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A robust H controller was de®eloped to deli®er insulin ®ia a mechanical pump in�

Type I diabetic patients. A fundamental nonlinear diabetic patient model was linearized
and then reduced to a third-order linear form for controller synthesis. Uncertainty in the
nonlinear model was characterized by up to �40% ®ariation in eight physiological
parameters. A sensiti®ity analysis identified the three-parameter set ha®ing the most sig-
nificant effect on glucose and insulin dynamics o®er the frequency range of interest

[ ] ( )�s 0.002, 0.2 radrmin . This uncertainty was represented in the frequency domain
and incorporated in the controller design. Controller performance was assessed in terms

( )of its ability to track a normoglycemic set point 81.1 mgrdL in response to a 50 g
meal disturbance. In the nominal continuous-time case, the controller maintained glu-
cose concentrations within � 3.3 mgrdL of set point. A controller tuned to accommo-
date uncertainty yielded a maximum de®iation of 17.6 mgrdL for the worst-case param-
eter ®ariation.

Introduction
Diabetes mellitus is an incurable disease affecting millions

of people worldwide. Type I, or insulin-dependent diabetes
Ž .mellitus IDDM , is characterized by insufficient secretion of

insulin from the pancreas, resulting in plasma glucose con-
centrations elevated beyond the normoglycemic range
Ž . Ž .70�100 mgrdL Ashcroft and Ashcroft, 1992 . This article
examines insulin infusion by mechanical pump as an alterna-
tive method to injection therapy. A mechanical device would
contain three primary components: a variable rate pump
mechanism, which is already on the market in a number of

Ž .forms Cohen, 1993; Minimed Corporation, 1999 ; an in ®i®o
glucose sensor, which is an active area of research in the dia-

Žbetes literature Preidel et al., 1991; Meyerhoff et al., 1992;
.Nishida et al., 1995 ; and a control algorithm, which calcu-

lates the necessary insulin delivery rate based on the glucose
sensor measurement. This article focuses on the last compo-
nent.

ŽEarly modeling studies of the diabetic condition Bolie,
.1961; Ackerman et al., 1965 established a precedent for
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mathematical analysis of insulin-glucose interactions. Later
studies utilized more complicated nonlinear models, such as

Ž .Bergman’s ‘‘Minimal Model’’ Bergman et al., 1981 , and in-
corporated physiological system knowledge in the model

Ž .structure Cobelli and Mari, 1983; Sorensen, 1985 . From
these models, various control algorithms have been devel-
oped which typically involved either an implicit or explicit
system model and the optimal solution of a quadratic cost

Žfunctional Sorensen, 1985; Ollerton, 1989; Fisher, 1991;
.Parker et al., 1999a . In the synthesis of these controllers,

however, the inherent uncertainty in the model has not been
explicitly addressed. This could lead to significant perform-
ance degradation should the model parameters not represent
the actual patient glucose and insulin dynamics.

Significant inter- and intrapatient variability has been doc-
Žumented in the literature Bremer and Gough, 1999; Puckett

.and Lightfoot, 1995; Simon et al., 1987; Steil et al., 1994 . To
obviate the need for complete retuning of the controller for
each patient, the control algorithm utilized in an insulin de-
livery device must be able to compensate for the uncertainty
which exists between the internal model and the actual pa-
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tient. This clearly motivates the synthesis of a robust control
algorithm, and the current work focuses on the H frame-�

work. Previous work on H controller design for insulin de-�

Ž .livery has been performed by Kienitz and Yoneyama 1993 .
Their work concentrated on controller synthesis from an em-
pirical low-order linear model of the diabetic patient. The
current study develops continuous-time H controllers utiliz-�

ing the Jacobian linearization of a nonlinear physiologically
derived model of the diabetic patient. The motivation for us-
ing a detailed nonlinear patient model is the ability to focus
the uncertainty characterization on particular tissues or ef-
fects which are most responsible for the insulin or glucose
variability. The resulting controller is shown to exhibit robust
performance to variability in glucose and insulin dynamics.

Patient and Uncertainty Modeling
Nominal model construction

A nonlinear pharmacokineticrpharmacodynamic compart-
mental model of the diabetic patient has been constructed

Ž .previously Guyton et al., 1978; Sorensen, 1985; Parker, 1999 ,
and is detailed in the Appendix. A meal disturbance model
Ž .Lehmann and Deutsch, 1992 was included in the model de-
scription. The specific operating conditions for the diabetic
patient model used in testing the robust controller algorithms

Ž .are described in Parker et al. 1999 . The diabetic patient
model had two inputs and one measured output. Insulin de-
livery rate, represented as a deviation from its 22.3 mUrmin

Žnominal delivery rate, was the manipulated variable repre-
.sented as u . The meal disturbance had a nominal value of 0

Ž .mgrmin absorption into the bloodstream , and its signal was
referred to as m . Blood glucose concentration, the mea-d
sured variable, was denoted by y, and represented the devia-
tion in blood glucose from a nominal value of 81.1 mgrdL.
To facilitate controller design, the model inputs and output
were scaled such that adequate performance was defined as
all signals remaining less than one in magnitude

1 1 1
m s m , us u , ys yd d360 33.125 20

Here, the disturbance scaling was determined by its maxi-
mum value, and the output scaling by the maximum allow-
able deviation in glucose concentration. Note that the 20

ŽmgrdL output variation was less than the true constraint 21.1
.mgrdL , but this conservatism was warranted given the po-

Žtential level of uncertainty between either linear model full-
.order or reduced and the nonlinear representation. The

scaling for the manipulated input u was based on its ex-
pected range.

Linear H controller synthesis requires a linear system�

model. The Jacobian linearization of the diabetic patient
model was 19th order, which is still burdensome for con-
troller synthesis, as the controller order scales directly with
that of the process model. Model reduction was used to gen-
erate a low-order process model for use in controller synthe-
sis. From the Jacobian linearization of the nonlinear diabetic

Žpatient model, balanced truncation the balmr function in
.MATLAB, 2000, The MathWorks, Inc. was used to reduce

Ž .the model order Glover, 1984; Moore, 1981 . Here, the error
Ž .introduced by truncating an n-state model, G j� , to a k-

Figure 1. Effect of model reduction on process behav-
ior as a function of frequency.

