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ABSTRACT Pedestrian head detection plays an important role in identifying and localizing individuals in

real world visual data. Head detection is a nontrivial problem due to considerable variance in camera view-

points, scales, human poses, and appearances in the scene. Thanks to the translation invariance property

of convolutional neural networks (CNNs) which enables large capacity CNNs to handle the problem of

appearance and pose variations in the scene. However, the problem of scale invariance is still an open issue.

To address this problem, this paper presents a two-stage head detection framework that utilizes fully convo-

lutional network (FCN) to generate scale-aware proposals followed by CNN that classifies each proposal

into two classes, i.e. head and background. Experiments results show that using scale-aware proposals

obtained by FCN, the object recall rate and mean average precision (mAP) are improved. Additionaly,

we demonstrate that our framework achieved state-of-the-art results on four challenging benchmark datasets,

i.e. HollywoodHeads, Casablanca, SHOCK, and WIDERFACE.

INDEX TERMS Convolutional neural networks, non-maximal suppression, head detection, crowd counting,

motion analysis.

I. INTRODUCTION

For many vision based applications, pedestrian and human

face detection is a pre-processing step. These applications

include person identification [53], [56], action recogni-

tion [14], [37], tracking [40], autonomous driving, behaviors

understanding [15], [16]. While these algorithms have gained

maturity in recent years [28], [46], the problem of detecting

pedestrians in natural images and videos is still challenging.

Face detector can not extract facial feature for a person whose

face is not visible. On the other hand, person detection is

challenging job. This is due to reason that large portion of

human body is not visible due to occlusion and clutter in the

scene. This is due to reason that face and pedestrian detec-

tion methods are not applicable in natural scenes. Therefore,

to find people in unconstrained images and videos, head is an

indispensable choice.

The goal of head detector is to precisely detect and

localize human heads in naturalistic conditions. Precise
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approving it for publication was Shadi Alawneh .

head detection is an important element and used as a

pre-processing step in many video surveillance applications,

for example, tracking [3], [12], person authentication [25]

and density estimation [36]. During the recent years, few

strides have been made towards head detection in crowds [7],

[21], [39] in complex scenes, however, head detection is still

a challenging task. Significant variations in poses, scales,

and appearances of human heads, make the head detection

problem even more challenging.

A reliable head detection system should be invariant to

scales, appearances and poses. Figure 1, highlights these

problems, where three human heads are marked in red, green

and yellow colors. From the Figure, it is obvious, that heads

have different scales (sizes), poses and appearances. Con-

volutional neural networks (CNN) are inherently transna-

tional invariant. Due to this property, large capacity CNN

can handle variation in pose and appearance. However, CNNs

are not inherently scale invariant and still have room for

improvement.

Generally, most of the existing methods deal the head

detection as a special case of generic detection problem.
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FIGURE 1. Illustrates scale, pose and appearance variations of human
heads highlighted in red, green and yellow colors. Perspective distortions
cause drastic changes in scale of human head due to due to which the
size of head (in red) appears large compared to heads with green and
yellow bounding boxes.

The detection pipeline of these detectors consist of two

stages, (1) object proposal generation, (2) classification of

object proposals. Therefore, for two-stage object detectors,

object proposal generation is an important pre-processing

step. Generally, in contrast to exhaustive search for object in

image, object proposals guide the search for objects. Gen-

erating object proposals is the preferred choice for object

detection over sliding windows approaches due to the fol-

lowing reasons: (1) save computation time by passing small

number of proposal to the detector, and (2) improves the

precision and recall rate. Acknowledging the importance of

object proposals in object detection tasks, several methods

for generating object proposls have been reported in literature

during the recent years.

Recent object proposal generators exploit saliency, gradi-

ent and edge information [5], [59] to hypothesize the location

of objects in images. Later on, DeepBox [20] move a step

forward and refined the proposal generated by EdgeBox [59].

DeepProposal [9] utilize initial and final layers of the net-

work in inverse cascade fashion to generate object proposals.

Multi-Box [23] employs regression to extract object regions.

Usually, detector face challenges to detect head in nat-

ural scenes, since human heads have significant varia-

tions in object scales, appearances, and poses as mentioned

before. Therefore, current existing two-stagemethods usually

achieve low precision and recall rates when tested in natural

scenes. To address the problem of scale, we propose a novel

strategy to detect human heads in complex scenes.

