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Abstract

Physiological signals such as the electrocardiogram (ECG) and arterial blood

pressure (ABP) in the intensive care unit (ICU) are often severely corrupted

by noise, artifact and missing data, which lead to large errors in the estimation

of the heart rate (HR) and ABP. A robust HR estimation method is described

that compensates for these problems. The method is based upon the concept

of fusing multiple signal quality indices (SQIs) and HR estimates derived

from multiple electrocardiogram (ECG) leads and an invasive ABP waveform

recorded from ICU patients. Physiological SQIs were obtained by analyzing

the statistical characteristics of each waveform and their relationships to each

other. HR estimates from the ECG and ABP are tracked with separate Kalman

filters, using a modified update sequence based upon the individual SQIs. Data

fusion of each HR estimate was then performed by weighting each estimate

by the Kalman filters’ SQI-modified innovations. This method was evaluated

on over 6000 h of simultaneously acquired ECG and ABP from a 437 patient

subset of ICU data by adding real ECG and realistic artificial ABP noise. The

method provides an accurate HR estimate even in the presence of high levels of

persistent noise and artifact, and during episodes of extreme bradycardia and

tachycardia.
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1. Introduction

Physiological signals such as the electrocardiogram (ECG) and arterial blood pressure (ABP)

in the intensive care unit (ICU) are often severely corrupted by noise, artifact and missing

data, which lead to large errors in the estimation of the heart rate (HR) and ABP (Allen and

Murray 1996, Jakob et al 2000). This can result in a high incidence of false alarms from

ICU monitors, which can sometimes be as high as 90% for some alarm types (Lawless 1994,

Tsien and Fackler 1997, Aboukhalil et al 2007). Frequent false alarms due to data corruption

can also lead to a desensitization of clinical staff to real alarms and a consequent drop in the

overall level of care (Chambrin 2001).

Robust HR estimation is essential for ICU monitoring. Beat detection from the ECG

is the most direct method for HR measurement (Kohler et al 2002), but since ICU noise

and artifact are so prevalent, it is difficult for clinicians to believe the monitors’ estimates

without visual confirmation. Various strategies have been employed to improve estimates of

noisy physiological parameters, such as averaging (Jakob et al 2000), machine learning (Tsien

et al 2001), Kalman filtering (Sittig and Factor 1990, Feldman et al 1997, Ebrahim et al 1997,

Tarassenko et al 2002, 2003) and signal quality assessment techniques (Allen and Murray

1996, Kaiser and Findeis 2000, Zong et al 2004, Chen et al 2006). Averaging methods

can reduce the influence of transient artifacts, but at the cost of smoothing true physiologic

changes. Machine learning techniques detect artifacts efficiently but need large amounts of

physiological data to train the model. In contrast to these techniques, Kalman filter (KF)

methods have been shown to reliably detect and identify trends, abrupt changes and artifacts

from physiological signals with very little knowledge of the underlying model. Furthermore,

signal quality assessment methods allow an improved estimate of parameters derived from the

recorded data by providing a calibrated reference for identifying periods of high quality data.

HR information can be obtained easily by beat detection from the ECG (Kohler et al

2002), pulsatile waveforms such as the ABP (Zong et al 2003a) and pulse oximetry

waveforms recorded from the photoplethysmogram (Mendelson 1992). These sources provide

approximately redundant and independent measures of HR. Furthermore, the sources of

the noise and artifact are often weakly correlated or uncorrelated with both the signals that

are cardiovascular in origin and with each other. Reliable estimation of HR can therefore be

obtained by ‘sensor fusion’ (Ebrahim et al 1997, Feldman et al 1997, Tarassenko et al 2001),

allowing for automatic adjudication of which signal is likely to be a more accurate estimate.

Sensor fusion can provide robust cardiovascular parameter estimates even when only one

channel of data is relatively noise free. However, if data from an untrustworthy signal are

used, the resultant estimate may be degraded. Therefore, methods of determining signal

quality and the trustworthiness of the source data are required. In the study presented in this

paper, we propose novel signal quality metrics, which we use to adjust a Kalman Filter update,

and a modification of Townsend and Tarrasenko’s method to fuse these metrics derived from

data from multiple sensors (Townsend 2001, Tarassenko et al 2002, 2003). This provides a

continuously updating estimate of the heart rate that automatically rejects untrustworthy data.

2. Methods

The architecture of our proposed algorithm is based upon a novel integration of a robust KF

tracking algorithm and novel signal quality metrics for estimating HR from the ECG and

ABP waveforms. After preliminary beat detection, signal quality metrics for the ECG and

ABP waveforms are calculated using the combination of several noise metrics. HR is then

estimated using a beat detection algorithm and a KF, adjusted to include the signal quality
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estimates. Finally, each available estimate of the HR is fused using all available information

sources, weighted by the inverse of the Kalman innovation of the signal. Since the innovation

is a measure of the novelty in a signal and an artifact is more likely to produce a novel value

of the signal source, artifacts tend to be suppressed. However, if more than one information

source indicates a change, the innovation rises on multiple sources and allows the algorithm

to track the change.

To evaluate our algorithm, we used approximately 6000 h of high quality ICU data with

simultaneous ECG and ABP signals, from the Multi-Parameter Intelligent Monitoring for

Intensive Care (MIMIC) II database (Saeed et al 2002). Since no public database of ECG and

ABP with associated signal quality annotations exists, we used stringent thresholds on our

novel (but intuitive) signal quality indices (SQIs) to locate long segments of low-noise data.