Ž . ŽFull-order 19 state linear model patient, solid; distur-
. Ž .bance, dash-dot and reduced-order 3 state linear model

Ž .patient, dashed; disturbance, dotted .

Ž . Žstate representation, G j� , is given by Chiang and Sa-r
.fonov, 1992

n
HIG j� yG j� I s2 � 1Ž . Ž . Ž .Ýr � i

is kq1

where � H represent the Hankel singular values of the origi-i
Ž .nal full-order system. In the balanced realization, the rela-

tive contribution of a particular state to the process input-
output behavior corresponded to the magnitude of its singu-
lar value. By truncating the nyk smallest singular values,
only those states with comparatively small contribution to the
input-output behavior are eliminated. The linear reduced
model was given in state-space form as follows

x s A x qB uqB m 2Ž .ṙed r red r m d

ysC x 3Ž .r red

Utilizing linear superposition, the plant could be split fur-
Ž .ther into a pair of single-input single-output SISO models:

Ž .a process model G , incorporating the manipulated variable
Ž . Ž .u, insulin effects, and a disturbance model G , represent-m

Ž .ing the effects of the meal disturbance m . Shown in Figured
1 are the frequency responses of the full-order and reduced
SISO models. Performance in the bandwidth region, defined
as the portion of the frequency spectrum in which control is
effective, was of primary importance. The fastest disturb-
ances affected the patient system with a time constant of ap-
proximately 5 min, and the low-frequency behavior was im-
portant for steady-state tracking. Hence, the frequency range
w x0.002, 0.2 was of interest. System behavior in this region was
accurately captured by the reduced-order models, as demon-
strated in Figure 1. The process model began to exhibit be-
havioral changes near frequencies of 0.2 radrmin, while the
disturbance model showed significant differences in dynamics
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at frequencies greater than 1 radrmin. As measurement noise
was the only expected process perturbation at high frequency
Ž .�1 radrmin , the 19th-order linear model could be reduced
to third order without significantly altering the dynamic be-
havior in the bandwidth region. This 3-state model was
treated as the ‘‘nominal’’ patient, on which controller designs
were based.

Uncertainty characterization
Uncertainty due to differences between an actual patient

and the diabetic patient model could be related to variations
in model parameters. A parametric sensitivity analysis was
performed on the full nonlinear model to determine the terms
most responsible for changes in blood glucose and insulin dy-
namics. The glucose and insulin dynamics were found to be
most sensitive to variations in the metabolic parameters
Ž .Parker et al., 1998 . In the patient model, glucose metabolism
is mathematically described by threshold functions with the
following structure

� sE A yB tanh C x qD 4w x� 4 Ž .Ž .e � � � � i �

Here the subscript i is the state vector element involved in
the metabolic effect and the e subscript denotes specific ef-
fects within the model, such as the effect of glucose on hep-

Ž .atic glucose production EGHGP , the effect of glucose on
Ž .hepatic glucose uptake EGHGU , or the effect of insulin on

Ž .peripheral glucose uptake EIPGU . Inter- or intrapatient
uncertainty could be classified physiologically as either a re-

Ž . Ž .ceptor D parameter or post-receptor E parameter de-� �

fect, and this was modeled mathematically by adjusting the
inflection point of the hyperbolic tangent function or the
maximum value of � , respectively. Differences in insuline

Ž .clearance metabolism between patients also existed, and
could be modeled as deviations in the fraction of clearance
from a given compartment, such as the fraction of hepatic

Ž .insulin clearance FHIC or the fraction of peripheral insulin
Ž .clearance FPIC . This uncertainty formulation implied a

structured effect of variability on the model, such that the
tissues most important to parametric uncertainty were the

Ž . Ž .liver five parameters and the peripheral musclerfat tissues
Ž .three parameters .

In the absence of physical data from which to identify
ranges for parametric variations, it was assumed that �40%
parametric variability in each parameter represented a broad
range of potential patients. The exception was FHIC, which
was limited to �20% to guarantee non-negative glucose con-
centrations. Unfortunately, this level of parametric uncer-
tainty led to greater than 100% model uncertainty at steady-
state, such that no linear integrating control algorithm could

Ž .regulate the process Morari, 1983 . As a subset of the eight
parameter problem, the uncertainty was restricted to the
three most highly sensitive parameters. Potential correlations
between parameters were important, so a systematic method
for quantifying model sensitivity to parameter changes was
necessary. In this case, sets of three parameters from the pos-
sible eight were selected, yielding

8
s56 combinations.ž /3

ŽEach parameter set was varied in five permutations qmax,
.q1r2 max, no change, y1r2 max, ymax about the nominal

values for a total 125 possible variations in each three-param-
Žeter set including the nominal case when no parameters were

.varied . The nonlinear model was linearized around each of
Žthese parameter variations and their induced state varia-

.tions , due to the operating point dependent behavior of the
patient model, and the resulting linear model was used to
determine parametric sensitivity. Uncertainty in the fre-
quency domain, manifested through parameter variations in
the 19th-order model, was then measured with respect to the

Ž .reduced nominal model of the diabetic patient over the fre-
w xquency range of interest, �s 0.002, 0.2 . This was repre-

Ž .sented as relative uncertainty U , with the following math-rel
ematical description

G � yG �Ž . Ž .p
U � s 5Ž . Ž .rel G �Ž .

Ž .The nominal three-state model was given by G, while the
Ž .set of perturbed models 7,000 total, including duplicates

were evaluated individually and given by G . The most sensi-p
tive parameter set was therefore identified by summing the
relative uncertainty in the frequency range of interest for each
perturbation, and then summing over the parameter set. The
parameter set which displayed the most significant effect on

Ž . Žglucose and insulin dynamics was EIPGU D �40% from�

. Ž . Ž .y5.82 , EGHGU D �40% from y1.48 , and FHIC�

Ž . Ž .�20% from 0.4 Parker et al., 1999b .
Ž .The 125 perturbed models G from this parameter setp

were selected to represent the frequency-domain uncertainty
expected in the diabetic patient population. The solid line in
Figure 2 shows the upper bound of this relative uncertainty
as a function of frequency. This bound was created by taking
the maximum uncertainty magnitude of the 125 perturbed
patient models at each frequency. Comparatively low uncer-

Figure 2. Relative model uncertainty as a function of
frequency.

