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Robust Control of an Uncertain System

Via a Stable Output Feedback Controller

Ian R. Petersen

Abstract—This technical note presents a new approach to the robust
control of an uncertain system via a stable output feedback controller. The

uncertain systems under consideration contain structured uncertainty
described by integral quadratic constraints. The controller is designed

to achieve absolute stabilization with a specified level of disturbance
attenuation. The main result involves solving a state feedback version of

the problem by solving an algebraic Riccati equation dependent on a set
of scaling parameters. Then two further algebraic Riccati equations are
solved, which depend on a further set of scaling parameters.

Index Terms—Absolute stabilization, � control, integral quadratic
constraints, strong stabilization.

I. INTRODUCTION

This technical note considers the problem of robust�� control via a
stable output feedback controller. It is well known that the use of stable
controllers is preferable to the use of unstable feedback controllers
in many practical control problems; e.g., see [1]–[3]. Indeed, the use
of unstable controllers can lead to problems with actuator and sensor
failure, sensitivity to plant uncertainties and implementation problems.
This has motivated a number researchers to consider problems of ��

control via the use of stable controllers; e.g., see [1]–[4].
In this technical note, we propose a new approach to the problem

of robust �� control via a stable output feedback controller. We con-
sider a class of uncertain systems with structured uncertainty described
by integral quadratic constraints (IQCs); e.g., see [5] and [6]. Indeed,
our results build on the results of [5] which provide necessary and suffi-
cient conditions for the absolute stabilization of such uncertain systems
with a specified level of disturbance attenuation (but with no require-
ment that the output feedback controller is stable). The key idea behind
our approach is to begin with an uncertain system of the type consid-
ered in [5] and then add an additional uncertainty to form a new uncer-
tain system. This additional uncertainty has the property that for one
specific value of the uncertainty, the new uncertain system reduces to

Manuscript received June 19, 2007; revised December 19, 2008. First pub-
lished May 27, 2009; current version published June 10, 2009. This technical
note was presented in part at the American Control Conference, 2006. This work
was supported by the Australian Research Council. Recommended by Associate
Editor L. Xie.

The author is with the School of Information Technology and Electrical
Engineering, University of New South Wales at the Australian Defence Force
Academy, Canberra ACT 2600, Australia (e-mail: i.r.petersen@gmail.com).

Color versions of one or more of the figures in this technical note are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2009.2017980

the original uncertain system and thus any suitable controller for the
new uncertain system will also solve the problem of absolute stabiliza-
tion with a specified level of disturbance attenuation for the original
system. Also, for a different value of the new uncertainty, the new un-
certain system reduces to a certain open-loop system in such a way that
the controller is forced to be stable. Because our approach involves the
addition of new uncertainties, our results provide only sufficient condi-
tions rather than necessary and sufficient conditions for absolute stabi-
lization with a specified level of disturbance attenuation. However, be-
cause the new uncertainty is explicitly constructed, this can give some
indication about the degree of conservatism introduced.

Our main result is obtained applying the results of [5] to the new un-
certain system. This gives a stable output feedback controller solving a
problem of absolute stabilization with a specified level of disturbance
attenuation. This is achieved by solving a pair of algebraic Riccati equa-
tions dependent on a set of scaling parameters. The controller obtained
is of the same order of the plant.

The remainder of the technical note proceeds as follows: In Section II
of the technical note, we set up the problem of absolute stabilization
with a specified level of disturbance attenuation via a stable output
feedback controller. Section III introduces the new uncertain system
for which we will apply the results of [5] in order to obtain a stable con-
troller which guarantees absolute stabilization with a specified level of
disturbance attenuation. The construction of this new uncertain system
involves solving a state feedback version of the approach of [5] ap-
plied to the original uncertain system. This involves solving an alge-
braic Riccati equation of the �� type which is dependent on a set of
scaling parameters. This leads to our main result which is a procedure
for constructing the required stable controller. This procedure involves
solving a pair algebraic Riccati equations of the�� type which are de-
pendent on an additional set of scaling parameters. The final controller
is constructed from the solutions to these Riccati equations. Section IV
presents an example which illustrates the theory presented in the tech-
nical note. This example, which involves an �� control problem for
a linear time-invariant (LTI) system without uncertainty, is taken from
[2]. We show that for this example, our approach is slightly less con-
servative than the approach of [2].