Precisely, we propose head detector to detect heads with

multiple scales in various complex scenes and follows the

following sequential pipeline:

1) The first part is multi-scale object proposal genera-

tion network, that captures the distribution of scales

in the input image by generating scale-specific object

proposals. Concisely, a binary classifier is trained by

employing [24] using patches belonging to human

heads. The input to network is arbitrary size image and

output is a dense heat map. Dense heat map represents

the confidence whether a specific region contains a

human head or background for every pixel. In order

to generate multi-scale object proposals, we re-size the

input image into multi-scales (image pyramid), pass

image pyramid to the network and obtain the mul-

tiple heat maps corresponding to levels of pyramid.

Non-maximal suppression technique is then employed

to reduce the redundant and obtain refine proposals.

2) The second stage is the classification, where each pro-

posal is classified into two classes (head/background).

We use different state-of-the-art network architectures,

like AlexNet [19], VGGS [4], VGG-verydeep-16 [38]

and ZF [54]for classification.

The contribution of this paper lies in the first part of the

proposed framework. Compared with the existing methods,

our framework has the following contributions:

1) We propose a novel framework to handle the scale

problem by generating scale-aware proposals using

Fully Covolutional Network that generate pixel-wise

head scores and square shape bounding boxes of the

head instances through various scales and location of

the input image

2) With the adoption of anchor-free scale-specific region

proposal network, our framework has significantly

reduced the time cost as compared to feed-forwarding

single object proposal through the CNN.

3) Compared to dense networks, e.g. GoogleNet, we train

a shallow network for head/background classification.

This model can be adapted to dense prediction of

human heads in images with arbitrary sizes.

4) The proposed framework shows superior performance

using challenging datasets.

Comparison and Difference: The proposed proposal gen-

eration network is superficially similar to typical Region pro-

posal network (RPN) adopted by FRCNN. However, it differs

in many aspects, for example, FRCNN uses a large recep-

tive field to detect generic objects in images. Usually, these

objects are large and occupy large portion of the image. These

objects can easily be detected by FRCNN, however, FRCNN

faces difficulties in detecting small objects, where the size

of objects is less than 16 pixels. This is due to the reason,

that ROI pooling layers of FRCNN use feature maps from

highest convolutional layer. These feature maps have reduced

resolutions and lost most of the important information related

to small objects. Therefore, FRCNN can not precisely clas-

sify and predict the location of small objects. Another flip

side of FRCNN is that it uses anchor boxes with predefined

sizes and scales. To achieve high precision and recall, anchor

boxes should be of different sizes and scales to cover size and

shape variations of generic objects in image. As in crowded
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scenes, the size and shape of heads change significantly as

compared to generic large objects, it requires much more

complex design of anchor boxes to capture wide range of

scales. Therefore, anchor boxes based methods are inefficient

in such cases. Our proposed framework is different from

FRCNN in followingways. (1) Themost important difference

is that the proposed RPN is anchor-free and class specific

proposal generator in contrast to anchor based generic pro-

posal generator.(2) We trained a head descriptor that can

detect head in extreme scales by incorporating features from

multi-scales using image pyramid.

The rest of the paper organized as follows. In Section II,

we discuss related works. Section III discusses proposed

methodology. Experiments results on different data sets are

reported in Section IV. Conclusion is presented in Section V.

II. RELATED WORKS

Since our framework has two sequential parts, i.e,. object

proposal generation and head detection, therefore we discuss

related work in separate subsections.

A. GENERATING OBJECT PROPOSALS

We categorize object proposal methods into two categories:

1. Segment based methods and 2. Window scoring methods.

In addition to these methods, we also discuss CNN based

approaches.

The goal of segment based methods is to generate mul-

tiple segments from the image that may contain objects.

These methods typically start with initial over-segmentation

followed by different merging strategies to cluster similar

segments based on color, texture, and shape into object

proposals. For example, Selective Search (SS) [41] gen-

erates object proposals by greedily merging super-pixels

without learning. Randomized Prim [26] utilizes connectiv-

ity graph to learn randomized merging strategy. Graph cut

is used in [29] to merge super-pixels to generate propos-

als. Multiscale Combinatorial Grouping (MCC) [2] expolits

mutli-scale hierarchical segmentation to obtain object pro-

posals. Reference [18] measures geodesic distance trans-

form between multiple segments, where distance transform

represents object proposals. The above mentioned methods

achieve high recall rates, however, these methods are compu-

tationally expensive since proposals are obtained by multiple

segmentation in multiple scales and color spaces.

