
ORIGINAL ARTICLE

Robust H
∞
sliding mode control with pole placement for a fluid

power electrohydraulic actuator (EHA) system

Hui Zhang & Xiaotao Liu & Junmin Wang &

Hamid Reza Karimi

Received: 25 January 2014 /Accepted: 29 April 2014 /Published online: 13 May 2014
# Springer-Verlag London 2014

Abstract In this paper, we exploit the sliding mode control

problem for a fluid power electrohydraulic actuator (EHA)

system. To characterize the nonlinearity of the friction, the

EHA system is modeled as a linear system with a system

uncertainty. Practically, it is assumed that the system is also

subject to the load disturbance and the external noise. An

integral sliding mode controller is proposed to design. The

advanced techniques such as the H∞ control and the regional

pole placement are employed to derive the optimal feedback

gain which can be calculated by solving a necessary and

sufficient condition in the form of linear matrix inequality. A

sliding mode control law is developed such that the sliding

mode reaching law is satisfied. Simulation and comparison

results show the effectiveness of the proposed design method.

Keywords Slidingmode control .H∞ control .

Pole placement . Linear matrix inequalities (LMIs)

1 Introduction

The subject in this paper is a fluid power electrohydraulic

actuator (EHA) system which is controlled by a pump.

Different from the traditional valve-controlled hydraulic sys-

tems, the pump-controlled systems have higher energy efficien-

cy. It is noted that the hydraulic systems play an important role

in industry. But the systems are generally subject to nonlinear-

ities, uncertainties, load disturbances (disturbance of the control

signal), and measurement noises. Therefore, in precision posi-

tion control cases, the challenge is how to compensate for these

issues and obtain good tracking performance.

The last two decades have witnessed the increasing atten-

tion to the sliding mode control (SMC) which is inherently

robust against the system uncertainty and the external distur-

bance and has a good transient response [1]. Therefore, SMC

has been applied to many practical systems including electri-

cal motors [2], power systems [3], suspension systems [4, 5],

robot manipulators [6], and underwater vehicles [7, 8]. In

recent years, with the wide application of digital controllers,

the discrete-time sliding mode control (DT-SMC) has

attracted more attention [9, 10]. Different from the

continuous-time SMC [11, 12], it is challenging to drive the

plant to the designed sliding mode surface due to the finite

sampling rate [13] under the discrete-time framework. Thus,

the study on the reaching law for the DT-SMC is of practical

importance. The authors in [13] proposed a sufficient and

necessary reaching law under which the closed-loop system

would be driven toward the sliding mode surface and the

switching function should be strictly decreasing. The quasi

sliding mode and quasi sliding mode band were defined for

single-input systems and multiple-input systems in [14] and

[15], respectively. In addition, a linear reaching law can be

seen in [16].

On another research frontier, the H∞ control is robust

against the disturbance and the external noise. Moreover,
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it is insensitive to the noise statistics and less sensitive

than their H2 counterparts to uncertainties [17–19].

Therefore, the H∞ control scheme has attracted interest

in the feedback control [20–29] since it was first intro-

duced in 1989 [30]. Recently, the H∞ control and filtering

approaches were adopted in various settings and applica-

tions, such as [31–33] and the reference therein. In this

paper, we employ the H∞ control strategy to design the

sliding mode surface. Not only the H∞ performance but

also the pole placement is considered to have a balance on

the tracking performance and the control input.

As mentioned, the sliding mode and H∞ control are

robust to the system uncertainties, load disturbances, and

external measurement noises. Thus, it is interesting to

apply the combined sliding mode and H∞ control for the

precision position of the EHA system. Therefore, in this

paper, we use the norm-bounded uncertainty to represent

the nonlinearity induced by the friction. The load distur-

bance and the noise are both considered in the system

modeling. An integral sliding mode surface under the

discrete-time framework is introduced. In an ideal sliding

mode motion, the switching function will keep zero under

which we obtain the equivalent control law. However, the

uncertainty, load disturbance, and noise are all involved in

the ideal control law. To compensate for these terms, an

observer is employed and a practical control law is pro-

posed. The control law would drive the EHA system

arbitrarily close to the design sliding mode surface with

a quasi sliding mode band. The contribution of the paper

can be summarized as follows: (1) In the system model-

ing, we not only consider the nonlinear friction and the

measurement noise but also the load disturbance. The

studied model is more generalized and practical. (2) An

integral discrete-time sliding mode control strategy is

proposed. In the proposed integral discrete-time sliding

mode control, the sign function of the sliding manifold is

avoided such that the chatting phenomenon is eliminated.

