extent of smoothing in

different scales in the image [56]. In our case, the regularization

parameter λ determines the restarting probability, which shows

that by varying this parameter, we can adjust the degree of

smoothing.

5. We normalize the intensity range to [0, 1].

4.4 Connections with other filters

Let us consider the objective function of (1), but without the

regularization term. We can implicitly impose joint regularization

on the objective function by introducing a spatial weight function

φs and static guidance weighting φµ to the fidelity term. The

objective function is then

E(u) =
∑

i

∑

j∈η

φs(i− j)φµ(gi − gj)(ui − fj)
2, (19)

where s is a spatial bandwidth parameter and η is the local

neighborhood of the pixel i. The solution of this objective function

can be computed as follows:

uk+1

i =

∑

j∈η

φs(i− j)φµ(gi − gj)fj

∑

j∈η

φs(i− j)φµ(gi − gj)
. (20)

This becomes equivalent to the joint BF [3] (or BF [22] by setting

g = f ). By further introducing Welsch’s function ψν to (19), we

obtain the following objective function:

E(u) =
∑

i

∑

j∈η

φs(i− j)φµ(gi − gj)ψν(ui − fj), (21)

We can compute a local minimum of this objective function by the

majorize-minimization algorithm as follows (see Appendix B):

uk+1

i =

∑

j∈η

φs(i− j)φµ(gi − gj)φν(u
k
i − fj)fj

∑

j∈η

φs(i− j)φµ(gi − gj)φν(uki − fj)
. (22)

This again becomes the joint BF [3] with φν(x) = 1. A variant of

RGF [16] can be derived by setting φµ(x) = 1.

Let us now consider the case when f , g, and u are continuous

functions over a continuous domain. A continuous form of the

objective function of (1) can then be written as [59]:
∫

J

{

ci(ui − fi)
2
+ λφµ (‖∇g‖)ψν (‖∇u‖)

}

dJ , (23)

where J ⊂ R
2
+ and ∇ denotes the gradient operator. This

function can be minimized via gradient descent using the calculus

of variations [59] as follows:

∂u

∂k
= ci(ui − fi) + λdiv [φµ (‖∇g‖)φν (‖∇u‖)∇u] , (24)

where ∂k and div represent a partial derivative w.r.t. k and the

divergence operator, respectively. This is a variant of the diffusion-

reaction equation [17], [28] with an additional term φµ (‖∇g‖)
involving the static guidance g. The result of the SD filter is a

steady-state solution of this scheme. Note that while being widely

used in image filtering, nonconvex potentials have never been im-

plemented before in the context of joint image filtering to the best

of our knowledge. In our approach, nonconvex potentials make

joint image filtering robust to outliers by effectively exploiting

structural information from both guidance and input images. If

one uses (24) with φν(x) = 1 (i.e., without dynamic guidance),

the steady-state solution of (24) can be found in closed form, and is

exactly same as the result obtained by the WLS framework [23].

With φµ(x) = 1 (i.e., without static guidance), the steady-state

solution of (24) is found by solving the following equation [28]:

0 = ci(ui − fi) + λ∇ · [φν (‖∇u‖)∇u] . (25)

In this case, the solution cannot be computed in closed form, but

it can be obtained by repeatedly solving (11) with Wk = Wuk .

This corresponds to a variant of RGF [16] with the fidelity term.
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Fig. 7. Average PBP on (a) the Middlebury dataset [60] and (b) the Graz dataset [10] as a function of the depth error tolerance δ. (Best viewed in
colour.)

TABLE 1
Average PBP (δ = 1) on the Middlebury dataset [60] with varying the
regularization parameter λ. PBP is defined as the percentage of bad

pixels for all regions as in (26).

ul2 ul1

Ours Ours

(u0 = ul2 ) (u0 = ul1 )

λ avg. ± std. avg. ± std. avg. ± std. avg. ± std.

0.001 10.0±4.7 10.9±6.1 7.0±3.4 7.1±3.4
0.005 10.0±4.7 10.9±6.1 7.0±3.4 7.1±3.4
0.010 10.0±4.7 10.9±6.1 7.0±3.4 7.1±3.4
0.050 10.0±4.7 11.4±6.5 7.1±3.4 7.1±3.4
0.100 10.0±4.8 12.1±7.0 7.1±3.4 7.1±3.4
0.200 10.1±4.8 13.4±7.9 7.1±3.5 7.1±3.4
0.500 10.4±5.0 16.2±9.5 7.2±3.5 7.2±3.5
1.000 10.9±5.3 19.5±11.2 7.4±3.7 7.4±3.6
10.00 16.8±9.8 35.0±19.4 10.3±6.0 10.3±6.0

TABLE 2
Average PBP (δ = 1) and processing time on the Middlebury

dataset [60] with varying the number of steps k.