On the other hand window scoring methods show the

likelihood of a window to contain an object of interest

and therefore are computationally efficient as compared to

segmentation based methods. Generally, these methods first

generate candidate object proposals (bounding boxes) in mul-

tiple locations and scales. Then high confidence boxes are

selected as object proposals. Objectness [1] selects the high

rank proposal on the basis of low-level cues, such as, edge,

size, location and color. BING [5] trained a linear Support

Vector Machine and applied it in a sliding window fashion on

gradient map. Similarly, Edge Boxes [59] also follows sliding

window fashion and associates score to the windows base on

edge map. In contrast to segment based methods, window

scoring approaches are fast. However, these methods, due

to sampling of proposal at discrete levels, results in poor

detection accuracy.

Due to the popularity of deep learning models, CNNs

are also explored for object proposal generation task. Over-

feat [34] trained a deep model that operates in sliding win-

dows fashion and simultaneously predict bounding box and

score for each object. MultiBox [8] also trained a CNN that

generates fixed number of proposals without adopting sliding

window strategy. DeepBox [20] on the other hand, does

not output the proposals by itself but re-ranks the proposals

generated by other methods.

Our proposed object proposal approach falls into the cat-

egory of Window scoring method. However, our methods

adopts different scheme by exploiting fully convolutional net-

work that outputs heat maps. Our method is similar to Region

Proposal Network (RPN) [32], which is employed in [32] for

object proposal generation. RPN generates fixed number of

proposals based on pre-defined anchor boxes. Compare to

RPN, ourmethod neither generates fixed number of proposals

nor based on pre-defined anchor boxes. Unlike other methods

Overfeat [34], MultiBox [8], and RPN [32], our method does

not regress the bounding boxes. Instead we adopt a mapping

scheme, where each pixel in heatmap corresponds to the a

window in the input image. The integration of localization

information with scale-specific strategy achieves better per-

formance and achieves high recall rates than bounding box

regression methods.

B. HEAD DETECTION

Most of related works deals head detection problem as special

case of object detection. Traditional head detection methods

learn hand-craft features by a non-linear classifier. For exam-

ple, the classical method proposed by Viola and Jones [43]

extracts Haar-like features from the image and employed

cascade booting classier for classification. In [33], authors

move a step forward and refine the results of Viola and

Jones by exploiting spatial and temporal information using

Conditional Random Field (CRF). Deformable part model

(DPM) [47] utilized Histogram of oriented gradients (HOG)

features and was widely adopted model in object detection

tasks. However, these traditional methods receive perfor-

mance setback and cause high computational cost in real

world scenes.

Convolutional Neural Networks achieve enjoyed tremen-

dous success in classification, and segmentation task. Fol-

lowing the success of CNN, deep neural networks becomes

the first choice for object detection task. The most efficient

step in this direction is taken by Region based convolu-

tional neural network (RCNN) [10]. RCNN is a two-stage

framework, where the first step involves generation of object

proposal (around 2000) by employing Selective Search (SS)

method. The proposals generated by SS method are then

feed to feed-forward network. The network then extract hier-

archical features from the (5th layer of AlexNet). A linear
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SVM classifier is then learned using the hierarchical features

extracted from the last convolutional layer. Although R-CNN

achieved state-of-the-art results, however, it also suffers from

computational complexity. A more refined version, Faster

R-CNN is proposed that replaced traditional Selective Search

strategy by RPN. You only look once (YOLO) [30] generates

bounding boxes using regression and classify each bounding

box by assigning class scores to the bounding boxes. YOLO

beast Faster-RCNN in terms of inference speed on most

of existing object detection datasets, however, at the cost

of accuracy. Single shot detector (SSD) [23] generate fixed

number of bounding boxes by utilizing fully convolutional

network.

Although the above existing models achieve considerable

performance in classifying multiple objects in image, how-

ever, they face challenges in detecting small objects. It is

due to the fact that most models utilize features from the

last convolutional layer for object detection. However, last

convolutional layers contain inadequate information regard-

ing small objects. Since, in head detection problem, where

the size of target (head) is usually small (upto 10-20 pixels),

therefore, current existing methods in the current form are not

applicable for detecting small objects.

III. PROPOSED METHODOLOGY

A. NETWORK DESIGN FOR OBJECT PROPOSALS

In this section, we discuss the proposed architecture for

generating scale-aware proposals. Fully Convolutional Net-

works (FCNs) become dominant in image segmentation tasks

that take an arbitrary size input and predict dense output

of the same size. The output of FCN may also be used in

dense prediction tasks (e.g., image restoration, depth esti-

mation and semantic segmentation). Our multi-scale object

proposals generation framework is based on FCNwhich takes

whole image as input and produces a high level semantic

heat map. All pixels in the output heat map represent to what

extent different regions in the input image contain human

heads. In short, we train a binary classifier (head/background)

using patch wise training strategy with annotated heads.