(3) In order to consider the transient response and the

control action indirectly, we employ the pole placement

technique in the controller design.

The paper is organized as follows: Section 2 is fo-

cused on the system modeling and description;

Section 3 provides the robust sliding mode tracking

controller design including the sliding surface design,

the stability and the H∞ performance analysis, and the

robust tracking controller design; simulation and com-

parison results are provided in Section 4; and Section 5

concludes this paper.

Notation The notations used in this paper are fairly stan-

dard. Superscript “T” and “−1” indicate matrix transposi-

tion and inverse, respectively; l2[0,∞) is the space of

square-norm infinite vectors, and for ω∈ l2[0,∞), and the

2-norm is given by ωk k
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑∞

k¼0
ωkk k2

q
. In addition, in

symmetric block matrices or long matrix expressions, we

use * as an ellipsis for the terms that are introduced by

symmetry. Matrices, if their dimensions are not explicitly

stated, are assumed to be compatible for algebraic

operations.

2 System modeling and preliminary

In this paper, we consider a particular EHA system, as shown

in Fig. 1.

The main components of the EHA system include an

electrical motor, pressure and position sensors, a bidi-

rectional gear pump, a symmetrical actuator, and an

accumulator sub-circuit [34]. The bidirectional fixed

displacement gear pump supplies oil to drive the actu-

ator. The symmetrical actuator (inflow equals with out-

flow) is connected with an external load. The motion of

the load can be regulated by controlling the speed of

the electrical motor.

Fig. 1 Schematic of the EHA hydraulic circuit
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To appropriately model the system, a discrete-time model

with uncertainty, load disturbance, and measurement noises

[35–37] is expressed as

X kþ1 ¼ AþΔAð ÞX k þ B uk þΔf X k ; kð Þ½ � þ T swk ; ð1Þ

where Xk=[x1k ,x2k ,x3k]
T; x1k ,x2k; and x3k represent the posi-

tion, velocity, and acceleration of the load, respectively; uk is

the control input; Δf (Xk,k) denotes the load disturbance;

Ts=0.001[1,1,1]
T and 0.001 is the sampling period; wk is the

measurement noise. In addition, the system matrix A and the

input matrix B are identified as

A ¼
1 0:001 0
0 1 0:001
0 �78:10 1:07

2

4

3

5; B ¼
0
0

1:07

2

4

3

5: ð2Þ

The system matrix is subject to uncertainty which comes

from the nonlinearity of the friction. The uncertainty is de-

scribed by the norm-bounded model as [37]

ΔA ¼ MDkH ¼
0
0
0:1

2

4

3

5Dk 0 0:111 0:073½ �; ð3Þ

with −1≤Dk≤1.

It is noted that the eigenvalues of the system matrix A are

{1, 1.0350+0.2773i, 1.0350−0.2773i} which are not within

the unit circle, but the system is controllable. Moreover, the

uncertainty ΔA affects the pole placement, that is, the uncer-

tainty ΔA has an impact on the stability of the system. In

addition, there are a load disturbanceΔf (Xk,k) at the controller

side and a noise wk which is either from the measurement

noise or the quantization error. It is well known that the SMC

has a good performance on the uncertainty and theH∞ control

is robust against the disturbance and the external noise.

Therefore, in the following sections, the main objectives are

to design the robustH∞ sliding mode controller to stabilize the

system (1) and apply the obtained results to the tracking

control for the EHA system.

Remark 1 The system model in (1) is a generalized and

practical model for the position control EHA systems. The

system norm-bounded uncertain term ΔA is induced by the

nonlinear friction. As the maximal and minimal nonlinear

friction can be calibrated using experiments, the parameters

in the norm-bounded uncertainties can be determined. The

load disturbance can represent the quantization error of the

control signal and the actuator faults. In addition, the noise

term is necessary to denote the model errors which are as-

sumed to be bounded.

3 Robust sliding mode tracking controller design

for an EHA model

3.1 Robust sliding mode surface design and sliding mode

dynamics analysis

Note that the uncertainty appears in the system matrix. In

order to deal with the uncertainty, we introduce the following

lemma.

Lemma 1 [38] Let Θ=ΘT, M, and H be real matrices with

compatible dimensions, and Dk be time-varying and satisfy −

1≤Dk≤1, then the following condition

ΘþMDkH þ H
T
DkM

T
< 0; ð4Þ

holds if and only if there exists a positive scalar ε>0 such that

Θ εM H
T

−εI 0

* −εI

2

4

3

5 < 0 ð5Þ

is satisfied.