Ours (u0 = ul2 ) Ours (u0 = ul1 )

k avg. ± std. time (s) avg. ± std. time (s)

1 10.0±4.8 0.7 7.6±3.5 4.9
5 7.2±3.5 2.7 7.1±3.4 7.0

10 7.1±3.4 5.4 7.1±3.4 9.6
30 7.1±3.4 15.5 7.1±3.4 19.6
35 7.0±3.4 18.1 7.1±3.4 22.3

100 7.0±3.4 51.9 7.1±3.4 55.7

5 APPLICATIONS

We apply the SD filter to depth upsampling, scale-space filtering,

texture removal, flash/non-flash denoising, and RGB/NIR denois-

ing. In each application, we compare the SD filter to the state of

the art. The results for the comparison have been obtained from

source codes provided by the authors, and all the parameters for

all compared methods have been empirically set to yield the best

average performance through extensive experiments.

5.1 Depth upsampling

Acquiring range data through an active sensor has been a popular

alternative to passive stereo vision. Active sensors capture dense

range data in dynamic conditions at video rate, but the acquired

depth image may have low resolution, and be degraded by noise.

These problems can be addressed by exploiting a registered high-

resolution RGB image as a depth cue [10], [11], [12], [25], [61],

[62]. We apply the SD filter to this task. We will show that,

contrary to existing methods, the robust and nonconvex regularizer

in the SD filter avoids smoothing depth edges, and gives a sharp

depth transition at depth discontinuities.

Parameter settings. In our model, input and guidance images

(f and g) are set to sparse depth and dense color (or intensity)

high-resolution images, respectively, and ci is set to 1 if the pixel

i of the sparse depth image f has valid data, and 0 otherwise.

The bandwidths, µ and ν, and the step index k are fixed to 60, 30,

and 10, respectively, in all experiments, unless otherwise specified.

The regularization parameter λ is set to 0.1 for synthetic examples,

and is set to 5 for real-world examples due to the huge amount of

noise. For the quantitative comparison, we measure the percentage

of bad matching pixels for all regions (PBP) defined as follows:

PBP =
1

N

∑

i

[∣
∣
∣ui − ugti

∣
∣
∣ > δ

]

, (26)

where δ is a depth error tolerance [60]. [·] is the Iverson bracket

where it is 1 if the condition is true, and 0 otherwise. ui and ugti
represent upsampled and ground-truth depth images at the pixel

i, respectively. We also measure the percentage of bad matching

pixels near depth discontinuities (PBP⋆) using a ground-truth

index map for discontinuous regions, provided by [60]. PBP⋆ is

measured only when the index map is available.

5.1.1 Synthetic data

We synthesize a low-resolution depth image by downsam-

pling (×8) ground-truth data from the Middlebury benchmark

dataset [60]: Tsukuba, venus, teddy, cones, art, books, dolls,

laundry, moebius, and reindeer, and use the corresponding color

image as static guidance.

Performance evaluation. We compare the average PBP

(δ = 1) of the results obtained by the SD filter with the l2 and

l1 initializations and the corresponding initial estimates (ul2 and

ul1 ) while varying the regularization parameter λ in Table 1. A

first important conclusion is that the nonconvex regularizer in the

SD filter shows a better performance than the convex ones. The

table also shows that the results of the l1 regularizer are strongly

influenced by the regularization parameter, whereas the SD filter

gives almost the same PBP regardless of the initialization. For

example, when λ is set to 10, the SD filter reduces the average

PBP from 16.8 and 35.0 for ul2 and ul1 , respectively, to 10.3.

Table 2 compares the average PBP (δ = 1) and processing time
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TABLE 3
PBP (δ = 1) comparison with the state of the art on the Middlebury dataset [60]. Superscripts indicate the rank of each method for each image.

Method Tsukuba Venus Teddy Cones Art Books Dolls Laun. Moeb. Rein. avg. ± std.