II. PROBLEM STATEMENT

We consider an output feedback �� control problem for an uncer-
tain system of the form

����� ������ ������� ������� �

�

���

��	����


��� ������� ��������

����� ������ �������

...

����� ������ �������

���� ������� �������� (1)

where ���� � �� is the state, ���� � �� is the disturbance input,
���� � �

� is the control input, 
��� � �
� is the error output,

����� � �� � � � � � ����� � �� are the uncertainty outputs, 	���� �
�

� � � � � � 	���� � �� are the uncertainty inputs , and ���� � �	 is
the measured output. The uncertainty in this system is described by a
set of equations of the form

	���� ��� �� ������



�

...

	���� ��� �� ������



�
(2)

where the following IQC is satisfied.
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Definition 1: (IQC; see [5] and [6]) An uncertainty of the form (2) is

an admissible uncertainty for the system (1) if the following conditions

hold: given any locally square integrable control input ���� and distur-

bance input����, and any corresponding solution to the system (1) and

(2), let ��� ��� be the interval on which this solution exists. Then there

exist constants �� � �� � � � � �� � � and a sequence �������� such that

�� � ��, �� � � and

�

�

���������� �
�

�

����������� �� � � � 	 � �� � � � � 
� (3)

Here, � � � denotes the standard Euclidean norm and �����	� denotes

the Hilbert space of square integrable vector valued functions defined

on ���	�. Note that �� may be equal to infinity. The class of all such

admissible uncertainties ���� � ������� � � � � �����	 is denoted 
.

For the uncertain system (1) and (3), we consider a problem of abso-

lute stabilization with a specified level of disturbance attenuation. The

class of controllers considered are stable output feedback controllers

of the form ������ ������� �������

���� �������� (4)

where � is a Hurwitz matrix.

Definition 2: The uncertain system (1) and (3) is said to be ab-

solutely stabilizable with disturbance attenuation � via stable output

feedback control if there exists a stable output feedback controller (4)

and constants �� � � and �� � � such that the following conditions

hold:

1) For any initial condition ������ �����	, any admissible uncertainty

inputs ���� and any disturbance input ���� 
 �����	�, then

������ ������ ����� ������ � � � � �����	 
 �����	�

(hence, �� � 	) and

�������� � ��������� � �������� �
�

���

���������

� �� ������� � �������� � �������� �
�

���

�� � (5)

2) The following�� norm bound condition is satisfied: If ���� � �
and ����� � �, then

� ��
������ �����

��
�	 ��������	 ���	�


�������� � ��
�

���

��

��������
� �

�
� (6)

Here, ������� denotes the �����	� norm of a function ����. That

is, �������� �

�
���������.

Assumption 1: The uncertain system (1) and (3) will be assumed to

satisfy the following conditions:

i) The pair ����� is observable.

ii) The pair ����� is controllable.

III. THE MAIN RESULTS

The key idea behind our main result is to introduce some extra un-

certainty into the uncertain system (1) and (3). This is done in such a

way so that the controller must not only achieve absolute stabilization

with disturbance attenuation � when applied to the original uncertain

system (1) and (3) but also the controller must achieve internal stability

when applied to a “null” system; i.e., the controller itself must be stable.

We first consider a state feedback version of the problem considered in

[5]. Using the results of [5], we can give a Riccati equation condition

for the uncertain system (1) and (3) to be absolutely stabilizable with

a specified level of disturbance attenuation via a state feedback con-

troller. The Riccati equation under consideration is defined as follows:

Let �� � �� � � � � �� � � be given constants and consider the algebraic

Riccati equation
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where

��� �
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...�
����

�� � ���

��
����

��� � � �����
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��
��
�� � � �

�
��
��
�� 	 � (8)

Assumption 2: The uncertain system (1) and (3) will be assumed to

be such that �� � � for any �� � �� � � � � �� � �.