Ž .Solid: the upper bound to the 125 perturbed plant G un-p
certainties. Dashed: W , the multiplicative input uncertaintyi
weight utilized in controller design.
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Figure 3. Relative model uncertainty as a function of
frequency.
Solid: the upper bound to the 125 perturbed disturbance

Ž .model G uncertainties. Dashed: W , the disturbancem im
multiplicative input uncertainty weight utilized in controller
design.

tainty is seen at low frequency increasing beyond the 100%
mark near 0.1 radrmin, with an asymptote to 100% uncer-
tainty at high frequency. A similar analysis was performed for

Ž .the uncertainty in the meal disturbance model G , with re-m
sults depicted in Figure 3. Here the uncertainty exhibited a
local minimum around the bandwidth frequency of 0.2
radrmin, then a relative uncertainty increase with increasing
frequency to an asymptote around 10 radrmin.

Continuous-Time H Controller Synthesis�

Theory
The H control framework is well suited for glucose regu-�

lation, due to the ability to tune the controller for robustness
to uncertainty while mathematically guaranteeing a certain
degree of performance. In this case, it is important for a
closed-loop controller to tolerate patient variability and dy-
namic uncertainty while rapidly rejecting meal disturbances
and tracking the constant glucose reference. The controller
allowed custom tuning to trade-off these potentially conflict-
ing objectives.

A theoretical derivation of the H controller synthesis�

method is beyond the scope of this work. For an overview of
Žstate-space H theory, the reader is referred to Doyle et al.,�

.1989 and the references therein. The tools used throughout
Žthe present controller development are described in Balas et

.al., 1995 . A block diagram representation of the nominal H�

problem is shown in Figure 4, and controllers were synthe-
Žsized using the methodology in Skogestad and Postlethwaite,

.1996 .
A brief overview of H control and a review of the relevant�

mathematics is given below. The goal of this control method-
ology is to bound the worst-case closed-loop performance of
the process under study as measured by the induced 2-norm.
Components of Figure 4 contained within the dashed line
form the interconnection matrix, P, with the following state-
space representation specific to the diabetic patient case study

Figure 4. Diabetic patient under H feedback control.�

e dry y 1 1P s P sŽ . Ž .11 12u e ds sw 2 2P s P sŽ . Ž .21 22
® ® u

A B Bp d u md

s . 6Ž .C D D ne ed eu

uC D D® ®d ®u

The inputs were the meal disturbance, m , measurementd
noise, n, and the manipulated variable insulin infusion, u.
System outputs were ry y, the error signal, u , the weightedw
input signal, and the plant measurement, v. The operator

Ž .P s captured the response of the output e signals in re-11
sponse to changes in the inputs d. This construction yielded
the generalized block diagram system shown in Figure 5. An
H controller, if one exists, minimizes INI , defined as� �

INI smax � FF P , K 7w xŽ . Ž .� l
�

y1
FF P , K sP qP K IyP K P 8Ž . Ž .Ž .l 11 12 22 21

Figure 5. H synthesis problem.�

December 2000 Vol. 46, No. 12 AIChE Journal2540



Ž .Utilizing the theory of Doyle et al. 1989 , several conditions
must be satisfied to guarantee the existence of an H con-�

Ž .troller Balas et al., 1995 :
Ž . Ž . Ž .1 A , B controllable and A , C detectablep u p v
Ž . Ž . Ž . Ž . Ž .2 rank D sdim u and rank D sdim veu vd
Ž .3 the following matrices must have full rank ��

A y j� I B A y j� I Bp u p d
and 9Ž .

C D C De eu v vd

Assumption 1 simply states that the linearized reduced-
order system must satisfy the controllability and observability
criterion for linear systems based on the insulin delivery rate
manipulated variable and arterial insulin concentration mea-
surement. The second assumption guarantees a synthesized

ŽH controller is proper, and therefore realizable Skogestad�

.and Postlethwaite, 1996 . Violation of this assumption leads
Ž .to singular control problems Balas et al., 1995 . The final

assumption is a mathematical technicality to ensure that the
Ž .techniques in Balas et al., 1995 are directly applicable. The

Ž .conditions are relaxed forms of C , A detectable withd p
T Ž .D C s0 and A , B stabilizable with B D s0, respec-eu e p d d vd

tively. For the system in the present study, these assumptions
were satisfied. The system of two Riccati equations is solved
through the �-iteration technique utilizing the hinfsyn com-

Žmand in the �-Tools toolbox 2000, MUSYN Inc. and The
. Ž .MathWorks, Inc. of MATLAB 2000, The MathWorks, Inc. ,

which produces a nonunique suboptimal H controller.�

Weighting function design
The controller design was completed by constructing the

Ž .weighting functions in Figure 4: the input weight W , mealu
Ž . Ž .disturbance weight W , noise weight W , and perform-m n

Ž .ance weight W . The input weight was incorporated to pro-p
Ž .vide column rank to the D matrix D in Eq. 6 when solv-12 eu

Žing the nominal problem plantsmodels third order re-
.duced linear model with no parameter variations . For sys-

tems which have been scaled such that their exogenous sig-
nals are less than unity magnitude, as the diabetic patient in

Žthis study has been, the weight W s1 is reasonable Skoges-u
.tad and Postlethwaite, 1996 . The choice of the scaling pa-

rameter, u , affects controller performance. A typical me-M
chanical pump device for insulin delivery to a diabetic patient
would be subject to the following magnitude constraint, which
is conservative with respect to current pump literature
Ž .Minimed Corporation, 1999

0 mUrminFu k F133mUrmin 10Ž . Ž .˜

The maximum value, although not a mechanical constraint,
was chosen to avoid severe over-delivery of insulin to diabetic
patients. A controller design resulting from symmetric scaling

Ž .about the nominal point the typical method for H designs�

with 0 mUrmin and 44.6 mUrmin bounds would prove highly
Ž .conservative, as insulin delivery of 44.6Fu k F133 mUrmin˜
� �is within the constraints but would violate u F1. Note that

this would be the easiest way to guarantee constraint satisfac-
tion in H controller design for input constrained systems,�

Žhowever. At the other extreme, scaling u with u s133 theM

.typical disturbance scaling method would allow utilization of
the full manipulated variable range, but the calculation of
negative insulin delivery rates, and the associated clipping at
0 mUrmin, could lead to closed-loop instability. As an alter-
native to the above scaling methods, the input was scaled
symmetrically using u s33.125. This improves the disturb-M
ance rejection capability of the controller, while not radically
altering the system stability properties.