For the uncertain system (1), the integral sliding mode

surface is constructed as

S kð Þ ¼ GX k −G
Xk−1

i¼0

Aþ BF � Ið ÞX i; ð6Þ

where G is a matrix to be chosen such that GB is nonsingular

and F is a feedback gain to be designed such that the system is

stable. Note that the input matrix B has the dimension 3×1. In

order to simplify the design, the matrixG can be chosen as the

left inverse of B, that is, GB=I.

For an ideal sliding mode, the sliding surface S(k) should

converge to zero as the time k increases, that is,

S k þ 1ð Þ ¼ S kð Þ ¼ 0; for k > k*; ð7Þ

where k∗ is a positive constant. When the trajectories of the

EHA system enter into the sliding mode surface (6), we can

obtain the equivalent control signal

uk ¼ FX k −GΔAX k −Δf X k ; kð Þ−GT swk : ð8Þ

By substituting the equivalent control signal into the EHA

system (1), we derive the sliding mode dynamics on the

sliding mode surface S(k)=0 as

X kþ1 ¼ AþM MDkHÞX k þ Bwk ;
�

ð9Þ

where

A ¼ Aþ BF;M M ¼ I � BGð ÞM ;B ¼ T s � BGT sð Þ:
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Note that the location of the eigenvalues of the system (9)

has a significant impact on the transient response. In order to

trade off between the performance and the control input, we

impose a circular regional constraint [39] on the pole location

of the system (9). As shown in Fig. 2, it is required that the

eigenvalues of the system (9) lie in the circle with the center

point (σ,0) and the nonzero radius r.

To evaluate the influence of the noise wk, we assume that it

is l2-bounded and introduce the H∞ performance of the trans-

fer function from wk to zk,

zk ¼ X k : ð10Þ

In summary, we focus on studying the H∞ performance of

the following system:

X kþ1 ¼ ðĀ þ MDkHÞX k þ Bwk ;

zk ¼ X k :

ð11Þ

Lemma 2 [40] Suppose that the matrix F is known. For a

positive scalar γ, the system (12) is asymptotically stable with

an H∞ performance γ if and only if there exists a matrix

P=PT>0 such that the following condition is satisfied:

−P 0 P Ā þ MDkH
� �

PB̄

−I I 0

* −P 0

* * −γ2I

2

6664

3

7775 < 0: ð12Þ

It is necessary to emphasize that there is one time-varying

parameter Dk in the above condition. Moreover, the require-

ment of the pole location has not been considered in Lemma 1.

Based on the result in Lemma 1, we develop the following

theorem which eliminates the time-varying parameter and

consider the pole location.

Theorem 1 For a positive scalar γ, the system (11) is robustly

asymptotically stable with an H∞ performance γ and eigen-

values are all within the circular region (σ,r) if and only if

there exist a matrixQ=QT>0, a positive scalar ε, and a matrix

F such that the following condition is satisfied:

−Q 0 AQþ BF̄−σI
� �

=r B̄ εM=r 0

−I Q 0 0 0

* −Q 0 0 QHT

* * − γ2I 0 0

* * * −εI 0

* * * * −εI

2

66666664

3

77777775

< 0:

ð13Þ

Moreover, the feedback gain F can be calculated by

F ¼ FQ−1 .

Proof: The condition in Lemma 2 can be rewritten as

ΘþMDkH þ H
T
DkM

T
< 0; ð14Þ

where

Θ ¼
−P 0 PĀ PB̄

−I I 0
* −P 0
* * − γ2I

2

664

3

775;

M ¼
PM

0
0
0

2

664

3

775; H ¼ 0 0 H 0½ �:

According to Lemma 1, the condition (14) holds if and

only if the following condition is satisfied:

−P 0 PĀ PB εPM 0

−I I 0 0 0

* −P 0 0 HT

* * −γ2I 0 0

* * * −εI 0

* * * * −εI

2

6666664

3

7777775
< 0: ð15Þ

Performing a congruence transformation to (15) by

J=diag{Q,I,Q,I,I,I}, we get

−Q 0 AQþ BFQ B εM 0

−I Q 0 0 0

* −Q 0 0 QHT

* * −γ2I 0 0

* * * −εI 0

* * * * −εI

2

6666664

3

7777775
< 0; ð16Þ

Fig. 2 Circular region (σ,r) for the pole location
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where Q=P−1. Letting Fdenote the multiplication FQ, (16) is

equivalent with

−Q 0 AQþ BF B̄ εM 0

−I Q 0 0 0

* −Q 0 0 QHT

* * − γ2I 0 0

* * * −εI 0

* * * * −εI

2

6666664

3

7777775
< 0: ð17Þ

By using AþMDkH−σIð Þ=r to replace AþMDkHð Þ in

Lemma 2 and following similar lines from (14) to (17), we can

obtain the condition (13). On the other hand, since Q is

nonsingular, F can be computed with F ¼ FQ−1 .