We now present a result which follows directly from [5].

Lemma 1: Suppose the uncertain system (1) and (3) satisfies As-

sumptions 1 and 2 and is absolutely stabilizable with disturbance atten-

uation � via a controller of the form (4) (but which is not necessarily

stable). Then, there exist constants �� � �� � � � � �� � � such that the

Riccati (7) has a solution � � �. Furthermore, the uncertain system

(1) and (3) is absolutely stabilizable with disturbance attenuation � via

the state feedback controller

���� � ����� (9)

where

� � ����
� ���

�� � ���

��
����� (10)

Proof: If the system (1) and (3) satisfies Assumptions 1 and 2 and

is absolutely stabilizable with disturbance attenuation � via a controller

of the form (4), it follows from the Proof in [5, Theor. 4.1] that there

exist constants �� � �� � � � � �� � � such that the controller (4) solves

the �� control problem defined by the system

����� ����� � ��� ����� �������

����� � ������� � ��������

���� ������� � ���� ����� (11)

and the �� norm bound condition

�� ��
������� ������
������
 �����

���������
� ��������

� �� (12)

Here
����� � � ������ �

�������� � � �
�
�������� 	� �

����� � � ����� �
�������� � � �

�
�������� 	�

and the matrix coefficients ���, ���, and ���� are defined by (8) and

���� � � ������ ���� � � � ���� 	 � (13)

Then, it follows from a standard result on �� control (e.g., see [7,

Theor. 3.3]) that there exists a state feedback control law � � ��

which stabilizes the system (11) and leads to the satisfaction of the��

condition (12). Furthermore, it also follows from standard �� control

theory (e.g., see [7, Coroll. 3.1] or [8, Theor. 4.8 and Sec. 4.5.1]) that the

Riccati equation (7) has a solution � � � and that the corresponding
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state feedback controller (9) and (10) stabilizes the system (11) and

leads to the satisfaction of (12). It now follows using the same argument

that is used in the [5, proof of Theorem 4.1] that the state feedback

controller (9) and (10) absolutely stabilizes the uncertain system (1)

and (3) with disturbance attenuation �.

We now suppose that constants �� � �� � � � � �� � � have been found

such that the Riccati (7) has a solution � � � and we will use the

corresponding state feedback gain matrix � defined in (10) to define a

new uncertain system as follows:
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where �	 �	�
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Also, we extend the IQC (3) to include the additional uncertainty input

����
�

�

�������
��� �

�

�

�������
���� �� � � � � � 	� � � � � � � 	�

(16)

Here, ���� is any positive constant. We consider two special cases of

the uncertainty input ����.

1) Case 1: ������� � ������� � �	�
��������	�
�����. In this

case, it is clear that this uncertainty input satisfies the IQC (16). Also,

it is straightforward to verify that with this value of ������� the system

(14) becomes

����� � �	�
������� �
����� �

�

���

������

���� � ��� ���������

����� � ��� ���������

...

����� � ��� ���������

���� ������� ������� (17)

where the IQC (3) is satisfied. However, the uncertain system (17) and

(3) is the closed-loop uncertain system obtained when the state feed-

back control law (9) and (10) is applied to the original uncertain system

(1) and (3). Thus, according to the construction of� and Lemma 1, this

uncertain system will be absolutely stable with disturbance attenuation

�. Also note that for the system (17), the control input ���� (which is

the output of the controller) does not affect the system.

2) Case 2: ������� � �������� � ��	�
������ � �	�
�����.
In this case, it is clear that this uncertainty input satisfies the IQC (16).

Fig. 1. Block diagram corresponding to Case 1.

Fig. 2. Block diagram corresponding to Case 2.

Also, it is straightforward to verify that with this value of ������� the

system (14) reduces to the original system (1).