Glucose meal disturbances were modeled as trapezoidal
Ž .wave-forms gastric emptying followed by a first-order trans-
Ž . Žfer function absorption dynamics Lehmann and Deutsch,

.1992 . The transfer function was absorbed into G , along withm
the scaling value of 360 mgrmin, which guaranteed that the

w xinput m would be bounded between 0, 1 . The deterministicd
disturbance signal affected the disturbance model with a time
constant of approximately 6 minutes. A weighting function
W was included to capture this dynamic behavior, with them
following description:

1
W s 11Ž .m 6 sq1

This filter can be interpreted as an approximation of the
trapezoidal rise, such that 5	 captured 99.3% of the re-
sponse. The first-order roll-off was consistent with the dis-
turbance signal effects, where higher frequency variations had
a lesser effect on the disturbance model output.

The noise weight was included to account for any measure-
ment noise effects in the glucose sensor. These effects were
assumed white and Gaussian distributed. As the measure-
ment noise did not have dynamics in this system, W sn
constant was a convenient noise weight structure. This con-
stant was 1r10000 for noise-free simulations, and was primar-

Žily included to impart full row rank in the D matrix or D21 vd
.in terms of Eq. 6 for the H controller calculation. For a�

study of measurement noise effects, noise weight adjustment
was straightforward

noise amplitude mgrdLŽ .
W s .n y scaling

As described above, the system was subject to input con-
straints. Although there is no method to rigorously enforce
constraints in the H design methodology, their effect on de-�

sired performance could be analyzed. Based on the input
� �scaling, u F1, the available manipulated variable range was:

y10.8 clipped to 0 Fu k F66.25 mUrmin.Ž . Ž .˜

ŽAcceptable control, as defined in Skogestad and Postle-
.thwaite, 1996 , indicates whether sufficient manipulated vari-

able action is present in the system to adequately reject dis-
turbances. Mathematically, the criterion is

� � � � � �G � G y1 �� where G � �1, 12Ž . Ž .m m

where the transfer function G accounted for both the mealm
disturbance and measurement noise effects. The system satis-
fied the acceptable control criterion for the current variable
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scaling. Therefore, a robust controller could be designed for
this system based on the third order model, and input con-
straints should not saturate.

Performance weight selection is based on engineering judg-
Ž � �. � � �Žment and the need to satisfy 1rW � SG W s 1qp m m

.y1 �GK G W ��, where K is the H controller. The weightedm m �

sensitivity SG W was considered a good measure of them m
closed-loop performance in disturbance rejection scenarios.
A straightforward choice for W is the first-order filterp
Ž .Skogestad and Postlethwaite, 1996

s
�q�bMW s s . 13Ž . Ž .p �sq� Ab

Disturbance rejection at steady state is governed by As0.01,
� � � �and is chosen to make W look like G W at low frequencyp m m

Ž .Skogestad and Postlethwaite, 1996 . Typically, M is taken
as the least upper bound on the disturbance sensitivity,
ISG W I . For the nominal problem, Ms1.2 was utilized.m m �

Ž � �.This was much larger than ISG W I , but allowed 1rWm m � p
� �� S , meaning that nominal performance in reference track-

ing was also guaranteed. The frequency, ��, was used as ab
tuning parameter to trade-off aggressiveness and robustness
in the controller design. For the continuous-time nominal
case, ��s0.25.b

A similar procedure could be used in the case where un-
certainty existed between the nominal model and the patient
to be controlled. To represent the inter- and intra-patient
variability, an input multiplicative uncertainty formulation was
chosen. The modified block diagram representation is shown
in Figure 6. The weights W and W were calculated as thei im
least upper bound on the relative uncertainty of the per-
turbed plants, subject to the constraint that they were repre-
sented using low-order transfer functions. These weights were

s2q0.47sq0.015
W s 14Ž .i 2s q0.29sq0.022

1.63s2q0.21sq0.007
W s , 15Ž .im 2s q0.52 sq0.010

Figure 6. H problem, incorporating patient model un-�

certainty.

Figure 7. Nominal H controller applied to three patient�

( )models no parametric uncertainty .

and the frequency domain plots are shown as the dashed lines
in Figures 2 and 3, respectively. Also note that W was extra-u
neous in the uncertainty formulation, and has been removed
from the diagram.

Results
Continuous-time control

As a basis for further robust controller designs, a linear H�

controller was synthesized for the nominal problem using the
weighting functions developed in the previous section and �-
iteration. The resulting controller had 5 states, and achieved
a final � value of 0.79�1. This controller was applied to
three patient models with no parametric uncertainty as an

Ž .initial study in controller robustness. These models were: i
Ž . Ž .the linear reduced-order model three states ; ii the linear

Ž . Ž .full order model 19 states ; and iii the nonlinear model.
The diabetic patient models were subjected to a 50 g meal
disturbance at time ts0 min, and the resulting glucose con-
centration and insulin infusion profiles are shown in Figure

Ž .7. Similar to the work of Kienitz and Yoneyama 1993 , this
controller was tuned for performance in disturbance rejec-
tion. There was negligible performance degradation in the
closed-loop response when model complexity was increased

Ž .from third to nineteenth order both linear , as the two curves
nearly overlay. This was expected from the model reduction
analysis, where the reduced model captured the full-order
system behavior up to the bandwidth frequency of approxi-
mately 0.2 radrmin. Unless the linear full-order model under
closed-loop control demonstrated significant time-domain
differences from the reduced model, its profiles have been
omitted from figures for the balance of this work. The over-
and undershoot observed in controlling the nonlinear patient
model were almost double that of the reduced model imple-
mentation, but the controller performance was quite reason-
able, given that the deviations from the nominal case were

Žlocated within the noise level of current glucose sensors �5
.mgrdL . Based on the superior disturbance rejection and de-

creased insulin requirement for rejecting the meal dis-
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Figure 8. Frequency response: open-loop vs. closed-
loop dynamics between d and e.

