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Abstract— A new approach to solving a nonlinear robust
H
∞ control problem using a stable nonlinear output feedback

controller is presented in this paper. The particular class of
nonlinear uncertain systems being considered is characterized
in terms of Integral Quadratic Constraints and Global Lipschitz
Conditions describing the admissible uncertainty and nonlin-
earity, respectively. The nonlinear controller is then constructed
by including a copy of the system nonlinearity in the structure
of the linear controller. The aim is to enable the controller
to exploit the nonlinearity of the system such that it will
absolutely stabilize the closed loop nonlinear system and achieve

a specified disturbance attenuation level. This method involves
the stabilizing solutions of a pair of algebraic Riccati equations.

I. INTRODUCTION

In many applications, a stable controller is preferable

to an unstable controller because the latter is sensitive to

actuator and sensor failures and also to plant uncertainties

and nonlinearities (e.g., see [1], [2]). It can also reduce

the performance of the closed loop system in tracking a

reference signal and rejecting disturbances (e.g., see [3]).

Thus, many approaches have been proposed to construct

a stable controller. They have used various properties and

parameterization techniques such as the parity interlacing

property (see [4]), an interpolation condition (see [5]), a

unimodular transfer function matrix (see [3]), inner-outer

factorization (see [2]) and parameterized H∞ optimization

(see [1], [6], [7]). However, those methods dealt only with

linear controller design problems.

In this paper, we are interested in obtaining a nonlinear

controller that will both stabilize the closed loop system

and yield robustness against uncertainty, nonlinearity and

perturbations. In fact, there have been several nonlinear

controller synthesis methods such as optimal nonlinear H∞

control theory (see [8]), constructive nonlinear control theory

(e.g., see [9], [10]) and the circle and Popov criteria (see

[11]). However, these methods do not necessarily lead to a

stable nonlinear controller in the output feedback case.

These facts have motivated us to propose a new approach

to solve the nonlinear robust H∞ control problem via a sta-

ble nonlinear output feedback controller. A related discrete-

time approach can be found in [12] for the finite time horizon

case without the requirement for a stable controller. Indeed,

a method to construct a stable robust H∞ output feedback
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controller has been presented in [13]. However, the approach

of [13] yields a linear controller and it would require the

known nonlinearity to be treated as an uncertainty. Whereas,

in our method, we do not consider the known nonlinearity

as an uncertainty so as to have a less conservative stable

nonlinear controller.

The particular class of nonlinear uncertain systems under

consideration is described in terms of Integral Quadratic

Constraints (IQCs) and Global Lipschitz Conditions (GLCs)

corresponding to the admissible uncertainty and nonlinear-

ity, respectively (e.g., see [14]). Such nonlinear uncertain

systems have also been considered in [15] in a guaranteed

cost control problem and without a requirement for controller

stability.

There are two main ideas underlying our approach. Firstly,

we adjust the standard IQC approach to robust H∞ control

by adding a copy of the known part of the plant nonlinearity

to the linear controller (see Fig. 1). This technique resembles

the one used in [16] for observer-based control systems and

in [17] for Linear Parameter Varying (LPV) controller design.

The aim is to enable the linear controller to exploit the plant

nonlinearity when we establish the absolute stability of the

whole system. Secondly, the linear part of this nonlinear

controller is synthesized using the method in [18]. Thus, both

nonlinearities are first combined into the plant (see Fig. 2)

and then characterized by extra IQCs derived from the GLCs.

Fig. 1. Nonlinear uncertain system with nonlinear controller. Here ψ(·) is
a known nonlinearity and φ(·) is an uncertainty.

Moreover, in order to guarantee controller stability, we

introduce an additional uncertainty to form a new uncertain

system. For a certain value of the additional uncertainty,

the new uncertain system reduces to the original uncertain

system. Thus, if a suitable controller for the new uncertain

system exists, then it also solves the absolute stabilization

problem with a specified disturbance attenuation level for
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the original uncertain system. Also, for another value of

the additional uncertainty, the new uncertain system converts

to a specific open loop system in which the corresponding

controller is forced to be stable. The inclusion of this

additional uncertainty provides only sufficient conditions in

our main result which involves the stabilizing solutions of

a pair of algebraic Riccati equations. Eventually, we arrive

at a stable nonlinear controller that will absolutely stabilize

the closed loop nonlinear system and yield a prescribed

disturbance attenuation level.

Fig. 2. Nonlinear uncertain system and linear controller with repeated
nonlinearity.