Theorem 1 provides the design method for the feedback

gain F with a fixed H∞ performance γ. In practice, it is

required that the value for γ is as smaller as possible. The

following corollary addresses the optimization method for the

minimal value.

Corollary 1 The minimum H∞ performance index γ∗ in

Theorem 1 can be found by solving the following convex

optimization problem:

β ¼ minγ2⋅
s: t: 13ð Þ

The corresponding minimum value for γ is γ* ¼
ffiffiffi
β

p
.

3.2 Robust sliding mode controller design

In the above subsection, we have proposed the sliding mode

surface, analyzed the H∞ performance of the sliding mode

dynamics, and obtained the equivalent control signal.

However, since both the load disturbance and the noise are

involved in the equivalent control signal, we cannot directly

apply the equivalent control signal uk to the control signal uk.

In this subsection, we explore the control law and reaching

condition.

In this paper, we adopt the linear reaching law [16]:

S k þ 1ð Þ ¼ ΦS kð Þ; ð18Þ

whereΦ is a scalar and 0≤Φ<1. It is worth mentioning that the

reaching law (18) implies |S(k+1)|<|S(k)| which is a necessary

and sufficient condition to assure the convergence of a

discrete-time sliding mode control system in [13]. Due to the

lack of knowledge of the disturbance and noise, the ideal

sliding mode control law cannot be implemented. However,

we can predict the disturbance and noise with the value at the

previous time [41, 42]. At the time k, we can obtain the

lumped uncertainty, disturbance, and noise at the time k−1.

Suppose that

gk−1 ¼ X k � AX k−1 � Buk−1: ð19Þ
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Fig. 3 Control performance
comparison with the optimal H∞

PI plus feedforward controller
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Then, the proposed control law in this paper is

expressed as

uk ¼ FX k � Ggk−1 þ Φ� 1ð ÞS kð Þ; ð20Þ

where F is the gain designed in the above subsection. Now, we

will prove that the reaching law in (18) can be satisfied under

the control law (20).

Theorem 2 For the uncertain EHA system, suppose that there

is a feasible solution for the feedback gain F in Theorem 1,

then under the control law (20), the EHA system will be

driven arbitrarily close to the quasi sliding mode surface and

the corresponding band Δ is

Δ ¼ bg
1� Φ

; ð21Þ

where bg is the maximal value of |G(gk−gk−1)|.

Proof: By substituting the control law (20) into the system

model (1), we evaluate the difference of S(k) as

S k þ 1ð Þ � S kð Þ ¼ Ggk � Ggk−1 þ Φ� 1ð ÞS kð Þ; ð22Þ

which implies that

S k þ 1ð Þ ¼ G gk � gk−1ð Þ þ ΦS kð Þ: ð23Þ

Suppose that the initial value for the slidingmode surface is

S(0). According to (23), the value for S(k) is

S kð Þ ¼
Xk−1

i¼1

ΦiG gi � gi−1ð Þ þ ΦkS 0ð Þ: ð24Þ

It is noted that |Φ|<1. Thus, for a large k, ΦkS(0) will

converge to zero and

jS kð Þj < bg
1� Φ

: ð25Þ

The proof is completed.

Remark 2 It can be seen from the control law in (20) that the

control signal consists of three terms: a state-feedback action,

an observation feedback term, and a sliding mode manifold

feedback term. Generally speaking, the state-feedback action

has the capacity to stabilize the system or relocate the eigen-

value location of the closed-loop system matrix. The observa-

tion sliding mode manifold feedback is used to compensate

for the system uncertainty, the load disturbance, and the ex-

ternal term. Moreover, it is necessary to mention that the

system dynamics is involved in the sliding mode surface and

the sign function of the sliding mode surface is avoided in the
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Fig. 6 Measurement noise for the EHA system
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control law in (20). Thus, the chatting phenomenon of the

traditional SMC can be eliminated.

3.3 Robust sliding mode tracking control

In the above two subsections, we have investigated the stabiliza-

tion problem for the discrete-time EHA system subject to uncer-

tainty, load disturbance, and noise. In the state tracking problem,

we assume that the desired states Xdk of the EHA system satisfy

the nonlinear model. Defining the tracking error asXek=Xk−Xdk ,

the sliding mode surface for the tracking error system is

Se kð Þ ¼ GX ek � G
Xk−1

i¼0

Aþ BF � Ið ÞX ei; ð26Þ

and the control law is

uk ¼ FX ek−Ggk−1 þ Φ� 1ð ÞSe kð Þ; ð27Þ

where

gk−1 ¼ X ek−AX e k−1ð Þ−Buk ; ð28Þ

and F can be calculated in Corollary 1.