� � Ž . � � Ž .Solid: G W open-loop ; dashed: SG W closed-loop .m m m m
The bandwidth region is bounded by the dash-dot lines.

turbance, the two linear models predicted a patient with a
greater sensitivity to insulin and a faster dynamic response to
insulin delivery, as compared to the nonlinear patient model.
This observation becomes important when analyzing robust-
ness with respect to parametric variation.

As the disturbance signal has a non-unity gain on the con-
trolled output, some additional interpretation for the � pa-
rameter is necessary. The H design procedure constructs�

controllers with attenuation in the bandwidth region. This is
illustrated in Figure 8 which displays the open- and closed-
loop dynamics between d and e. The controller is synthesized

� �from SG W , the weighted disturbance sensitivity, such thatm m
� �a value of � �1 implies e �1, and hence satisfaction of the

performance criteria.
As described in the section on Patient and Uncertainty

Modeling, uncertainty was examined with respect to parame-
ter values at three model locations. Incorporating the uncer-
tainty weights W and W into the interconnection structurei im
of Figure 6, a robust H controller was synthesized. The re-�

sulting controller had 13 states, performance weight parame-
ters As0.15. Ms2.5, and ��s0.002, and satisfied � sb
0.99�1. As above, this controller was incorporated into three
closed-loop systems, and these systems were subjected to the
same 50 g meal disturbance. The resulting controller perfor-
mance was quantified along with other controllers developed
in the current work in Table 1. Clearly, there was a signifi-
cant loss in performance when compared to the nominal case.
This was a result of the controller detuning necessary to ac-
count for the potential uncertainty in the model. The perfor-
mance was still reasonable, as the physiologically dangerous
hypoglycemic condition, typically characterized as blood glu-

Žcose values below 60 mgrdL corresponding to undershoot in
.excess of 21.1 in Table 1 , was avoided. The more important

issue for this controller is the performance in the presence of
parametric model uncertainty.

To analyze this parametric variation, a Monte Carlo tech-
nique was utilized. The effect of insulin on peripheral glu-

Ž .cose uptake EIPGU-D and effect of glucose on hepatic�

Table 1. Controller Performance Summary�

Controller Overshoot Undershoot 90% Settling
Ž . Ž . Ž .Design mgrdL mgrdL Time min

0.6 0.7 

N 0.6 0.7 


1.1 2.1 


8.1 4.3 

N-U 8.0 4.2 


11.7 7.9 163

13.3 7.4 160
P-U 13.2 7.4 161

24.6 16.9 339

�Controller designs are classified according to the letters in the first col-
Ž . Žumn. First letter describes the patient: N ominal model no parameter

. Ž .variations or uncertain P arameter model. Second letter describes the
Ž . Ž .controller if applicable : U ncertainty tuned controller. Rows within

Ž . Ž .each section represent 1 the low-order patient model, 2 the full-order
Ž .patient model, and 3 the nonlinear patient model.

Ž .glucose uptake EGHGU-D parameters were varied by�

�40% in 20% increments from their nominal values of y5.82
and y1.48, respectively. The fractional hepatic insulin clear-

Ž .ance FHIC was varied by �20% in 10% increments from
its nominal value of 0.4. This resulted in 125 possible per-

Žturbed patient models. The worst case performance in terms
.of maximum deviation from the 81.1 mgrdL reference is

shown for the reduced-order linear and full-order nonlinear
models in Figure 9. In the case of the reduced model, this
corresponds to parameter values of EIPGU-D sy8.15,�

EGHGU-D s2.072, and FHICs0.48. For the nonlinear�

patient models, the maximum glucose excursion was observed
in the patient with FHICs0.44, and the minimum glucose

Žvalue occurred for the patient with FHICs0.36 EIPGU-D�

.sy8.15, EGHGU-D sy2.072 . Further performance�

degradation is observed, as detailed in Table 1. In all cases,
this deviation from set point does not violate the hypo-
glycemic lower bound of 60 mgrdL.

Figure 9. Worst case performance of the continuous-
time H controller, including uncertainty�

weighting and parametric uncertainty.
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Table 2. Performance Results for Meal Disturbance Simula-
tions with Measurement Noise Applied to the Nonlinear

Patient Model�

Controller Overshoot Undershoot 90% Settling
Ž . Ž . Ž .Design mgrdL mgrdL Time min

11.9 8.0 356
N 11.4 10.3 387

12.3 13.1 393

9.3 2.7 151
N-U 9.1 2.8 152

13.5 5.0 174

16.4 4.6 177
P-U 16.3 4.7 177

30.5 12.7 336

� Ž .Controller abbreviations are identical to those in Table 1. Rows are 1
Ž .the low-order linear patient model, 2 the full-order linear patient

Ž .model, and 3 the nonlinear patient model.

Measurement noise effects
Measurement noise will exist in any device, and in the H�

framework it is possible to account for a given level of noise
explicitly in the controller synthesis. Noise of variance 2.0
w 2 2 x Ž .mg rdL was included in the noise weight W for con-n
troller design and also on the measurement signal for the two
controller formulations. The disturbance rejection results
from the patient simulations are tabulated in Table 2. Each
controller was detuned to accommodate noise, depending on
the controller and patient model. The following adjustments
were made to two performance parameters in the uncertain
case: ��s0.00075; As0.3. Based on the relative perfor-b
mance of the nominal versus uncertain case, the uncertain
controller was detuned to a much greater extent. The result
is a greater tolerance to hyperglycemic excursion in the un-
certain case, while the aggressive nominal case controller
demonstrated similar excursions in the hyper- and hypo-
glycemic directions, respectively. As expected, performance
degraded with respect to the noise-free simulations. Under-
shoot was acceptable for all controllers, as the hypoglycemic
bound is not violated in any case. Note that although an over-
shoot value of greater than 20 is reported, this is for the non-
linear patient model, and is in the less dangerous hyper-
glycemic region. When using the linear reduced model, the
error signal was less than unity for all t.