In order to obtain our main result, we will apply the results of [5]

to the uncertain system (14) and (16). Indeed, if the uncertain system

(14) and (16) is absolutely stabilizable with disturbance attenuation �
via an output feedback controller of the form (4) (not necessarily stable)

then it follows from Case 1 above that for the corresponding value of

the additional uncertainty, this is equivalent to the open-loop situation

illustrated in Fig. 1. In this block diagram the block ����� refers to the

closed-loop uncertain system defined by (17) and (3) and the block �
refers to the output feedback controller of the form (4). Since definition

of absolute stabilizability with disturbance attenuation � requires the

stability of the entire closed-loop system, it follows that the controller

must be stable.

It follows from Case 2 above that for the corresponding value of

additional uncertainty, when the controller (4) is applied to the uncer-

tain system (14) and (16), this is equivalent to the situation shown in

Fig. 2. In this block diagram, the block ��� refers to the original uncer-

tain system defined by (1) and (3) and the block � refers to the output

feedback controller of the form (4). From this, we can conclude that the

output feedback controller (4) solves the original problem of absolute

stabilizability with disturbance attenuation �.

Combining the conclusions from both cases, we can conclude that

the output feedback controller of the form (4) obtained by applying re-

sults of [5] to the uncertain system (14) and (16) is in fact a stable output

feedback controller which solves the problem absolute stabilizability

with disturbance attenuation � for the original uncertain system (1) and

(3). This leads us to the main result of this technical note which is stated

in terms of a pair of algebraic Riccati equations. The Riccati equations

under consideration are defined as follows: let ��� � �� � � � � ����� � �
be given constants and consider the Riccati equations
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where
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Here, �� � � � �� � � � � �� � � and �� � �� �� � � � � �� � �.

Assumption 3: The uncertain system (1) and (3) will be as-

sumed to satisfy the following additional assumptions for any

��� � 
� � � � � ����� � 
: i) ��� � 
� ii) ��� � 
� iii) ����
���
�� � � .

Theorem 1: Suppose that the uncertain system (1) and (3) satisfies

Assumptions 1–3 and that there exist constants �� � 
� � � � � �� � 

such that the Riccati (7) has a solution � � 
 and let

	 � ��
��
� ���

�� � ���

��
��� (21)

Furthermore, suppose there exist constants ��� � 
� � � � � ����� � 
 such

that the Riccati (18) and (19) have solutions �� � 
 and �� � 
 and

such that the spectral radius of their product satisfies �� �� ��  � �.

Then the uncertain system (1) and (3) is absolutely stabilizable with

disturbance attenuation � via a stable linear controller of the form (4)

where

�
 � ��
 ��

�����


��
 � �� � ����
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��� � � ��� ��


���� ��
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� � ���
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�

�
 � � ����
� � ���

�
�� � ���

��
��� (22)

Proof: It follows via a similar argument to Proof in [5, Theor. 4.1]

that the uncertain system (14) and (16) is absolutely stabilizable with

Fig. 3. Open-loop block diagram arising using an output injection approach.

disturbance attenuation � via a controller of the form (4) if and only if

there exist constants ��� � 
� � � � � ����� � 
 such that the controller (4)

solves the �� control problem defined by the system

���� � ����� � ��� ���� � ������

���� � ������ � ���� ���� � �������

��� ������ � ���� ���� (23)

and the �� norm bound condition

�
 ���
������� �	�����	�
	� �	�
	

��������
� �������

� � (24)

Here

���� � � ����� �
��� ���� � � �

�
����� ������ 	�

���� � � ���� �
���!���� � � �

�
�����!������ 	�

and the matrix coefficients ���, ���, ����, ����, and ���� are defined by

(20). Furthermore, it follows from standard loop shifting arguments in

�� control theory (e.g., see [8, Sec. 4.5.1 and 5.5.1] and [9, Sec. 17.2])

that the �� control problem (23) and (24) has a solution if and only if

the Riccati equations (18) and (19) have solutions �� � 
 and �� � 

and such that the spectral radius of their product satisfies �� �� ��  � �.