Bilinear Int. 10.4010 3.2910 11.8010 14.6010 34.599 13.077 14.596 22.8510 17.158 17.488 15.98±8.299

GF [2] 9.879 2.749 15.5011 15.5011 45.3111 19.1410 19.6411 26.8911 22.2211 21.709 19.85±11.211

RWR [62] 9.638 1.367 11.409 11.709 41.0710 17.679 18.3610 21.749 21.2810 25.7111 17.99±10.810

Park et al. [12] – – 10.108 9.717 27.818 11.185 15.237 18.278 13.827 12.356 14.81±5.978

TGV [10] 5.406 1.316 9.827 10.208 23.597 13.148 16.149 15.127 18.269 10.425 12.34±6.407

WMF [11] 6.147 1.035 7.883 8.105 22.136 8.671 9.581 14.266 10.524 10.043 9.84±5.484

WModF [25] 4.355 0.613 9.515 9.436 12.393 10.684 11.484 9.913 8.601 12.637 8.96±3.763

ul2 3.604 1.608 9.284 7.864 17.884 11.906 12.635 11.744 13.616 10.284 10.04±4.785

ul1 2.593 0.674 9.515 7.563 17.985 19.2911 15.868 12.755 13.085 21.8510 12.11±7.036

Ours (u0 = ul2 ) 2.391 0.521 7.391 5.241 10.042 9.793 10.843 8.111 9.492 6.931 7.07±3.431

Ours (u0 = ul1 ) 2.452 0.521 7.422 5.362 9.961 9.522 10.772 8.222 9.492 6.982 7.07±3.381

(a) Color image. (b) Ground truth. (c) Bilinear Int. (d) GF [2].

(e) RWR [62]. (f) Park et al. [12]. (g) TGV [10]. (h) WMF [11].

(i) WModF [25]. (j) ul2
. (k) ul1

. (l) SD filter.

Fig. 8. Visual comparison of upsampled depth images on a snippet of
the books sequence in the Middlebury dataset [60]: (a) A high-resolution
color image, (b) a ground-truth depth image, (c) bilinear interpolation, (d)
GF [2], (e) RWR [62], (f) Park et al. [12], (g) TGV [10], (h) WMF [11], (i)
WModF [25], (j) ul2 , (k) ul1 , and (l) SD filter (u0 = ul1 ). In contrast to
the static guidance filters such as GF [2] and WMF [11], the SD filter
interpolates the low-resolution depth image using the structure of both
color and depth images, preserving sharp depth edges.

of the SD filter with the l2 and l1 initializations while varying

the number of steps k. This table shows that the results obtained

by the l1 initialization converges faster than with the l2 one. The

l1 and l2 initializations converge in 5 and 35 steps, respectively.

Both initializations give almost the same error at the convergence,

but the l1 initialization takes less time (7s) until convergence than

the l2 one (18s). We fix the step index k to 10, regardless of the

initialization.

Comparison with the state of the art. We compare the

average PBP (δ = 1) of the SD filter and the state of the art

in Table 3. Superscripts indicate the rank of each method in each

column. This table shows that WMF [11] and WModF [25] give

better quantitative results than other state-of-the-art methods, but

that the SD filter outperforms all methods on average, regard-

less of the initialization. Figure 7(a) shows the variation of the

average PBP as a function of the depth error tolerance δ. The

SD filter outperforms other methods until the error tolerance δ
reaches around 4, and after that all methods show the similar

TABLE 4
PBP⋆ (δ = 1) comparison on the Middlebury dataset [60].

Method Tsukuba Venus Teddy Cones

Bilinear Int. 46.3010 37.1010 35.3010 35.8011

GF [2] 43.209 26.509 37.5011 34.4010

RWR [62] 39.508 12.306 27.508 25.409

Park et al. [12] – – 25.406 19.907

TGV [10] 23.906 14.407 29.009 23.608

WMF [11] 28.007 10.105 22.203 19.205

WModF [25] 20.205 5.734 23.705 19.205

ul2 15.504 15.108 26.307 18.904

ul1 11.403 5.483 22.804 15.103

Ours (u0 = ul2 ) 10.401 5.102 20.302 12.401

Ours (u0 = ul1 ) 10.802 4.831 20.001 12.401

PBP performance. Figure 8 shows a visual comparison of the

upsampled depth images on a snippet of the books sequence, and

it clearly shows the different behavior of static guidance and joint

static/dynamic guidance models: The upsampled depth image has

a gradient similar to that of the color image in static guidance

methods such as GF [2] and WMF [11], which smooths depth

edges and causes jagged artifacts in scene reconstruction (Fig. 9).