Unmodeled uncertainty
As the 3-parameter set which demonstrated the maximum

Žaverage relative uncertainty EIPGU-D , EGHGU-D , and� �

.FHIC does not capture all parametric variations, a Monte
Carlo technique was used to examine the effect of unmod-
eled parametric variation on controller performance. The 56
3-parameter sets were simulated in closed-loop, and 27 para-
metric variations were tested for each set: qmax, no change,
and ymax for each parameter in the set in all combinations.
This results in 577 unique patients. These patients were sub-
jected to 50 g meal disturbances at time ts0 under closed-
loop control by the uncertainty-tuned controller. A typical re-
sult is shown in Figure 10. This patient had the following
parameter variations from a nominal of 1.0: EIPGU-E s0.6,�

EGHGU-E s0.6, EGHGP-E s1.4. This represents a pa-� �

Figure 10. Closed-loop H control of an uncertain pa-�

tient with mismatched dynamics.
Solid: reduced-order model; dashed: nonlinear model. A
50 g meal disturbance is introduced at time ts 0. Patient
parameters are: EIPGU-E s 0.6, EGHGU-E s 0.6,� �

Ž .EGHGP-E s1.4 all have nominal value 1.0 .�

tient who has insulin resistant peripheral tissue and a glucose
resistant liver. As would be expected from a robust con-
troller, the 50 g meal disturbance was successfully rejected
while keeping the arterial glucose concentration within the

Žexpected range y12.2 mgrdL to q16.2 mgrdL for the non-
.linear patient . The settling time for this patient is reasonable

Ž .as well 294 min , when compared to the controller perform-
ance in Table 1. All reduced-order and full-order linear pa-
tient models satisfied the performance bounds. It should be
noted, however, that of the 577 nonlinear patients tested,

Ž .there were 72 who violated the performance results 12%
and entered the dangerous hypoglycemic region. Of these pa-
tients, one had a parameter combination yielding disturbance
relative uncertainty �1 at steady-state, and the balance had
FPICs0.225. Clearly, the nonlinear effects of this parameter
are significant, and its value must be estimated prior to con-
troller implementation. Otherwise, the closed-loop perform-
ance on uncertain nonlinear patients was within the pre-
specified performance region.

Discussion
Existing literature results

The present results are compared to the results of Kienitz
Ž .and Yoneyama 1993 , who developed an H controller based�

on a third order linear diabetic patient model. Performance
Žof their controller in response to a meal disturbance albeit

.of different shape was quantitatively similar to the nominal
controller shown in Figure 7. The uncertainty-derived con-
troller from the present work demonstrated greater over- and
undershoot, but it was tuned to handle significantly more un-
certainty than the literature controller. To characterize un-

Ž .certainty, Kienitz and Yoneyama, 1993 varied the parame-
Žters to the model by �50% of their nominal value the A21

w x.parameter varied over 0, 0.025 . An analysis of relative un-
certainty, similar to that of Figure 2 and omitted in their de-
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sign, resulted in certain parameter combinations having mag-
Ž .nitude greater than unity at low frequency steady-state . This

indicates that some members of the perturbed model set may
have a different steady-state gain than the actual process, and
one could not construct an H controller for this process.�

They circumvented the large uncertainties by adding addi-
tional tuning blocks to their controller design, such that the

Žuncertainty block represented by � and � in the currenti im
.work was weighted by 0.01 over all frequencies. This analysis

Žeffectively neglected uncertainty maximum relative uncer-
.tainty over all frequencies was less than 8% and instead con-

centrated on performance in disturbance rejection scenarios.
The present study instead examined closed-loop behavior in
the presence of significant model uncertainty and structural
mismatch, while satisfying the performance bounds of the H�

problem.

Model predicti©e control
Another approach to controlling glucose in diabetic pa-

Ž . Žtients is model predictive control MPC Parker et al., 1999a;
.Trajanoski et al., 1997, 1998 . To evaluate the performance

of an MPC controller versus the robust control approaches
detailed here, two cases are examined. The nominal con-
troller is compared to an MPC controller for 50 g meal dis-
turbance rejection in the nominal nonlinear patient. The glu-
cose and insulin profiles can be found in Figure 11. Small
over- and undershoot is observed, as well as rapid settling
times. The H algorithm is superior in terms of reference�

tracking, with approximately a 91% reduction in sum-squared
error. However, this is expected as the H algorithm oper-�

ates in continuous time, while MPC algorithms are inherently
discrete. Overall, the performance of both control algorithms
is excellent.

Controller performance degrades when uncertainty is
present, as observed for the H controllers in Figure 9. To�

( )Figure 11. Performance: nominal H controller solid�

( )vs. MPC dashed .
wMPC tuning parameters: sample times 5 min, move hori-

xzons 2, prediction horizons 8, reference filters 0.65 in
rejecting a 50 g meal disturbance to the nominal nonlinear
patient.

Figure 12. Performance of the state-estimating MPC
[controller tuning parameters same as

]above rejecting a 50 g meal disturbance in
uncertain nonlinear patients.
Patient parameters are: EIPGU-D s y 3.493678,�

Ž .EGHGU-D sy0.888, FHICs 0.32 solid ; EIPGU-D� �

sy8.149582, EG H G U -D s y 2.072, FH IC s 0.48�
Ž .dashed .

further analyze the differences in performance between H�

control and MPC for the diabetes problem, the 27 combina-
tions of the EIPGU-D rEGHGU-D rFHIC parameter set� �

were simulated. Two results are shown in Figure 12. These
patients have parameter values EIPGU-D sy3.493678,�

Ž .EGHGU-D sy0.888, FHICs0.32 solid and EIPGU-D� �

Ž .sy8.149582, EGHGU-D sy2.072, FHICs0.48 dashed .�

Ž .These patients are highly insulin sensitive solid or resistant
Ž .dashed . The MPC controller performance in terms of glu-
cose tracking is superior to the H algorithms, although some�

oscillation is evident. Insulin resistant patients are handled
by delivering more insulin, but the MPC controller has diffi-
culty stabilizing for insulin sensitive patients because it is too
aggressive. The addition of parameter estimation to the con-
trol algorithm may alleviate some of the performance prob-
lems, but at the same time other issues such as mismatched
dynamics and the aggressiveness of the update mechanism
arise.