The remainder of this paper is organized as follows: Sec-

tion II describes the nonlinear robust H∞ control problems

under consideration. It also defines the admissible uncer-

tainty and nonlinearity of the system in terms of IQCs and

GLCs, the notion of absolute stabilizability and the notation

necessary to convert the original problem into the standard

robust H∞ control problem. As the main result, Section III

presents the methodology for designing a stable nonlinear

output feedback controller. Finally, some concluding remarks

are presented in Section IV.

II. PROBLEM STATEMENT

The nonlinear uncertain system being considered is de-

scribed as follows:

ẋ(t) = Ax(t) +B1w(t) +B2u(t)

+

f
∑

s=1

E1,sξs(t) +

g
∑

i=1

E2,iµi(t);

z(t) = C1x(t) +D12u(t);

ζ1(t) = H1,1x(t) +G1,1u(t); ν1(t) = H2,1x(t) +G2,1u(t);

...
...

ζf (t) = H1,fx(t) +G1,fu(t); νg(t) = H2,gx(t) +G2,gu(t);

y(t) = C2x(t) +D21w(t) +

f
∑

s=1

F1,sξs(t) +

g
∑

i=1

F2,iµi(t).

(1)

The variables involved in (1) are the state x ∈ R
n, control

input u ∈ R
m, disturbance input w ∈ R

p, controlled output

z ∈ R
q, measurement output y ∈ R

l, uncertainty inputs

ξ1, . . . , ξf ∈ R
rs , uncertainty outputs ζ1, . . . , ζf ∈ R

hs ,

nonlinearity inputs µ1, . . . , µg ∈ R and nonlinearity outputs

ν1, . . . , νg ∈ R.

The nonlinearity inputs are related to the nonlinearity

outputs by the following relations

µi(t) = ψi (νi(t)) ∀i = 1, 2, . . . , g (2)

satisfying the condition ψi(0) = 0. The nonlinear functions

ψi(·) need to satisfy the Global Lipschitz Conditions

|ψi(ν) − ψi(ν̃)| ≤ βi|ν − ν̃| (3)

for all (ν, ν̃) and for all i = 1, 2, . . . , g.

Moreover, the uncertainties in the system (1) are described

as follows:

ξs(t) = φs (t, ζs(t)) ∀s = 1, 2, . . . , f. (4)

The admissible uncertainties for the system (1) should sa-

tisfy the Integral Quadratic Constraints (IQCs) stated in the

following definition.

Definition 1: (Integral Quadratic Constraints, e.g., see

[14].) An uncertainty of the form (4) is an admissible

uncertainty for the system (1) if the following conditions

hold: Given any locally square integrable control input u(·)
and locally square integrable disturbance input w(·), and any

corresponding solution to the system (1), (4), let (0, t∗) be

the interval on which this solution exists. Then there exist

constants d1,1 ≥ 0, . . . , d1,f ≥ 0 and a sequence {tk}∞k=1

such that tk → t∗, tk ≥ 0 and
∫ tk

0

‖ξs(t)‖2dt ≤
∫ tk

0

‖ζs(t)‖2dt+ d1,s (5)

for all k and for all s = 1, 2, . . . , f . Here ‖ · ‖ denotes the

standard Euclidean norm and L2[0,∞) denotes the Hilbert

space of square integrable vector valued functions defined on

[0,∞). Note that tk and t⋆ may be equal to infinity. The class

of all such admissible uncertainties ξ(·) = [ξ1(·), . . . , ξf (·)]
is denoted by Ξ. △

For the nonlinear uncertain system (1), (2), (5), the pro-

blem of absolute stabilization with a prescribed disturbance

attenuation level will be addressed. The class of controllers

to be considered in this problem are the stable nonlinear

output feedback controllers of the form

ẋc(t) = Acxc(t) +Bcy(t) +

g
∑

i=1

Liµ̃i(t) , xc(0) = xc0
;

u(t) = Cc1xc(t);

ν̃1(t) = Cc2,1xc(t);

...

ν̃g(t) = Cc2,gxc(t) (6)

where

µ̃i(t) = ψi (ν̃i(t)) ∀i = 1, 2, . . . , g. (7)

Note that the effect of (7) is to include the copies of the

nonlinearities (2) in the linear controller as shown in Fig. 1.