In contrast, the SD filter interpolates the low-resolution depth

image using joint static and dynamic guidance, and provides a

sharp depth transition by considering the structure of both color

and depth images (Fig. 8(l)). The upsampled depth image of ul1

also preserves depth discontinuities, since the l1 regularizer is

robust to outliers. The l1 regularizer, however, favors a piecewise

constant solution. This is problematic in regions that violate the

fronto-parallel surface assumption (e.g., a slanted surface), and

every pixel in this surface has the same depth value (Fig. 8(k)).

TGV [10] addresses this problem using a piecewise linear model,

but this approach still smooths depth edges in low-contrast regions

on the color image (Fig. 8(g)). Note that bilinear interpolation

gives better quantitative results (Table 3) than the GF [2] and

RWR [62], although its subjective quality looks worse than these

methods (e.g., depth edges in Fig. 8(c-e)). This is because PBP

does not differentiate depth discontinuities from other regions.

Table 4 shows the average PBP⋆ (δ = 1) measured near depth

discontinuities, and it clearly shows the superior performance of

the SD filter around these discontinuities. This can be further

verified by observing the statistical distribution of the upsampled

depth image as shown in Fig. 10. Bilinear interpolation loses most
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(a) Ground truth. (b) Bilinear Int. (c) GF [2]. (d) TGV [10]. (e) WMF [11]. (f) SD filter.

Fig. 9. Examples of (top) point cloud scene reconstruction using (bottom) depth images computed by (a) the ground truth, (b) bilinear interpolation,
(c) GF [2], (d) TGV [10], (e) WMF [11], and (f) SD filter (u0 = ul2 ). Current depth upsampling methods smooth depth edges, causing jagged
artifacts.
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Fig. 10. Log10 of the normalized histograms (probability) of relative depths between adjacent pixels. Each histogram is computed using depth
gradients along x- and y-axis, and then averaged on the Middlebury dataset [60]. (Best viewed in colour.)

TABLE 5
The Kullback-Leibler divergence between the normalized histograms of
depth gradients computed from the ground-truth and upsampled depth

images.

Bilinear Int. 230.7310

GF [2] 108.199

RWR [62] 96.438

TGV [10] 22.435

WMF [11] 86.337

WModF [25] 13.114

ul2 25.366

ul1 9.723

Ours (u0 = ul2 ) 4.191

Ours (u0 = ul1 ) 4.632

of the high-frequency information. Static guidance filtering meth-

ods show different statistical distributions from the ground-truth

depth image. In contrast, the SD filter considers characteristics of

depths as well, and delivers almost the same distribution as the

ground truth depths. For evaluating this quantitatively, we also

measure the Kullback-Leibler divergence between the statistical

distributions of depth gradients obtained from the ground-truth

and upsampled depth images in Table 5. From this table, we can

see that the methods using a robust convex regularizer such as

TGV [10] give better quantitative results than other methods, and

the SD filter outperforms all methods. This verifies once more the

importance of using a robust nonconvex regularizer and using both

static and dynamic guidance in joint image filtering.

(a) Intensity. (b) Ground truth. (c) Bilinear Int. (d) GF [2].

(e) RWR [62]. (f) TGV⋆ [10]. (g) WMF [11]. (h) WModF [25].

(i) ul2
. (j) ul1

. (k) SD filter (ul2
). (l) SD filter (ul1

).

Fig. 11. Visual comparison of upsampled depth images on a snippet
of the shark sequence in the Graz dataset [10]: (a) A high-resolution
intensity image, (b) a ground-truth depth image, (c) bilinear interpolation,
(d) GF [2], (e) RWR [62], (f) TGV⋆ [10], (g) WMF [11], (h) WModF [25],
(i) ul2 , (j) ul1 , (k) SD filter (u0 = ul2 ), and (l) SD filter (u0 = ul1 ). Note
that the l1 regularizer in (j) favors a piecewise constant solution, and this
is problematic in a slanted surface. TGV⋆ denotes the results provided
by the authors of [10].