Furthermore in this case, a controller of the form (4) which solves the

�� control problem (23) and (24) is defined by the (22).

Hence, if the conditions of the theorem are satisfied, then the con-

troller (4) and (22) is absolutely stabilizing with disturbance attenua-

tion � for the uncertain system (14) and (16). Then, using the arguments

given above, it follows that the controller (4) and (22) is stable and is

absolutely stabilizing with disturbance attenuation � for the uncertain

system (1) and (3).

Remark 1: The basis of our approach is to use a state feedback con-

troller to define a new uncertain system which leads to the open-loop

situation shown in Fig. 1 for a particular value of the additional uncer-

tainty. However, one could equally apply a dual approach in which an

output injection (e.g., see [10] and [9, Sec. 16.5]) is used to define a

new uncertain system which leads to the open-loop situation shown in

Fig. 3.

In practice, one could try both approaches and then chose the one

which gave the smallest value of the disturbance attenuation parameter

�.

Remark 2: The key idea of this technical note involves introducing

a new uncertainty. This approach will inherently lead to some conser-

vatism. However, the new uncertainty is a constant but unknown un-

certain parameter. Hence, the conservatism of our approach could be

reduced by introducing multipliers to exploit the structure of this ad-

ditional uncertainty such as Popov type multipliers (e.g., see [11]) or

Zames-Falb type dynamic multipliers (e.g., see [12]). However, the use

of dynamic multipliers would lead to a higher order controller.

IV. ILLUSTRATIVE EXAMPLE

In this section, we consider an example originally presented in [2].

This example illustrates the theory developed above and also enables us
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to compare the conservatism of the approach of this technical note with

that of the approach of [2]. Note that [2] considers only problems of

�� control for LTI systems with a stable controller whereas our results

allow consideration of problems of robust �� control for uncertain

systems with an IQC uncertainty description. However in this example,

we limit our attention to an �� control problem for an LTI system

without uncertainty.

The example in [2] is a mixed sensitivity �� control problem cor-

responding to a plant transfer function

� ��� �
��� ����� ����� ��

��� � � ����� �� ����� ������ 	��

and weighting transfer functions

����� �
�

�� �
� ����� � ����

The �� optimal control problem under consideration is to find

���� � 
��
� �������	�
� �

���� � �	���

��	�� � �	���
�

�

This �� problem leads to a system of the form (1) described by the

following state equations:
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���

� ����� (25)

It is shown in [2] that the standard�� central controller for this system

is unstable for any value of the disturbance attenuation parameter � �

���� � 	����. We now apply the approach outlined in our main result

Theorem 1 to this system. For � � ���� and ��� � ��	�, we find

that the conditions of Theorem 1 are satisfied and we construct the

corresponding controller (4) where

�����
�
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������� ������� �����	 ������� ������

������ ������	 ������� ������ �������
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������� ������ ������ ������� ������

� � � � �������

�����
�
�

�������

���	��

������

�������

������

������������� ������		 ������� ������� � � �

This controller is stable and has poles at � � ���������������, � �
������		, � � �������, � � �������. Furthermore, when this con-

troller is applied to the system (25), the resulting closed-loop system

has a maximum singular value plot as shown in Fig. 4. From this, we

Fig. 4. Closed-loop maximum singular value plot with stable controller.

can see that this stable controller does indeed solve the �� strong sta-

bilization problem under consideration with a maximum closed-loop

singular value of 32 dB. This corresponds to a closed-loop �� norm

of 40.11. This compares to closed-loop �� norm of 42.51 which was

obtained using the method of [2]. Thus, we can conclude that for this

example, the approach is this technical note is slightly less conservative

than the approach of [2].