The results of [18] and [13] can be applied to solve the

problem of constructing the nonlinear controller described in
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(6), (7) for the nonlinear uncertain system (1), (2), (5). To

achieve this, the nonlinearities (7) are incorporated into the

plant description as shown in Fig. 2. Then, the inputs and

outputs of (6) are respectively combined such that

B̃c =
[

Bc Bµ̃
c

]

=
[

Bc L1 · · · Lg

]

;

C̃c =

[

Cc1

C ν̃
c

]

; ỹ(t) =

[

y(t)
µ̃(t)

]

; ũ(t) =

[

u(t)
ν̃(t)

]

;

C ν̃
c =







Cc2,1

...

Cc2,g






; µ̃(t) =







µ̃1(t)
...

µ̃g(t)






; ν̃(t) =







ν̃1(t)
...

ν̃g(t)






. (8)

The controller state equations (6) can then be rewritten as

ẋc(t) = Acxc(t) + B̃cỹ(t);

ũ(t) = C̃cxc(t). (9)

Thus, the problem of controlling the nonlinear uncertain

system (1), (2), (5) using the nonlinear controller (6), (7)

is equivalent to that of controlling the nonlinear uncertain

system (1), (2), (5), (7) using the linear controller (9).

The notion of absolute stabilizability for the nonlinear

uncertain system (1), (2), (5) is defined as follows:

Definition 2: (e.g., see [14].) The uncertain system (1),

(2), (5) is said to be absolutely stabilizable with disturbance

attenuation level γ via a stable output feedback controller

(7), (9) if there exists constants c1 > 0 and c2 > 0 such that

the following conditions hold:

1) For any initial condition [x(0), xc(0)], any

admissible uncertainty inputs ξ(·) and any

disturbance input w(·) ∈ L2[0,∞), then
[

x(·), xc(·), u(·), ξ1(·), . . . , ξf (·)
]

∈ L2[0,∞) (hence,

t∗ = ∞) and

‖x(·)‖2
2 + ‖xc(·)‖2

2 + ‖u(·)‖2
2 +

f
∑

s=1

‖ξs(·)‖2
2

≤ c1

[

‖x(0)‖2 + ‖xc(0)‖2 + ‖w(·)‖2
2 +

f
∑

s=1

d1,s

]

.

(10)

2) The following H∞ norm bound condition is satisfied:

If x(0) = 0 and xc(0) = 0, then for w(·) ∈ L2[0,∞)
and ξ(·) ∈ Ξ

J := sup
w(·)

sup
ξ(·)

‖z(·)‖2
2 − c2

∑f

s=1 d1,s

‖w(·)‖2
2

< γ2. (11)

Here, ‖q(·)‖2 denotes the L2[0,∞) norm of a function q(·).
That is, ‖q(·)‖2

2 :=
∫ ∞
0

‖q(t)‖2dt. △

In order to apply the result of [18], the nonlinearities (2)

and its copies (7) need to be characterized using IQCs. This

will be done by referring to conditions (3) which imply

[µi(t) − µ̃i(t)]
2 ≤ β2

i [νi(t) − ν̃i(t)]
2
;

[µi(t)]
2 ≤ β2

i [νi(t)]
2
;

[µ̃i(t)]
2 ≤ β2

i [ν̃i(t)]
2

(12)

for all i = 1, 2, . . . , g. Thus, the following IQCs correspond-

ing to (12) will be satisfied

∫ tk

0

(µi(t) − µ̃i(t))
2
dt ≤

∫ tk

0

β2
i (νi(t) − ν̃i(t))

2
dt+ d2,i;

∫ tk

0

(µi(t))
2
dt ≤

∫ tk

0

β2
i (νi(t))

2
dt+ d3,i;

∫ tk

0

(µ̃i(t))
2
dt ≤

∫ tk

0

β2
i (ν̃i(t))

2
dt+ d4,i (13)

for all i = 1, 2, . . . , g; and for all {tk ≥ 0}∞k=1. Note that

d2,i ≥ 0, d3,i ≥ 0 and d4,i ≥ 0.

Although the extra IQCs (13) provide more constraints,

in addition to (5), they indeed allow the description of the

uncertain system (1) to be simplified as follows:

ẋ(t) = Ax(t) +B1w(t) + B̃2ũ(t) +

f̃
∑

s=1

Ẽsξ̃s(t);

z(t) = C1x(t) + D̃12ũ(t);

ζ̃1(t) = H̃1x(t) + G̃1ũ(t);

...