5.1.2 Real data

Recently, Ferstl et al. [10] have introduced a benchmark dataset

that provides both low-resolution depth images captured by a ToF

camera and highly accurate ground-truth depth images acquired
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λ = 5 λ = 20

Fig. 12. Influence of the regularization parameter λ on the upsampled
depth image. The results become smooth as the parameter λ increases.

with structured light. We have performed a quantitative evaluation

using this dataset [10] in Fig. 7(b): We measure the average PBP

of upsampled depth images with varying the depth error tolerance

δ. This shows that the SD filter outperforms all methods for all

ranges of δ, regardless of the initialization. A qualitative com-

parison can be found in Fig. 11. Although most methods reduce

sensor noise relatively well, they smooth depth edges as well. In

contrast, the SD filter preserves sharp depth discontinuities, while

suppressing sensor noise. The amount of noise in low-resolution

depth images may change. We can deal with this by adjusting the

regularization parameter that determines the degree of smoothing

in the upsampled depth image, as shown in Fig. 12.

5.2 Scale-space filtering and texture removal

In natural scenes, various objects appear in different sizes and

scales [63], and they contain a diversity of structural information

from small-scale (e.g., texture and noise) to large-scale structures

(e.g., boundaries). Extracting this hierarchy is an important part

of understanding the relationship between objects, and it can be

done by smoothing a scene through image filtering. We apply the

SD filter to two kinds of scene decomposition tasks: Scale-space

filtering and texture removal.

Parameter settings. For scale-space filtering, the input image

f is guided by itself (g = f ). The regularization parameter λ varies

from 5 × 10 to 5 × 104. In texture removal, the static guidance

image is set to a Gaussian-filtered version of the input image, g =
Gσf where Gσ is the Gaussian kernel with standard deviation σ.

The regularization parameter λ and σ vary from 5×10 to 2×103

and from 1 to 2, respectively. The bandwidths, µ and ν, the step

index k, and the confidence value ci are fixed to 5, 40, 5, and 1,

respectively, for both applications.

5.2.1 Scale-space filtering

We obtain a scale-space representation by applying the SD filter

while increasing the regularization parameter, as shown in Fig. 13.

The SD filter preserves object boundaries well, even at coarse

scales, and it is robust to global intensity shift.

Comparison with the state of the art. We compare the

scale-space representation of WLS [23], RGF [16], and the SD

filter in Fig. 13. The WLS framework [23], a representative

of static guidance filtering, alters the scale of image structure

by varying the regularization parameter. It suffers from global

intensity shifting [2] (Fig. 13(a-b)), and may not preserve image

structures at coarse scales (Fig. 13(a)). RGF [16] is the state of

the art in scale-space filtering, and dynamic guidance in RGF

could alleviate these problems. However, this filter does not use

the structure of the input image, and controls the scale by the

isotropic Gaussian kernel, leading to poor boundary localization

at coarse scales (Fig. 13(c)). The SD filter uses the structure

(a) WLS [23].

(b) WLS [23].

(c) RGF [16].

(d) SD filter (u0 = ul2 ).

(e) SD filter (u0 = ul1 ).

Fig. 13. Examples of scale-space filtering. (a) WLS [23] (from left to right,
λ = 5 × 10, 2 × 103, 5 × 104, µ = 5), (b) WLS [23] (from left to right,
λ = 5 × 103, 2 × 105, 5 × 106, µ = 40), (c) RGF [16] (from left to right,
σs = 5, 5×10, 2.5×102, σr = 0.05, k = 5), (d) SD filter (u0 = ul2 , and
from left to right, λ = 5 × 10, 2 × 103, 5 × 104), (e) SD filter (u0 = ul1 ,
and from left to right, λ = 5× 10, 2× 103, 5× 104). In these examples,
we manually pick the scale parameter λ of the SD filter between 5× 10
to 5×104. The parameters for other methods are similarly chosen, such
that all methods have similar smoothing levels.

TABLE 6
Evaluation of boundary localization accuracy on the BSDS300

database [64]. Scale-space is constructed by WLS [23] (µ = 40),
RGF [16] (σr = 0.05, k = 5), and the SD filter (u0 = ul2 and

u
0 = ul1 ), with varying scale parameters.

Method ODS OIS ODS⋆ OIS⋆

WLS [23] 0.514 0.524 0.514 0.524

RGF [16] 0.553 0.603 0.603 0.633

Ours (u0 = ul2 ) 0.612 0.631 0.622 0.651

Ours (u0 = ul1 ) 0.621 0.631 0.631 0.651

of input and desired output images, and the scale depends on

the regularization parameter, providing well localized boundaries

even at coarse scales. Moreover, it is robust to global intensity

shift (Fig. 13(d-e)).