The framework slides over the image with a network stride

and feed-forward each sampled window to a binary classi-

fier. The output is heat map, where each pixel represents

the confidence value of one of the window (corresponds

to patch) in the input image as shown in Figure 3. Gener-

ally, fully convolutional networks are more efficient com-

pare to existing sliding window methods as they share the

computation among overlapping windows. Moreover, FCNs

are translation invariant and take arbitrary size image as

input.

For input image, the size of image patch (window size)

corresponds to pixel in the heat map is called the Scale (recep-

tive field size) of the network. Several parameters affect the

scale of the network, for example, depth of the network, sizes

of convolution and pooling layers and stride settings. Lets

assume Ri represents the receptive field of network layer i,

where i = {1, 2 . . . , n} and n represents the total number of

layers in the network. Then the scale of the network is R1
and we can compute the receptive field of any layer i of the

network using the recursive formulation 2.

Ri−1 = ri(Ri − 1) + ki (1)

where ri represents the convolution or pooling stride and ki
shows the size of kernel of the ith convolution/pooling layer.

Ri and Ri−1 represents the receptive field of i− 1th and ith

layer respectively. To precisely map any pixel in the heat map

to the corresponding window region in an image, we need to

compute receptive field (scale) and stride (or network stride),

Ns. One inherent issue with FCN is that Ns is computed by

the network itself and is equal to the product of strides of all

network layers.

With the known receptive field size R1 and network stride

Ns, we can compute window region in the input image which

corresponds to the pixel in the heat map. Let (xo, yo) repre-

sents a pixel in the heat map. We can compute its correspond-

ing window W = {xmin, xmax , ymin, ymax} in the input image

as follows, xmin = xoNs, xmax = xmin + R1, ymin = yoNs,

ymax = ymin + R1.

We train the network from scratch and the details of the

proposed network architecture is shown in the Table 1. Our

architecture follows the geometry of the AlexNet [19] for first

five convolutional layers. In our design, we convert the 6th

of AlexNet to full convolution layer with the kernel size of

6×6. The last 1×1 convolutional layers follows Network in

Network (NN) [22]. Each convolutional layer of the network

is followed by a ReLU layer. We use softmax layer on the top

of the network that predicts the confidence score within the

rage of 0 and 1 by optimizing cross entropy loss 2.

L = tg log(pk ) + (1 − tg) log(1 − pk ) (2)

where tg represents k
th ground truth value and pk denotes k

th

prediction value.

For training, in contrast to feeding whole image, we adopt

patch wise training strategy. For generating the training data,

we crop positive patches with annotated heads and re-size

them to the input size of the network (224 in our case).

We also crop several patches around the human heads with

Intersection overUnion (IoU)≥ 0.5 and are treated as positive

samples. This step is performed to increase the amount of

positive patches and to balance the data (number of positive

and negative patches). For the negative samples, we sparsely

sampled patches from the background with IoU < 0.5. IoU is

computed as the intersection of a candidate box and ground

truth box divided by area of their union.

For all layers of the network, we use zero-mean Gaus-

sian distribution to initialize the weights. We keep standard

deviation to 0.01 and the biases with 0. We adopt stochastic

gradient descent (SGD) during the training process and learn-

ing rate to 0.01. We reduced the learning rate 10 after every

40 epochs. We set the batch size to 256.
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FIGURE 2. Pipeline of framework for generating scale-specific proposals.

TABLE 1. Fully convolutional network based scale-aware proposal architecture.

B. MULTISCALE OBJECT PROPOSALS

In this section, we discuss our strategy of generating mul-

tiscale proposals. For fully convolution network discussed

above, pixels in the heatmap cover windows of fixed size

R1 in an image. Therefore, FCN can only detect heads with

size R1 in the original image. However, the size of heads

varies significantly due to perspective distortions. Therefore,

to generate object proposals that captures different sizes of

the human heads, we re-size the original input into multiple

sizes and generate an image pyramid.

After generating image pyramid, we then feed each

re-sized image of the pyramid to the network and predict the

corresponding heatmap. The heatmaps generated by different

layers of the pyramid will have different receptive fields.