Conclusions
H optimal design of an insulin infusion pump controller�

requires an accurate yet low order process description, as well
as a characterization of the potential uncertainties which may
exist in the system. Uncertainty within the reduced model,
derived from physiological conditions within the nonlinear
representation, was characterized in a control-relevant man-
ner using relative uncertainty. Nominal controller perform-
ance is shown to be similar to those published in earlier liter-
ature, and a more thorough analysis of robustness to model
uncertainty is presented. Continuous-time H controllers�

perform well for modeled uncertainty, and the closed-loop
relevance of the uncertainty characterization is validated by
the adequate performance of almost 90% of unmodeled
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parametric variations. For those cases where performance was
not acceptable, a single parameter is responsible. The H�

controller was shown to have comparable performance to the
Žmore complex MPC algorithm in terms of on-line computa-

.tion . Robustness to parameter variations is evident, while the
MPC algorithm had some stabilization problems. For track-
ing performance, however, the MPC algorithm significantly
reduced over- and undershoot, such that a parameter esti-
mating linear MPC algorithm may overcome the stabilization
problems. The selection of a control algorithm is clearly a
multi-objective problem where H and MPC approaches have�

their individual advantages and shortcomings.
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Appendix: Diabetic Patient Model
The following notation is used throughout the model de-

scription:
Model variables:

Ž .Asauxiliary equation state dimensionless
Ž .Bsfractional clearance I, dimensionless; N, Lrmin
Ž .Gsglucose concentration mgrdL
Ž .Isinsulin concentration mUrL
Ž .Nsglucagon concentration normalized, dimensionless
Ž .Qsvascular plasma flow rate Lrmin

Ž .qsvascular blood flow rate dLrmin
Ž .Tstranscapillary diffusion time constant min

Ž .Vsvolume L
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Ž .®svolume dL
Ž .�smetabolic source or sink rate mgrmin or mUrmin

Glucose Model Sub- and Superscripts
Ashepatic artery
Bsbrain

BUsbrain uptake
Cscapillary space
Gsglucose
Hsheart and lungs

HGPshepatic glucose production
HGUshepatic glucose uptake

Isinsulin
IHGPsinsulin effect on HGP
IHGUsinsulin effect on HGU

IVIsintravenous insulin infusion
Kskidney

KCskidney clearance
KEskidney excretion

Lsliver
LCsliver clearance

Nsglucagon
NHGPsglucagon effect on HGP

Ž .Psperiphery muscleradipose tissue
PCsperipheral clearance

PGUsperipheral glucose uptake
PIRspancreatic insulin release

PNCspancreatic glucagon clearance
Ž .PNRspancreatic glucagon release normalized

RBCUsred blood cell uptake
Ž .Ssgut stomachrintestine

SIAsinsulin absorption into blood stream from subcutaneous
depot

SUsgut uptake
Tstissue space

The human glucose-insulin system model used in this study
Ž .was based on initial work by Guyton et al. 1978 which was

Ž .updated by Sorensen 1985 . The current work modified the
Sorensen model to include generalized meal disturbances as
well as parameters for uncertainty analysis. Utilizing com-
partmental modeling techniques, the diabetic patient model
is represented schematically in Figure A1. Individual com-

Figure A1. Compartmental diagram of the glucose and
insulin systems in a diabetic patient.

partment models were obtained by performing mass balances
around tissues important to glucose or insulin dynamics. This
resulted in a six-compartment representation, where the
compartmentalized organs were the brain, heartrlungs, gut,
liver, kidney, and periphery. In the context of this model, the
periphery represents the combined effects of muscle and adi-
pose tissue while the stomach and intestine effects are lumped
into the gut compartment. Blood transported glucose or in-
sulin to the various compartments via convection. It was as-
sumed that the glucose or insulin concentration in a compart-
ment was in equilibrium with the blood leaving the given
compartment. Once in a particular compartment, glucose and
insulin were either metabolized or transported via diffusion
to a tissue subcompartment. Subcompartments, such as those
in the brain and periphery, were only included where signifi-

Žcant resistance to diffusion such as time delay or equilibra-
.tion time existed. Subcompartments were not necessary if

the tissue group did not absorb the material of interest or the
tissue concentration equilibrated rapidly with the blood. For
tissues with subcompartments, glucose and insulin metabolism

Žwere assumed to take place within the tissue as opposed to
.the capillary subcompartment.

The glucose submodel differential mass balance equations
are given by:

q ®T
B BC C C C TĠ s G yG y G yG A1Ž .Ž . Ž .B H B B BC C® T ®B B B

1 �BUT C TĠ s G yG y A2Ž .Ž .B B B TT ®B B

1
C C C C C CĠ s G q qG q qG q qG q yG q y�Ž .H B B L L K K P P H H R BCU C®H

A3Ž .

q � �S meal SUC C CĠ s G yG q y A4Ž .Ž .S H S C C C® ® ®S S S

1 � �HGP HGUC C C CĠ s G q qG q yG q q y A5Ž .Ž .L H A S S L L C C C® ® ®L L L

q �K K EC C CĠ s G yG y A6Ž .Ž .K H K C C® ®K K

q ®T
P PC C C T CĠ s G yG q G yG A7Ž .Ž . Ž .P H P P PC G C® T ®P P P

1 �PGUT C TĠ s G yG y A8Ž .Ž .P P P G TT ®P P

where

®T
BC Ck sGB B TB

®T
BT Tk sGB B TB

Ž w x .The metabolic source and sink terms � s mgrmin in thei
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above equations were defined by