4 Simulation results

In this section, we apply the developed discrete-time sliding

mode tracking control to the EHA system which is subject to

nonlinearity, load disturbance, and noise. Suppose that the de-

sired circular region (σ,r) is (0.9,0.05). By using Corollary 1, the

obtained minimum H∞ performance index is 300.6335 and the

corresponding feedback gain F ¼ −7007:3 49:63 −0:32½ �:
The authors of Chapter 12 in [43] designed an H∞ propor-

tional-integral (PI) plus feedforward controller for the same

EHA system. The control law is a PI feedback control plus a

feedforward term as follows:

uk ¼ Kpek þ K i

Xk−1

i¼0

ei þ K ff rk � rk−1ð Þ; ð29Þ

where Kp=2,428.6, Ki=20.2, Kff=2,860,000, rk is the de-

sired position trajectory, and ek is the tracking error. In

order to do a fair comparison in the simulation studies, we

assume that there is no load disturbance in the control

action and noise in the measurements. Figure 3 shows the

tracking control performance comparison between the

proposed discrete-time integral sliding mode controller

and the optimal H∞ PI plus feedforward controller. We

can see that, for the sinusoid signal, both controllers can

track the reference well and the tracking errors are at the

same level. However, it infers from Fig. 4 that the control

Table 1 Tracking error comparison

Controller 2 norm Infinity norm

Proposed controller 0.0188 3.5889×10−4

H∞ PI plus feedforward controller 0.0192 4.0955×10−4
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Fig. 7 Control performance
comparison with the optimal H∞

PI plus feedforward controller
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input is the optimal H∞ PI plus feedforward controller is

around 5 times of the proposed controller in this paper,

that is, the optimal H∞ PI plus feedforward controller

would consume much more energy for a similar control

performance. Considering the tracking performance and

the consumed energy simultaneously, the proposed

tracking controller in this paper is much better than the

one in [43].

The system uncertainty, load disturbance, and mea-

surement noise are all incorporated in the controller

design. Moreover, the lumped disturbance predictor is

used to compensate for all the uncertainty and load
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disturbance. To show the advantage of the proposed

controller, in the simulation, the added load disturbance

at the control signal and the noise are illustrated in

Figs. 5 and 6, respectively. By choosing Φ as 0.1,

Fig. 7 shows the tracking performance comparison when

the desired position is a sinusoid wave. The tracking

error comparison is illustrated in Table 1.

As shown in Table 1, both the 2 norm and the infinity norm

of the tracking error with the proposed controller are smaller

than the corresponding one of the H∞ PI plus feedforward

controller.

Figure 8 depicts the control input comparison. When

the system is subject to the uncertainty, load distur-

bance, and the measurement noise, the control input of

the optimal H∞ PI plus feedforward controller fluctuates

significantly, that is, the control input of the optimal H∞

PI plus feedforward controller is sensitive to the noises.

However, the designed control has the capacity to main-

tain the control performance with much smaller and

smoother control signal.

To show the tracking performance of the proposed

controller when there is an abrupt change at the refer-

ence, a quasi step signal is acted as the reference. The

reference is subject to an abrupt change at 1.8 s, and

the change lasts for 0.025 s. Figure 9 depicts the track-

ing control performance of the proposed controller. It

can be seen that the undesired response is much smaller

than the abrupt change, that is, the proposed controller

has a good performance at attenuating the effect of

abrupt change.

5 Conclusions

In this paper, we have investigated the sliding mode control

for the EHA system. The nonlinear EHA system was

modeled by a linear system with norm-bounded uncer-

tainty. The load disturbance and the measurement noise

were both considered in the modeling. An integral slid-

ing mode surface was proposed. After obtaining the

equivalent control signal, the design approach for the

feedback gain was addressed. By using a well-known

reaching condition, a sliding mode control law was

developed such that the EHA system can be driven to

the quasi sliding mode surface. In the system modeling,

the nonlinear friction was represented by the norm-

bounded uncertainty. The designed controller has the

stability margin such that it is robust to the norm-

bounded uncertainty. Generally speaking, the designed

controller is passive uncertainty tolerable. In the future

research, we will employ the Takagi-Sugeno (T-S)

[44–48] fuzzy model and the backstepping technique

[49, 50] to study the system.
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