Figure 4 shows the input original image which is re-sized to

different sizes, i.e. 28× 28, 56× 56 and 112× 112 and then

feed to the network one by one. We predict the corresponding

heatmaps as shown in the Figure 4. From the Figure, we infer

that heatmap corresponding to the smaller scale (28 × 28),

the network gives higher response on smaller heads while

FIGURE 3. Illustration of the effect of receptive field. Two pixels red and
blue heat map show the classification confidence values of the red and
blue windows R1 and will not be affected by each other. Ns is the stride
of the network.

low response on bigger heads. In the same way, the network

characterizes bigger heads in large scale, i.e. 112×112. With

this motivation, we propose multiscale strategy to generate

scale-aware proposals that captures different sizes of heads

in the image. The proposed pipeline for generating multiscale

proposals is shown in Figure 2.

Acknowledging the effectiveness of multi-scale strategy,

we now find the set of scales required to precisely detect all
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FIGURE 4. Depiction of original image (top left), heatmap of scale 28 × 28 (top right), heatmap of scale 56 × 56 (bottom left) and heatmap of scale
112 × 112 (bottom right). All heatmaps are re-sized to original image size. Pixels in the heatmap represent the score of corresponding square window
contain human head.

human heads in the given image. Generally, large set of scales

results in large number of proposals concentrated around the

regions containing head. However, this setting produces large

number of false bounding boxes (not likely to contain head)

which may lower the recall. On the other hand, small set of

scales usually missed the objects in the image and results in

lower precision. This issue rises a trade off in selecting the

parameter for multiscale settings.

We use the values of the scale, ranges from a minimum

bounding box size of 28 × 28 (784 pixels area) to the full

resolution of an image. For the head detection, we keep the

aspect ratios as ℜ ∈ [ 2
3
, 3
2
] for all bounding boxes. The exact

values of the scale S can computed as follows,

S =
√
784(

√

1

α
)r (3)

where r is the index and takes value from range 0 to

[log( I√
784

)/ log(

√

1
α
)], where I is the image size and we

define α as the step size of the scale and representing

IoU for neighboring boxes [59]. In all our experiments,

we fix the value of α to 0.65 as it is ideal for most of

cases [59]. After obtaining multiscale proposals using differ-

ent heatmaps, we then remove bounding boxes with score

lower than 0.3. This step will significantly minimize the

number of proposals. In the next step, we sort all the remain-

ing proposal in descending order and apply non-maximal

suppression (NMS). In all our experiments, we fixed the

threshold value to 0.8.

C. HEAD DETECTION

After obtaining multiscale proposals by using the above men-

tioned multiscale strategy, we then classify each proposal

into two classes, i.e. head and background. Our head detec-

tion framework follows classical R-CNN [10] approach and

instead of selective search [42], we use proposals generated

by our multiscale strategy. Before feeding the proposal to

a network, for each proposal, we process each proposal in

following way. 1) Extend the bounding box by a small scalar

value. 2) Crop patch corresponding to each proposal from

image. 3) Re-size image patch to make it fit to the input layer

of the CNN. For the classification, we use different architec-

tures, AlexNet [19], VGGS [4], VGG-verydeep-16 [38], and

ZF [54].

IV. EXPERIMENT RESULTS

In this section, we evaluate the performance of pro-

posed framework using four publicly available datasets, i.e.

SHOCK [6], WIDERFACE [51], HollywoodHeads [45] and

Casablanca [33].

SHOCK dataset is proposed by Conigliaro et al. [6]. The

dataset captures 100,000 spectators from all over the world to

watch an ice hockey match held in Trento, Italy. The datasets

contains 75 video sequences captured from five different
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FIGURE 5. Comparison of datasets in terms of head scale ratios.

cameras and covers four ice hockey matches on different

days. Two different types of cameras were used to record

the video sequences. To capture panoramic and ice rink view,

full HD camera with resolution of 1920 × 1080, focal length

4 mm and with frame rate of 30 fps is used. To cover different

locations of spectators crowd, three cameras with resolution

of 1280× 1024, focal length 12mm, with frame rate of 30 fps

were mounted at different locations of the stadium. The video

sequences are annotated in different ways to evaluate differ-

ent crowd analysis methods, for example, face detection, pose

estimation, action recognition, and posture detection.