� s70 A9Ž .BU

� s10 A10Ž .R BCU

� s20 A11Ž .SU

� s155 A 2.7 tanh 0.388 N y Aw xŽ .HGP IHGP NHGP

CGL
� 1.425y1.406 tanh 0.6199 y0.4969 A12Ž .½ 5ž /101

C1 IL
Ȧ s 1.2088y1.138 tanh 1.669 y0.8885IHGP ž /25 21.43

y A A13Ž .IHGP

1 2.7 tanh 0.388 N y1Ž .
Ȧ s y A A14Ž .NHGP NHGP65 2

CGL
� s20 A 5.6648q5.6589 tanh 2.4375HGU IHGU ½ ž 101

y1.48 A15Ž .5/
C1 IL

Ȧ s 2 tanh 0.549 y A A16Ž .IHGU IHGUž /25 min 21.43

�K E

C C71q71tanh 0.011 G y460 for G �460 mgrdLŽ .K K
s

C C½ 0.872G y300 for G G460 mgrdLK K

A17Ž .

�PGU

T T35G IP P
s 7.035q6.51623 tanh 0.33827 y5.82113 .½ 5ž /86.81 5.304

A18Ž .

The insulin submodel mass balances were given by

QBC C Cİ s I y I A19Ž .Ž .B H B CVB

1
C C C C C Cİ s I Q q I Q q I Q q I Q y I Q y�Ž .H B B L L K K P P H H IVI CVH

A20Ž .

QSC C Cİ s I y I A21Ž .Ž .S H S CVS

1 � y�PIR LCC C C Cİ s I Q q I Q y I Q q A22Ž .Ž .L H A S S L L C CV VL L

Q �K KCC C Cİ s I y I y A23Ž .Ž .K H K C CV VK K

Q V T
P PC C C C Tİ s I y I y I y I A24Ž .Ž . Ž .P H P P PC I CV T VP P P

1 � y�SI A PCT C Tİ s I y I q . A25Ž .Ž .R P P I TT VP P

Ž w x .The related metabolic sinks � s mUrmin werei

� sF I CQ q I CQ q� A26Ž .Ž .LC LC H A S S PIR

� s0, no pancreatic insulin release A27Ž .PIR

� sF I CQ A28Ž .KC KC K K

I T
P

� s . A29Ž .PC 1yF 1 1PC
y I TF Q T VPC P P P

Glucagon, the potentiator responsible for stimulating glu-
cose release into the bloodstream, was modeled as a single
blood pool compartment governed by the mass balance

FPNC
Ṅs � yN . A30Ž .Ž .PNR VN

Ž w xGlucagon release from the �-cells of the pancreas � si
.�grmin was

CIH
� s 1.3102y0.61016 tanh 1.0571 y0.46981PNR ½ 5ž /15.15

CGH
� 2.9285y2.095 tanh 4.18 y0.6191 . A31Ž .½ 5ž /91.89

Overall, the diabetic patient was characterized by nineteen
differential equations, with eleven describing glucose dynam-
ics, seven for insulin dynamics, and a single compartment for
glucagon. Model parameters are as shown in Table A1.

Appended to the diabetic patient model was a generalized
Ž .meal model, as presented by Lehmann and Deutsch 1992 .

Table A1. Parameter Values for the Diabetic Patient
C® s3.5 dL q s5.9 dLrmin T s2.1 minB B B
T® s4.5 dLB
C® s13.8 dL q s43.7 dLrminH H
C® s11.2 dL q s10.1 dLrminS S
C® s25.1 dL q s12.6 dLrminL L

q s2.5 dLrminA
C® s6.6 dL q s10.1 dLrminK K
C G® s10.4 dL q s15.1 dLrmin T s5.0 minP P P
T® s67.4 dLP
CV s0.265 L Q s0.45 LrminB B
CV s0.985 L Q s3.12 LrminH H
CV s0.945 L Q s0.72 LrminS S
CV s1.14 L Q s0.9 LrminL L

Q s0.18 LrminA
CV s0.505 L Q s0.72 LrminK K
C IV s0.735 L Q s1.05 Lrmin T s20 minP P P
TV s6.3 LP

V s9.93 L F s0.910 LrminN P N C
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Table A2. Nominal Values for Uncertain Parameters in the
Diabetic Patient Model

EIPGU-Es1.0 EGHGU-Es1.0 EGHGP-Es1.0
EIPGU-Dsy5.82113 EGHGU-Dsy1.48 EGHGP-Dsy0.4969

Ž . Ž .FHIC F s0.4 FPIC F s0.15LC P C

This representation modeled gastric emptying of carbohy-
Ždrate as a saturating function with maximum rate of 360

.mgrmin carbohydrate to maintain relatively constant carbo-
hydrate release from the stomach during intestinal adsorp-
tion. The rise to and fall from this maximum rate was a linear

Ž .function ramp , taking place over a thirty minute span. Small
Ž .meals �10.2 g carbohydrate only contained the rise and

Ž .fall phases triangle shape , never reaching the plateau emp-
tying rate. Larger meals were described by a trapezoidal wave.
Either gastric emptying function was followed by the follow-
ing first-order filter

1r60
� s wf , A32Ž .meal sq1r60

where � represents the absorption rate of glucose intomeal
the diabetic patient model gut compartment and wf was the
input waveform signal.

The uncertainty analysis utilizes 8 parameters from the
above model. These are located in the following relations

TIP
� s1.0 7.035q6.51623 tanh 0.33827EIPGU ½ ž 5.304

y5.82113 A33Ž .5/
CGL

� s1.0 5.6648q5.6589 tanh 2.4375EGHGU ½ ž 101

y1.48 A34Ž .5/
CGL

� s1.0 1.425y1.406 tanh 0.6199EGHGP ½ ž 101

y0.4969 A35Ž .5/
� sF I CQ q I CQ q� A36Ž .Ž .LC LC H A S S PIR

I T
P

� s . A37Ž .PC 1yF 1 1PC
y I TF Q T VPC P P P
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