V. CONCLUSIONS

In this technical note, we have presented a new approach to the

problem of absolute stabilization with a specified level of disturbance

attenuation via the use of a stable output feedback controller. The key

idea of our approach is to add an additional uncertain parameter to the

original uncertain system. For one value of this additional uncertain

parameter, the new uncertain system reduces to the original uncertain

system and for another value of the additional uncertain parameter, the

system reduces to a system in which the control input has no effect and

so the controller is effectively in open loop. This forces the controller

to be stable.

A number of possible areas for future research are motivated by the

results of this technical note. One would be to reduce the conservatism

of the approach by introducing dynamic multipliers to exploit the fact

that the additional uncertain parameter is really only required to be con-

stant but unknown. The use of such dynamic multipliers would result in

the synthesis of a controller which was of higher order than the original

plant. Also, it would be useful to carry out an investigation into the use

of optimization tools in order to construct the parameters on which the

main result depends. Furthermore, one could consider extensions to the

main results which require the controller to have additional properties

other than stability such as satisfying a �� norm bound or satisfying

a positive real condition.
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Comments on “On Optimal Control

of Spatially Distributed Systems”

Ruth Curtain, Fellow, IEEE

I. INTRODUCTION

Following in the footsteps of the paper by Bamieh et al.[1] on spa-

tially invariant systems, the authors of the above paper [4] aim at de-

veloping a theory of spatial decaying operators for spatially varying

systems that are continuous in time, but discrete in space. This falls

clearly into the area of infinite-dimensional systems theory [2] and the

authors do quote results from this text. The theory is developed in great

generality, but even for the simplest class of spatially invariant systems,

the main result in Theorem 6 proves to be false. To explain this I ana-

lyse the claim for the very special class of spatially invariant systems

with scalar entries.

Consider the system
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��������� �

�
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����������

����� �

�

����

��������� �

�
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	��������� 
 � (1)

where ��� ��� ��� 	� � and ������ ������ ����� � are the state, the

input and the output vectors, respectively, at time � � � and spatial

point 
. This can be formulated as a linear system

����� � ������� � ������� (2)

���� � ������ � �������� � � � (3)
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where the spatially invariant operators ������ are convolution op-

erators of the type � � �� � �� given by

����� �

�

����

�������

� is bounded, i.e., is in ����� if and only if

���� � �			
�
������

�

����
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���

As in [1] the observation is made that if the Fourier transform �� ��� �
�
���� ���

���� has an analytic continuation to an annulus around the

unit circle  � �� � � ��� � ��� � �� � � � �	, then there exists a

constant � such that

���� 
 ��
����� ��� ��� � � � � ��

This motivates the introduction of so-called spatially decaying opera-

tors and weighted norms such as the following very special case

��� ��
�
�� 	
�

�����
��

���������� (4)

This norm induces a �-Banach algebra ��� �� (but not a ��-algebra

as the authors state-see later) as a subalgebra of �����. Specialized

to this class of spatially invariant operators Theorem 6 reduces to the

following.

Theorem 6 for Scalar Spatially Invariant Systems: Consider the

�-Banach algebra ��� �� and the spatially invariant system (1) with

���� � ��� �� and � � �. If the control Riccati equation

�
�
� � �� � ���

�
� � 

� � �

has a unique nonnegative solution � � �����, then � � ��� ��.

II. COUNTEREXAMPLE

Consider the system with the Fourier transforms �� � �, �� � ���
���� � ��� , � � �, �� � �. The solution to the Fourier transformed

Riccati equation is
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The Fourier coefficients for � � � can be calculated from the formula

�	 �
�

��

��

�

�

��� ���� � ���
�
�	���

�
�

���



�	

��� � �� � �
��

�
�

�
�
�
���

�
���	 �

�

�
�
�
�
��	

where  denotes the unit circle and � � � ���� � �
��� is a small

positive number. Since �� is self adjoint we obtain the solution
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�
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��	 ��	 ���

Note that it is readily verified by direct substitution that this satisfies

the Riccati equation.

Now ���� are trivially in � ��� �� for arbitrary � � �, but this

is not true for �. Although � � ��� �� for very small � � �, this

does not hold for � � �. This shows that Theorem 6 is false.
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