WIDERFACE dataset is proposed byYang et al. [51]. This

dataset is used to evaluate face detectionmethods. The dataset

is composed of 32,203 images and 300,000 face annotations

(bounding boxes). The dataset is 10 times larger than existing

face detection datasets. The images collected from different

sources with varying view points, resolutions, scales, poses

and densities. This data set has unique properties. The faces

are divided into groups based on scales, occlusion, pose and

events. The dataset has unique property of arranging the faces

into three groups, i.e., small, medium and large based on

face size. The small group covers faces of size 10-50 pixels,

medium (50-300 pixels), and large contains human faces

of size greater than 300 pixels. In the same way, to eval-

uate detector performance on handling occlusion, faces are

divided into three categories, high occlusion, no occlusion,

and medium level occlusion. We use three groups of scales,

small, medium and large to evaluate and compare the perfor-

mance of proposed framework and other reference methods.

HollywoodHeads dataset is first proposed byVu et al. [45].

The dataset is collected from 21 Hollywood movies

scenes and contain 224,740 images. This dataset contains

369,846 annotations. The human heads were annotated in

different key frames and remaining frames are annotated by

using linear interpolated. These annotation are then verified

by multiple coders. The dataset is divided into 216,719 train-

ing frames from 15 movies, 6,719 frames for validation

sampled from other 3 movies and 1,302 frames are sample

from remaining 3 movies. We followed the same convention

in our evaluation of proposed framework.

Casablanca dataset is first proposed by Ren [33]. The

dataset is collected from old movie named ‘‘Casablanca’’.

The dataset contains 147600 frame of resolution 464 × 640.

Casablanca dataset contains the annotations that mostly cover

the frontal headswhich have different scales and aspect ratios.

1) COMPLEXITY OF DATASETS

In this section, we discuss and compare the complexity of

datasets. As discussed above, scale problem is caused by

perspective distortions in the image that is induced by camera

view point. Due to perspective distortions, the size of human

heads near to camera appear large, while the size of human

heads become smaller as with distance from the camera

increases. Objects appears at various scales in natural images

that may compromise the detector’s performance. Therefore,

scale problem lies in the heart of every object detector [57]

and good object detector should overcome the scale problem.

To demonstrate the complexity of dataset in terms of scale

variations, we plot the distribution of the entire scale space

of heads/face for all datasets as shown in Figure 5 (a). Scale

is computed as ratio of size of head/face, H to image size I .

Size of head/face H is the maximum of width and height of

bounding box and I is the maximum of width and height of

image. We compute scale of all heads/faces in all datsets.We

divide entire scale space into four groups, i.e., very small

(0.1 - 0.3), small(0.3 - 0.5), medium(0.5 - 0.7), large(> 0.75).

We count the number of scales belonging to four groups and

generate histogram for all dataset as shown in Figure 5. From

the Figure, it is obvious that casablanca and Hollywood-

Heads datasets contain human heads belonging to medium

and large groups. SHOCK dataset contains heads belonging to

the medium group whileWIDERFACE dataset is diverse and

contains heads from all four groups. We further illustrate the

complexities of the datasets by plotting standard deviation of

scales in Figure 5 (b). From the Figure, it is clear that SHOCK

dataset produces low standard deviation compare to other

datasets. The small standard deviation shows small scale

variance that can be easily capture by a single scale detector.

On the other hand, standard deviation of WIDERFACE is

high that shows that the existence of large scale variance and
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TABLE 2. Summary of datasets.

requires multi-scale detector. We also report the summary of

datasets in Table 2.

We compare the performance of proposed framework with

other state-of-the-art methods using following performance

metrics: object recall, and detection mean average precision

(mAP).

For two stage detectors, it is important that object proposal

generator should cover all object of interest. Objects missed

during the object proposal stage will never be classified dur-

ing the classification stage. This will reduce the object recall

rate for the classifier. Generally, the performance of detector

depends on the performance of object proposal generator.

Therefore, it is important to evaluate the performance of

object proposal stage. Generally, object recall rate is used as

an evaluation metric to evaluate the performance of object

proposal stage. We compare our proposed object proposal

generation framework with the other reference methods,

including Bing [5], Region proposal network (RPN) [32],

MultiBox [23], EdgeBox [59] and SelectiveSearch [10].

For computing the object recall, we find the matching by

computing intersection over union (IoU) between the object

proposal and the ground truth. Figure 6 (a) shows the object

recall of different methods at fixed IoU threshold (0.6) with

the increasing number of proposals. From the Figure 6 (a),

it is obvious that our approach out performs other state-of-

the-art methods for both small and large number of proposal

at fixed threshold (0.6). It can also be noticed from the

Figure 6(a) that even for small number of proposal (1000),

our approach performs comparatively better.