For a good scale-space representation, object boundaries

should be sharp and coincide well with the meaningful boundaries

at each scale [17]. There is no universally accepted evaluation

method for scale-space filtering. Motivated by the evaluation pro-

tocol for boundary detection, we measure ODS and OIS [65] with

the BSDS300 database [64], and evaluate boundary localization

accuracy of scale-space filtering in Table 6. ODS is the F-measure6

at a fixed contour threshold across the entire dataset, while OIS

6. The F-measure is the harmonic mean of precision and recall.
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(a) Input image. (b) WLS [23].

(c) RGF [16]. (d) SD filter (u0 = ul2 ).

Fig. 14. Examples of the gradient magnitude averaged over scale-space:
Given (a) an input image, scale-space is obtained by (b) WLS [23]
(µ = 40), (c) RGF [16] (σr = 0.05, k = 5), and (d) the SD filter
(u0 = ul2 ) with varying scale parameters. For each method, we set the
maximum scale parameters manually, such that all the filtered images
have similar smoothing levels. The gradient magnitude is then computed
at each scale and averaged over scale-space.

refers to the per-image best F-measure. For all images in the

dataset, ODS and OIS are measured using the gradient magnitudes

of filtered images, each of which is averaged over scale-space, as

shown in Fig. 14. We obtain the filtered images from the input

image while varying scale parameters, i.e., λ in WLS [23] and the

SD filter, and σs in RGF [16]. The maximum scale parameter is

set manually for each method, such that all the filtered images are

smoothed with similar levels. Similarly, we also measure ODS⋆

(resp. OIS⋆) with the gradient images of filtering results, but using

a fixed scale parameter that provides maximum ODS (resp. OIS)

for each image. That is, ODS⋆ (resp. OIS⋆) is the maximum value

of ODS (resp. OIS) over scale-space. In both cases, the SD filter

outperforms other filtering methods.

5.2.2 Texture removal

For removing texture while maintaining other high-frequency

image structures, we need a guidance image that does not have the

texture, but contains large image structures. Since it is hard to get

such an image, we set the static guidance image to the Gaussian-

filtered version of the original image with standard deviation σ.

This removes the textures of scale σ, but it also smooths structural

edges (e.g., boundaries). Our dynamic guidance and fidelity term

reconstruct smoothed boundaries as shown in Fig. 15.

Comparison with the state of the art. As in scale-space

filtering, to the best of our knowledge, there is no universally

accepted evaluation protocol for texture removal. Filtering exam-

ples of (top) regular and (bottom) irregular textures are shown in

Fig. 15. Most methods extract prominent image structures while

filtering out textures. The Cov. M1 method [14] adopts a weighted

average process to eliminate textures. The weight is computed

using the covariance of features in a local patch to encode the

repetitive patterns of textures. This method, however, smooths

object boundaries and corners (Fig. 15(b)), and needs lots of

computational cost for weight computation. RTV [15] optimizes

an objective function similar to the SD filter, but with relative total

variation. Although this method uses a nonconvex regularizer, it

penalizes large gradients similar to the total variation regularizer,

which smooths structural edges (Fig. 15(c)). As pointed out

in [15], RTV cannot perfectly extract image structures that have

similar scale and appearance to the underlying textures. RGF [16]

can control the scale of image structure to be extracted, and

preserves object boundaries well. However, it does not protect

corners, possibly due to the inherent limitation of the Gaussian

kernel used in RGF, and color artifacts are observed (Fig. 15(d)).

On the other hand, the SD filter removes textures without artifacts,

and maintains small, high-frequency, but important structures to be

preserved such as corners (Fig. 15(e-f)). We can see that the SD

filter with the l1 initialization better preserves edges and corners

than with the l2 one.

5.3 Other applications

The SD filter can be applied to joint image restoration tasks. We

apply it to RGB/NIR and flash/non-flash denoising problems as

shown in Figs. 16 and 17, respectively. In RGB/NIR denoising, the

color image f is regularized with the flash NIR image g. Similarly,

the non-flash image f is regularized with the flash image g.