ζ̃f̃ (t) = H̃f̃x(t) + G̃f̃ ũ(t);

ỹ(t) = C̃2x(t) + D̃21w(t) +

f̃
∑

s=1

F̃sξ̃s(t) (14)

where

ξ̃(t) =





ξ(t)
µ(t)
µ̃(t)



 ; ζ̃(t) =





ζ(t)
ν(t)
ν̃(t)



 ; ξ(t) =







ξ1(t)
...

ξf (t)






;

ζ(t) =







ζ1(t)
...

ζf (t)






; µ(t) =







µ1(t)
...

µg(t)






; ν(t) =







ν1(t)
...

νg(t)






;

B̃2 =
[

B2 0n×g

]

; C̃2 =

[

C2

0g×n

]

;

D̃12 =
[

D12 0q×g

]

; D̃21 =

[

D21

0g×p

]

;

Ẽ =
[

E1 E2 0n×g

]

; F̃ =

[

F1 F2 0l×g

0g×r 0g×g Ig×g

]

;

E1 =
[

E1,1 · · · E1,f

]

; E2 =
[

E2,1 · · · E2,g

]

;

F1 =
[

F1,1 · · · F1,f

]

; F2 =
[

F2,1 · · · F2,g

]

;

H̃ =





H1

H2

0g×n



 ; H1 =







H1,1

...

H1,f






; H2 =







H2,1

...

H2,g






;

G̃ =





G1 0h×g

G2 0g×g

0g×m Ig×g



 ; G1 =







G1,1

...

G1,f






; G2 =







G2,1

...

G2,g






.

(15)

Note that f̃ = f + 2g; r =
∑f

s=1 rs; r̃ = r + 2g; h =
∑f

s=1 hs; and h̃ = h+ 2g.
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It is also straightforward to combine all IQCs (5), (13)

into the form
∫ tk

0

ξ̃(t)′Qj ξ̃(t) dt ≤
∫ tk

0

ζ̃(t)′Rj ζ̃(t) dt+ dj (16)

for all j = 1, 2, . . . , f̂ . Here, f̂ = f + 3g and dj ≥ 0. The

set of all admissible uncertainty inputs ξ̃(·) for the uncertain

system (14), (16) is defined in the same way as in Definition

1 and is denoted by Ξ̃.

In order to apply the results of [18] and [13], it is necessary

to define the Lagrange multipliers λj , weighting matrices

Q̃(λ) and R̃(λ), and a constant d̃(λ) as follows

λ :=
[

λ1 · · · λ
f̂

]′ ∈ R
f̂ ; Q̃(λ) :=

f̂
∑

j=1

λjQj ≥ 0;

R̃(λ) :=

f̂
∑

j=1

λjRj ≥ 0; d̃(λ) :=

f̂
∑

j=1

λjdj ≥ 0; (17)

and also a subset

Λ̃ :=
{

λ ∈ R
f̂ : λj ≥ 0 ∀j, Q̃(λ) > 0

}

(18)

such that the IQCs (16) leads to the satisfaction of an IQC

parameterized by Lagrange multipliers as in (17). Then, for

each λ ∈ Λ̃, the quantities defined in (17) can be written as

Q̃(λ) = Q̄(λ)Q̄(λ); R̃(λ) = R̄(λ)′R̄(λ);

d̄(λ) = d̃(λ) =

f̂
∑

j=1

λjdj ≥ 0. (19)

where Q̄(λ) = Q̃(λ)
1

2 > 0 and R̄(λ) is a rectangular matrix.

However, in particular, R̄(λ) can be chosen to be a square

matrix such that R̄(λ) = R̃(λ)
1

2 > 0. Then, the IQC (16)

can be written as
∫ tk

0

ξ̃(t)′Q̃(λ)ξ̃(t) dt ≤
∫ tk

0

ζ̃(t)′R̃(λ)ζ̃(t) dt+ d̄(λ) (20)

or more compactly

∫ tk

0

‖ξ̄(t)‖2 dt ≤
∫ tk

0

‖ζ̄(t)‖2 dt+ d̄(λ) ∀k (21)

where

ξ̄(t) := Q̄(λ)ξ̃(t); ζ̄(t) := R̄(λ)ζ̃(t). (22)

Accordingly, the system (14) can be described as

ẋ(t) = Ax(t) +B1w(t) + B̃2ũ(t) + ẼQ̄(λ)−1ξ̄(t);

z(t) = C1x(t) + D̃12ũ(t);

ζ̄(t) = R̄(λ)H̃x(t) + R̄(λ)G̃ũ(t);

ỹ(t) = C̃2x(t) + D̃21w(t) + F̃ Q̄(λ)−1ξ̄(t). (23)

Thus, the desired controller will be constructed based on the

uncertain system (23), (21).