We next evaluate the performance of different methods

by computing object recall for fixed number of proposals

(2000) and change IoU values within the range of [0.5, 1]

as shown in Figure 6(b). It can be seen that our approach

beats other state-of-the-art methods by a considerable margin

with IoU changes from 0.5 to 1. The superior performance of

our approach attributes to the fact that we utilize multi-scale

prediction strategy. This strategy has the ability to capture

scale variations and results in high object recall rates.

A. COMPARISON WITH GENERIC DETECTORS

We now evaluate and compare the performance of our pro-

posed framework with other generic object detectors. Gener-

ally, we categorize generic object detectors into two groups:

(1) two stage frameworks and (2) single stage frameworks.

Two stage detection frameworks incorporate generation of

region proposals as a pre-processing step while one stage

detection frameworks are free from region proposals.

We utilize different region proposal methods with differ-

ent backbone CNN architectures. Faster-RCNN [32] uses a

fully convolution network named as Region Proposal Net-

work (RPN) for generating region proposals. The features

map generated from the last convolution layer is used to

generate regions proposals of different sizes and aspect

ratios. We combine R-CNN with MultiBox and Selective

Search which utilize low-level image features for generating

object proposals. We also compare our results with Cascade

Rejection classifier (SDP+CRC) [49] which utilizes Edge-

Boxes for object proposals.

It is important to note that for generating object pro-

posals, we fine-tuned the pre-trained models of Selec-

tive Search, MultiBox and EdgeBoxes on HollywoodHeads

dataset according to the original splits. We also use sin-

gle stage detection frameworks and directly employ the

publicly available pre-trained models of You Only Look

Once (Yolo) [31] and Single Shot Detector (SSD) [23]

during testing phase. We use average precision (AP) with

a threshold of 0.5 IoU as a performance measure based

on precision-recall curves. The results are summarized

in Table 3. From the Table, it is obvious that the proposed

framework outperforms all state-of-the-art detectors. While

Faster-RCNN produce comparable results. The performance

of Yolo and SSD are relatively lower than rest of detec-

tors. We attribute their inferior performance to the following

two reasons: (1) show poor generalization capability when

applied to new datasets. (2) Both Yolo and SSD suffer from

the problem of detecting small objects compared to region

based object detectionmethods. It may be the reason that both

these methods are using feature maps of low resolution due to

which small objects features become too small to be detected.

B. COMPARISON WITH SPECIFIC HEAD DETECTORS

In this section, we evaluate and compare proposed framework

with specific detectors. We divide specific detectors into

two groups: (1) Face detectors and (2) Head detector. For

comparison on SHOCK, HollywoodHeads and Casablanca

dataset, we use one set of face detectors that includes

VJ-LBP [43], VJ-HOG [43], TinyFace [13], Faceness [50]

and FaceHunter [27]. For WIDERFACE dataset, we use dif-

ferent group of face detectors that includes CMS-RCNN [58],

Multitask-CNN [55], ACF [48], and TinyFace [13]. While

head detector group includes, DPM-Head [52], DHD [35],

FCHD [44] and DISAM [17].

For fair comparisons, we first train each detector on Ima-

geNet dataset and then finetune on each of the analyzed
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FIGURE 6. Comparison of object recall of different object proposal methods.

TABLE 3. Performance of different detectors using different region proposal methods on HollywoodHead, Casablanca, SHOCK, and WIDERFACE datasets.

dataset. We observed from the experiments that the perfor-

mance of detectors improve after fine tuning.

We evaluate the performance of all detectors using

precision-recall curve with varying threshold values.

We report precision-recall curves of all the methods on all

datasets in Figure 7. We also report precision, recall and

F-score of all detectors in Table 5, 6, 7 and 8 for SHOCK,

WIDERFACE, HollywoodHeads and Casablanca datasets,

repectively.

From experiment results, we observe that two variants of

Viola-Jones, i.e, VJ-HOG and VJ-LBP showed lower per-

formance on all data sets as compared to to other specific

detectors. This is due to the reason that Viola-Jones is affected

by orientation of heads and faces. Furthermore, it is sensitive

to illumination and accumulates many bounding boxes on

face location due to sliding window approach that lowers

precision-recall rate. We further observed that DPM-head

also achieved lower performance on all datasets. The lower

performance attributes to the small size of the human head.

Due to small size of head, DPM detector could not detect the

heads with the size less than 23 × 23 pixels. DISAM [17],

on the other hand achieved comparable results by tackling

scale problem to some extent, however the method suffers

from the following limitations: (1) The models follows the

traditional pipeline of R-CNN which uses scale-aware strat-

egy for object proposal generation. The strategy typically

requires human efforts to generate a scale map. (2) The

inference speed of the model is very slow since the model

extracts samples proposals in a sliding window fashion and

feed forward each proposal in a single pass.