Since there exist structural dissimilarities between static guidance

and input images (g and f ), the results might have artifacts

and unnatural appearance. For example, static guidance filtering

(e.g., GF [2]) cannot deal with gradient reversal in flash NIR

images [4], resulting in smoothed edges. The SD filter handles

structural differences between guidance and input images, and

gives qualitative results comparable to the state of the art [4].

6 DISCUSSION

We have presented a robust joint filtering framework that is widely

applicable to computer vision and computational photography

tasks. Contrary to static guidance filtering methods, we leverage

dynamic guidance images, and can exploit the structural infor-

mation of the input image. Although our model does not have

a closed-form solution, the corresponding optimization problem

can be solved by an efficient algorithm that converges rapidly

to a local minimum. The simple and flexible formulation of the

SD filter makes it applicable to a great variety of applications, as

demonstrated by our experiments.

APPENDIX A

Proposition 1. Ψy
ν is a surrogate function of ψν .

Proof. Let us consider the following function:

fν(x) = (1− exp(−νx))/ν. (27)

Since f ′′ν (x) < 0, this function is strictly concave, i.e.,

∀x, y, fν(x) ≤ fν(y) + (x− y)f ′ν(y), (28)

with equality holding when x is equal to y. Thus, a surrogate

function fyν is

fyν (x) = fν(y) + (x− y)f ′ν(y) (29)

= fν(y) + (x− y)(1− νfν(y)).

It follows that

ψν(x) = fν(x
2) ≤ fy

2

ν (x2) (30)

= ψν(y) + (x2 − y2)(1− νψν(y)) = Ψy
ν(x).
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(a) Input image and snippets. (b) Cov. M1 [14]. (c) RTV [15]. (d) RGF [16]. (e) SD filter. (f) SD filter.

Fig. 15. Visual comparison of texture removal for (top) regular and (bottom) irregular textures. (a) Input image, (b) Cov. M1 [14] (σ = 0.3, r = 10),
(c) RTV [15] (λ = 0.01, σ = 6), (d) RGF [16] (σs = 5, and from top to bottom, σr = 0.1, 0.05, k = 5), (e) SD filter (u0 = ul2 , and from top to
bottom, λ = 1× 103, 1× 102, σ = 2), (f) SD filter (u0 = ul1 , and from top to bottom, λ = 2× 103, 3× 102, σ = 2). We set all parameters through
extensive experiments for the best qualitative performance.

(a) RGB images. (b) NIR images.

(c) GF [2]. (d) Results of [4].

(e) SD filter (u0 = ul2 ). (f) SD filter (u0 = ul1 ).

Fig. 16. RGB and flash NIR image restoration. (a) RGB images, (b) NIR
images, (c) GF [2] (r = 3, ε = 4−4), (d) results of [4], (e) SD filter
(u0 = ul2 , λ = 10, µ = 60, ν = 30, k = 5), (f) SD filter (u0 = ul1 ,
λ = 10, µ = 60, ν = 30, k = 5). The results of (d) are from the project
webpage of [4].

APPENDIX B

Let us consider the following objective function:

E(u) =
∑

i

∑

j∈η

φs(i− j)φµ(gi − gj)ψν(ui − fj). (31)

(a) (b) (c) (d) (e) (f)

Fig. 17. Flash and non-flash image restoration. (a) Flash image, (b) non-
flash image, (c) GF [2] (r = 3, ε = 4−4), (d) result of [13], (e) result of [4],
(f) SD filter (u0 = ul2 , λ = 15, µ = 60, ν = 30, k = 5). The results of
(d) and (e) are from the project webpages of [13] and [4], respectively.

The surrogate function of (31) can be found using the inequality

in (9) as follows:

Qk(u) =
∑

i,j

wijw
g
ijφν(u

k
i − fj)(ui − fj)

2+ (32)

1

ν

∑

i,j

wijw
g
ij

{

1− φν(u
k
i − fj)− νφν(u

k
i − fj)(u

k
i − fj)

2
}

.

where wij ≡ φs(i− j) and wg
ij ≡ φµ(gi − gj). Then,

uk+1

i = argmin
u

∑

j∈η

wijw
g
ijφν(u

k
i − fj)(ui − fj) (33)

=

∑

j∈η

φs(i− j)φµ(gi − gj)φν(u
k
i − fj)fj

∑

j∈η

φs(i− j)φµ(gi − gj)φν(uki − fj)
.
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