III. THE MAIN RESULTS

In this section, a method to construct a stable nonlinear

output feedback controller is presented. The resulting con-

troller not only achieves absolute stabilization with distur-

bance attenuation γ when applied to the uncertain system

(23), (21), but also the controller itself must be stable. The

main idea used to solve this problem involves introducing an

additional uncertainty into the uncertain system (23), (21).

This approach will lead to a new artificial uncertain system

that is obtained by first solving a state feedback problem for

the uncertain system (23), (21). To obtain a state feedback

controller using the result of [18], the uncertain system (23),

(21) needs to be converted into the following form

ẋ(t) = Ax(t) + B̃1w̃(t) + B̃2ũ(t);

z̃(t) = C̃1x(t) + D̄12ũ(t);

ỹ(t) = C̃2x(t) + D̄21w̃(t) (24)

where

w̃(t) =

[

γw(t)√
κξ̄(t)

]

; z̃(t) =

[

z(t)√
κζ̄(t)

]

;

B̃1(t) =
[

γ−1B1
√
κ
−1
ẼQ̄(λ)−1

]

;

C̃1 =

[

C1√
κR̄(λ)H̃

]

; D̄12 =

[

D̃12√
κR̄(λ)G̃

]

;

D̄21 =
[

γ−1D̃21
√
κ
−1
F̃ Q̄(λ)−1

]

. (25)

Note that γ > 0 is the desired disturbance attenuation level

and κ > 0 is a Lagrange multiplier parameter. The latter is

introduced to convert the constrained control problem into

an unconstrained one. We then construct a state feedback

controller for (24) to obtain an absolutely stable closed loop

system. Thus, the control input will be of the form

ũ(t) = Kx(t) (26)

where

K =

[

Ku

Kν̃

]

= −J−1
(

B̃′
2X + D̄′

12C̃1

)

(27)

with J = D̄′
12D̄12 > 0 and X > 0 is the stabilizing solution

of the following Riccati equation (see [19])
(

A− B̃2J
−1D̄′

12C̃1

)′
X +X

(

A− B̃2J
−1D̄′

12C̃1

)

+X
(

B̃1B̃
′
1 − B̃2J

−1B̃′
2

)

X

+ C̃′
1

(

I − D̄12J
−1D̄′

12

)

C̃1 = 0. (28)

Suppose that the state feedback gain matrix K in (27) has

been found. Then it can be used to define a new artificial

uncertain system as follows

ẋ(t) = Āx(t) + B1w(t) + B̄2ũ(t) + Ē1ξ̄1(t) + Ē2ξ̄2(t);

z(t) = C̄1x(t) +M1ξ̄2(t) + Ď12ũ(t);

ζ̄1(t) = H̄1x(t) +M2ξ̄2(t) + Ḡ1ũ(t);

ζ̄2(t) = H̄2x(t) + Ḡ2ũ(t);

ỹ(t) = C̃2x(t) + D̃21w(t) + F̄1ξ̄1(t) + F̄2ξ̄2(t) (29)
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where

Ā = A+ 1
2B2Ku; B̄2 =

[

B̄21 B̄22

]

; B̄21 = 1
2B2;

B̄22 = 0n×g; Ē1 = ẼQ̄(λ)−1; Ē2 = B2;

C̄1 = C1 + 1
2D12Ku; M1 = D12; M2 = R̄(λ)Ĝ1;

Ď12 =
[

D̄12,1 D̄12,2

]

; D̄12,1 = 1
2D12; D̄12,2 = 0q×g;

H̄1 = R̄(λ)
(

H̃ + 1
2 Ĝ1Ku

)

; H̄2 = 1
2Ku;

Ḡ1 =
[

Ḡ11 Ḡ12

]

; Ḡ11 = 1
2 R̄(λ)Ĝ1; Ḡ12 = R̄(λ)Ĝ2;

Ḡ2 =
[

Ḡ21 Ḡ22

]

; Ḡ21 = − 1
2Im×m; Ḡ22 = 0m×g;

F̄1 = F̃ Q̄(λ)−1; F̄2 = 0(l+g)×m;

Ĝ1 =





G1

G2

0g×m



 ; Ĝ2 =





0h×g

0g×g

Ig×g



 . (30)

Also, the IQC (21) is extended to include the additional

uncertainty input ξ̄2, that is

∫ tk

0

‖ξ̄c(t)‖2 dt ≤
∫ tk

0

‖ζ̄c(t)‖2 dt+ d̄c(λ) ∀k ∀c = 1, 2.