However, proposed framework efficiently address all

above problems. The superior performance of proposed
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FIGURE 7. Precision Recall curves of different specific detectors on different datasets.

method attribute to the adoption of scale-aware strategy that

covers large range of scales of heads. To demonstrate the

effectiveness of proposed approach, we present qualitative

results in Figure 8 for samples from all data sets.

We further summarize the experiment results in two points:

1) The performance of specific detectors (head/face) is

comparatively higher on SHOCK dataset than other

datasets. In SHOCK dataset, people are sitting in front

of the camera, where most of body part of human are

visible. Furthermore, human head/faces lie in limited

range of scale and the variance in scale is not significant

as also obvious from Figure 5 (b). Due to these prop-

erties, specific detectors perform well on this dataset

compare to other datasets.

2) The performance of head detectors is higher than face

detectors. Face detectors rely on facial features for

detection, however, in crowded scenes, facial features

are not visible due to occlusions, lighting conditions,

and camera view point. For example, face detector

can not detect face of a person who turns his back

to the camera. Due to these limitations, face detectors

perform comparatively low than head detectors.

C. EVALUATION ON EXTREME SCALES

To evaluate the performance of different methods on detect-

ing different sizes of heads, we divide human heads into

three categories, i.e., small, medium and large based on sizes

of heads. The size of head corresponds to the height of

bounding box overlaid on head. Bounding boxes with sizes

of 8-60 pixels belong to small category, medium category

contains bounding boxes of sizes 60-160 pixels, and bound-

ing boxes greater than 160 pixels fall into large category.

Since WIDERFACE dataset contains heads in wide range of

scales and sizes, therefore we use WIDERFACE dataset for

evaluation purpose.We evaluate the performance of all detec-

tors in terms of mean Average Precision (mAP) and results

are summarized in Table 4. From the Table, it is obvious that

all detectors perform well on both medium and large groups.

However, the performance of these detectors degrades on

small group. It is obvious that these detectors face difficulty

in detecting small objects. This is due to the reason that

network uses single deep convolutional neural network with

a fixed receptive field size. For example, Faster-RCNN and

SSD showed inferior performance compared to other detec-

tors. Faster-RCNN uses deep layers for ROI-pooling which
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FIGURE 8. Visualization of head detection results using different methods. The first rows shows the performance of different methods on
casablanca dataset. The second shows the results on HollywoodHeads dataset, third and fourth rows show results on SHOCK and WIDERFACE
dataset respectively. (Best view zoom in).

TABLE 4. Performance of different detectors on WIDERFACE dataset with
small, medium and large categories.

misses critical information about the small objects. On the

other hand, single shallow network can not capture contex-

tual information. SSD uses shallow layers to capture better

representation of small objects. However, shallow layers can

not capture contextual information and have discriminating

TABLE 5. Performance of different head and face detectors on SHOCK
dataset.

power. Our proposed framework addresses the above issue

and achieves significant improvement by using multi-scale

feature that proves helpful in finding wide range of scales.
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TABLE 6. Performance of different head and face detectors on
WIDERFACE dataset.

TABLE 7. Performance of different head and face detectors on
HollywoodHeads dataset.

TABLE 8. Performance of different head and face detectors on
Casablanca dataset.

TABLE 9. Inference time(in seconds) of different methods per image.

D. TIME COMPLEXITY

We also compare time complexity of our method with other

state-of-the-art object proposal methods. The detailed time

complexity of our proposed object proposal method as well

as other state-of-the-art methods is reported in Table 9.

For SelectiveSearch method, we use its fast version while

for other methods, we directly employed their codes. For

testing, we use images from Casablanca dataset. From the

Table, it is obvious that our method is not the fastest method

but still running comparatively faster than most of the state-

of-the-art methods.

V. CONCLUSION

In this paper, we exploit fully convolutional network (FCN) to

handle the problem of scale variance in images by generating

scale-aware proposals. The heatmap produced by FCN helps

to identify whether a patch contains head or not. We observed

from experiments, that proposals produced are more sta-

ble towards image perturbation compared to other object

proposal methods. From the experiments, we also showed

that our object proposal generation strategy results in high

object recall and mean average precision. We believe that

our proposed framework can also be extended to dynamic

video sequences. Therefore, in future, we will extend the

current framework to incorporate motion information to gain

stronger power in identifying and localizing human behaviors

and emotion recognition.
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