(31)

Note that ξ̄1(t) = ξ̄(t) and ζ̄1(t) = ζ̄(t). Then, two special

cases of the uncertainty inputs ξ̄2 are considered.

Case I: ξ̄2(t) = ζ̄2(t) = 1
2Kux(t) − 1

2u(t). It is obvious

that this uncertainty input satisfies the IQC (31). Also, with

this value of ξ̄2(t), the system (29) will become

ẋ(t) = (A+B2Ku)x(t) +B1w(t) + Ē1ξ̄1(t);

z(t) = (C1 +D12Ku)x(t);

ζ̄1(t) = R̄(λ)
(

H̃ + Ĝ1Ku

)

x(t) + R̄(λ)Ĝ2ν̃(t);

ỹ(t) = C̃2x(t) + D̃21w(t) + F̄1ξ̄1(t) (32)

where the IQC (21) is satisfied. Due to the transformation in

(22), the system (32) can be decomposed into

ẋ(t) = (A+B2Ku)x(t) +B1w(t) + E1ξ(t) + E2µ(t);

z(t) = (C1 +D12Ku) x(t);

ζ(t) = (H1 +G1Ku)x(t);

ν(t) = (H2 +G2Ku)x(t);

y(t) = C2x(t) +D21w(t) + F1ξ(t) + F2µ(t);

ν̃(t) = ν̃(t); µ̃(t) = µ̃(t). (33)

and it satisfies the IQC (5). In fact, the uncertain system

(33), (5) is a closed loop uncertain system obtained when

the state feedback controller (26) is applied to the uncertain

system (23), (21). Thus, the uncertain system (33), (5) will

be absolutely stable with disturbance attenuation γ. It should

be noted that the system (33) is not affected by the control

input u(t), which is the output of the controller (6).

Case II: ξ̄2(t) = −ζ̄2(t) = − 1
2Kux(t) + 1

2u(t). It is

obvious that this uncertainty input satisfies the IQC (31).

Using this value of ξ̄2(t), the system (29) will become

ẋ(t) = Ax(t) +B1w(t) +B2u(t) + Ē1ξ̄1(t);

z(t) = C1x(t) +D12u(t);

ζ̄1(t) = R̄(λ)
(

H̃x(t) + Ĝ1u(t)
)

+ R̄(λ)Ĝ2ν̃(t);

ỹ(t) = C̃2x(t) + D̃21w(t) + F̄1ξ̄1(t) (34)

and the IQC (21) is satisfied. Referring to the transformation

in (22), the system (34) can be decomposed into

ẋ(t) = Ax(t) +B1w(t) +B2u(t) + E1ξ(t) + E2µ(t);

z(t) = C1x(t) +D12u(t);

ζ(t) = H1x(t) +G1u(t);

ν(t) = H2x(t) +G2u(t);

y(t) = C2x(t) +D21w(t) + F1ξ(t) + F2µ(t);

ν̃(t) = ν̃(t); µ̃(t) = µ̃(t). (35)

It is straightforward to verify that the system (29) reduces to

the original system (1).

(a) Case I (b) Case II

Fig. 3. Block diagrams corresponding to Case I and Case II.

In order to construct the desired controller (6), the results

of [18] are applied to the uncertain system (29), (31). If that

system is absolutely stabilizable with disturbance attenuation

γ via an output feedback controller (6), then it follows from

Case I that it is equivalent to the open loop situation (see Fig.

3(a)). Here, the block Σcl refers to the closed loop uncertain

system (33), (5) and the block C refers to the output

feedback controller (9). Since the absolute stabilizability with

disturbance attenuation γ requires the absolute stability of the

entire closed loop system, the output feedback controller (6)

must be absolutely stable as well.

Also, it follows from Case II that when the controller (6)

is applied to the uncertain system (29), (31), the situation is

as shown in Fig. 3(b). Here, the block Σ refers to the original

uncertain system (1), (5) and the block C refers to the output

feedback controller (6). Therefore, we can conclude that the

output feedback controller (6) solves the original problem of

absolute stabilizability with disturbance attenuation γ.

Combining the conclusions from both cases, we infer that

the output feedback controller (6) obtained by applying the

results of [18] to the uncertain system (29), (31) is indeed

an absolutely stable output feedback controller which solves
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the problem of absolute stabilizability with disturbance atte-

nuation γ for the original nonlinear uncertain system (1), (2),

(5). This fact will then lead to our main result involving the

solutions of a pair of algebraic Riccati equations.

Then, we rewrite the artificial uncertain system (29) as

ẋ(t) = Āx(t) + B̂1w̄(t) + B̂2ũ(t);

z̄(t) = Ĉ1x(t) + D̂11w̄(t) + D̂12ũ(t);

ỹ(t) = C̃2x(t) + D̂21w̄(t) (36)

where

w̄(t) =





γw(t)√
τ1ξ̄1(t)√
τ2ξ̄2(t)



 ; z̄(t) =





z(t)√
τ1ζ̄1(t)√
τ2ζ̄2(t)



 ;

B̂1 =
[

γ−1B1
√
τ1

−1
Ē1

√
τ2

−1
Ē2

]

;

Ĉ1 =





C̄1√
τ1H̄1√
τ2H̄2



 ; D̂11 =







0q×p 0q×r̃
1√
τ2

M1

0h̃×p 0h̃×r̃

√

τ1

τ2

M2

0m×p 0m×r̃ 0m×m






;

D̂12 =





D̄12,1 D̄12,2√
τ1Ḡ11

√
τ1Ḡ12√

τ2Ḡ21
√
τ2Ḡ22



 ; B̂2 =
[

B̄21 B̄22

]

;

D̂21 =
[

γ−1D̃21
√
τ1

−1
F̄1

√
τ2

−1
F̄2

]

. (37)

Here τ1 > 0 and τ2 > 0 are Lagrange multiplier parameters.

Due to the D̂11 term in (36), the standard H∞ control theory

cannot be directly applied. Thus, it is necessary to apply a

loop shifting transformation such that the D̂11 term does not

appear explicitly in the formulation (e.g., Section 17.2 [20]).

First, we define

Φ := I − D̂′
11D̂11 > 0; Φ̄ := I − D̂11D̂

′
11 > 0. (38)

Then, the state equations (36) can be rewritten as

ẋ(t) = Ăx(t) + B̆1ŵ(t) + B̆2ũ(t);

ẑ(t) = C̆1x(t) + D̆12ũ(t);

ỹ(t) = C̆2x(t) + D̆21ŵ(t) + D̆22ũ(t) (39)

where

ŵ = Φ
1

2 w̄ − Φ− 1

2 D̂′
11

(

Ĉ1x+ D̂12ũ
)

;

ẑ = Φ̄− 1

2

(

Ĉ1x+ D̂12ũ
)

; Ă = Ā+ B̂1D̂
′
11Φ̄

−1Ĉ1;

B̆1 = B̂1Φ
− 1

2 ; B̆2 = B̂2 + B̂1D̂
′
11Φ̄

−1D̂12;

C̆1 = Φ̄− 1

2 Ĉ1; C̆2 = C̃2 + D̂21D̂
′
11Φ̄

−1Ĉ1;

D̆12 = Φ̄− 1

2 D̂12; D̆21 = D̂21Φ
− 1

2 ; D̆22 = D̂21D̂
′
11Φ̄

−1D̂12;

J̆1 = D̆′
12D̆12; J̆2 = D̆21D̆

′
21.

The D̆22 term in (39) will also be eliminated by first defining

ȳ(t) := ỹ(t) − D̆22ũ(t). (40)

Hence, the state equations (39) are rewritten as

ẋ(t) = Ăx(t) + B̆1ŵ(t) + B̆2ũ(t);

ẑ(t) = C̆1x(t) + D̆12ũ(t);

ȳ(t) = C̆2x(t) + D̆21ŵ(t). (41)

Then, the output feedback controller for (41) is of the form

ẋc(t) = Ăcxc(t) + B̃cȳ(t);

ũ(t) = C̃cxc(t). (42)

and should lead to the H∞ norm bound condition

Ĵ := sup
ŵ(·)∈L2[0,∞),x(0)=0,xc(0)=0

‖ẑ(·)‖2
2

‖ŵ(·)‖2
2

< 1. (43)

The coefficient matrices of (42) involve the solutions of the

Riccati equations, which are defined as follows: Let τ1 > 0
and τ2 > 0 be given constants. Also, suppose that J̆1 > 0
and J̆2 > 0. Then, X̆ > 0 and Y̆ > 0 are the stabilizing

solutions of the following Riccati equations (see [19])
(

Ă− B̆2J̆
−1
1 D̆′

12C̆1

)′
X̆ + X̆

(

Ă− B̆2J̆
−1
1 D̆′

12C̆1

)

+ X̆
(

B̆1B̆
′
1 − B̆2J̆

−1
1 B̆′

2

)

X̆

+ C̆′
1

(

I − D̆12J̆
−1
1 D̆′

12

)

C̆1 = 0; (44)
(

Ă− B̆1D̆
′
21J̆

−1
2 C̆2

)

Y̆ + Y̆
(

Ă− B̆1D̆
′
21J̆

−1
2 C̆2

)′

+ Y̆
(

C̆′
1C̆1 − C̆′

2J̆
−1
2 C̆2

)

Y̆

+ B̆1

(

I − D̆′
21J̆

−1
2 D̆21

)

B̆′
1 = 0 (45)

such that the spectral radius of the product X̆Y̆ satisfies

ρ(X̆Y̆ ) < 1. Thus, the desired controller matrices are given

in the following theorem.

Theorem 1: Suppose that λ ∈ Λ̃, J > 0 and there exists

a constant κ > 0 such that the Riccati equation (28) has a

stabilizing solution X > 0 and hence

K = −J−1
(

B̃′
2X + D̄′

12C̃1

)

.

Also, suppose that D̂11D̂
′
11 < I , J̆1 > 0, J̆2 > 0 and there

exist constants τ1 > 0 and τ2 > 0 such that both Riccati

equations (44) and (45) have stabilizing solutions X̆ > 0 and

Y̆ > 0, and the spectral radius of the product X̆Y̆ satisfies

ρ(X̆Y̆ ) < 1. Then the nonlinear uncertain system (1), (2), (5)

is absolutely stabilizable with disturbance attenuation γ via

a stable nonlinear output feedback controller (6). Moreover,

the controller matrices are given as follows

Ac = Ăc − B̃cD̆22C̃c;

Ăc = Ă+ B̆2C̃c − B̃cC̆2 +
(

B̆1 − B̃cD̆21

)

B̆′
1X̆ ;

B̃c =
[

Bc Bµ̃
c

]

=
(

I − Y̆ X̆
)−1 (

Y̆ C̆′
2 + B̆1D̆

′
21

)

J̆−1
2 ;

C̃c =

[

Cc1

C ν̃
c

]

= −J̆−1
1

(

B̆′
2X̆ + D̆′

12C̆1

)

. (46)

Proof: Following a similar argument as in the proof

of Theorem 4.1 in [18], the nonlinear uncertain system (1),

(2), (5) is absolutely stabilizable with disturbance attenuation

level γ via a controller of the form (6) if and only if there

exist constants τ1 > 0 and τ2 > 0 such that the controller

(42) solves the H∞ control problem defined by (41) and

(43). Moreover, it follows from the standard results of H∞

control theory (e.g., see [20]) that the H∞ control problem
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defined by (41) and (43) has a solution if and only if the

Riccati equations (44) and (45) have stabilizing solutions

X̆ ≥ 0 and Y̆ ≥ 0, respectively, such that the spectral radius

of the product X̆Y̆ satisfies ρ(X̆Y̆ ) < 1.

If all the conditions of the theorem hold, then the controller

(42), (46) is absolutely stabilizing with disturbance attenua-

tion level γ for the uncertain system (29), (31). Then, from

the arguments in the two special cases above, it follows that

the controller (42), (46) absolutely stabilizes the nonlinear

uncertain system (1), (2), (5) with disturbance attenuation

level γ and it is indeed a stable controller.

Remark 1: In the case in which the dimension of the

parameter vector λ is large, an optimization method may

be required to choose the parameters λ, κ, τ1 and τ2.

IV. CONCLUSIONS

A method to design a stable nonlinear output feedback

controller has been presented in this paper. This method

solves the nonlinear robust H∞ control problem for a

class of nonlinear uncertain systems described by Integral

Quadratic Constraints (IQCs) and Global Lipschitz Condition

(GLC). The main ideas are to include a copy of the plant

nonlinearity in the controller and then to characterize the

nonlinearity and its copy by extra IQCs derived from the

GLC. This approach enables the nonlinear controller to

exploit the nonlinearity in the system being controlled.

The desired controller is synthesized based on existing

results of robust H∞ control theory applied to an artificial

uncertain system. This system is constructed by adding an

artificial uncertainty, defined using a state feedback gain

matrix, to the original nonlinear uncertain system. Then, the

controller is constructed using the stabilizing solutions of

H∞-type algebraic Riccati equations and solves the absolute

stabilization problem with a disturbance attenuation level γ.
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