To test the noise sensitivity of our algorithms, real ECG noise taken from the noise-stress test

database (Moody et al 1984) was added to the ECG. Since no database of real ABP noise

exists, we added artificially generated ABP noise to the ABP signal. In order to demonstrate

that our algorithm performs well during real episodes of tachycardia and bradycardia, we also

tested the method on 2584 human-annotated arrhythmic episodes.

2.1. Signal quality assessment

Signal quality assessment of the ECG was performed by combining four analysis methods:

(1) comparison of multiple beat detection algorithms on a single lead, (2) comparison of

the same beat detection algorithm on different ECG leads, (3) evaluation of the kurtosis

(randomness) of a segment of ECG and (4) calculating the proportion of the spectral distribution

of a given ECG segment found to be within a certain physiological frequency band. Signal

quality assessment of the ABP was based on a combination of two previously described

algorithms: a beat-by-beat fuzzy logic-based assessment of features in the ABP waveform

(Zong et al 2004) and heuristic thresholding of each ABP pulse to determine normality (Sun

et al 2006). (These latter algorithms are known as wsqi and jsqi respectively.)

2.1.1. Comparison of multiple beat detection algorithms on a single lead: bSQI. Since

different ECG algorithms are sensitive to different types of noise (Friesen et al 1990), the

comparison of how accurately multiple QRS detectors isolate each event (such as a beat or

noise artifact) provides one estimate of the level of noise in the ECG. In this study, two well-

documented open-source QRS detection algorithms with different noise sensitivities were

used. One is based on digital filtering (DF) and integration (Hamilton and Tompkins 1986)

and other is based on a length transform (LT) after filtering (Zong et al 2003b). (These routines

are known as ep limited and wqrs respectively.) The signal quality of a given ECG lead, with

a window of length w seconds, is defined to be the ratio of beats detected synchronously

(within an interval, γ ) by both algorithms to all the detected beats (by either algorithm) within

the window (Oefinger 2006). In this study, w is set to 10 s to be commensurate with the

window over which the HR is calculated (see section 3.1) and γ is set to be 150 ms as per

the recommendations of the American National Standards Institute (ANSI/AAMIEC57 1998).

The DF and LT techniques have been shown to achieve a sensitivity of 99.69% and 99.65%

respectively, and both had a positive predictivity of 99.77% (Hamilton and Tompkins 1986,

Zong et al 2003b) when evaluated on the MIT/BIH arrhythmia database (Goldberger et al

2000, Moody and Mark 2001). However, QRS positive predictivity of the LT technique drops

markedly when the signal-to-noise ratio (SNR) is low, since the LT is sensitive to noise. A

consensus beat detection signal quality index (bSQI) was defined for the kth beat as

bSQI (k) = Nmatched(k,w)/Nall(k,w) (1)
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Figure 1. The bSQI of a 13 s ECG segment that is clean for the first half of the analysis segment

and then is noisy for the second half of the segment. The same lead is shown twice, with vertical

fiducial markers for each beat detected by either the LT technique (upper plot) or DF technique

(lower plot). Note that the SQI for each beat is derived from a 10 s window, centered on each beat,

and so the SQI begins to drop 5 s before the ECG becomes noisy.

where Nmatched is the number of beats that both algorithms agreed upon (within γ = 150 ms)

and Nall is the number of all beats detected by either algorithm (without double counting the

matched beats). In other words, Nall = NDF + NLT − Nmatched, where NDF is the number of beats

detected by the Hamilton and Tompkins (DF) method and NLT is the number of beats detected

by the LT method. bSQI therefore ranges between 0 and 1 inclusively. For N beats, there are

N windows set to be w = 10 s long, centered ± 5 s around the kth beat. Figure 1 illustrates

the calculation of the bSQI (multiplied by 100). Note that each beat was correctly detected

by both algorithms (indicated by vertical lines), and no erroneous detections were made until

half way through the segment. The bSQI then drops significantly (with an overlap into the

clean segment due to the 5 s trailing window). Note also that a bSQI value is only given when

the DF technique reports a beat, since this is the least noise sensitive of the two techniques

(Friesen et al 1990).

2.1.2. Beat detection comparison using different ECG leads: iSQI. In theory, when

synchronous ECG leads are available, comparison between different leads can provide more

accurate estimates of HR and signal quality, since more information is present. Although we

can calculate bSQI for different leads separately, if one QRS detection algorithm misses one

or more beats (due to low QRS amplitudes) or registers extra beats (due to artifact or high

amplitude T waves), bSQI will fail to give a good signal quality measure. Figure 2(a) shows

erroneous extra beat detection by the LT method and correct beat detection by the DF method.

In such a situation, the bSQI is low, yet the DT method is obviously providing a good estimate

of the heart rate. Beat detection comparison between different leads, using the same QRS

detection algorithm, allows us to see that the SQI is in fact high. An inter-channel signal

quality index (iSQI) was calculated as the ratio of the number of matched beats (Nmatched) to

all detected beats (Nall) between a given lead and all other synchronous ECG leads, using only

the DF method. Subsequently, the maximum value over each 10 s epoch (± 5 s around the

current beat) is calculated for each beat. That is,

iSQI (k)i = max(Nmatched(k,w)i,j/Nall(k,w)i,j ) ∀j, j �= i (2)

where i is the current ECG lead and j represents each of the other different leads.

Figure 2(b) illustrates how iSQI works even when bSQI fails. iSQI is effective when more

than one ECG lead has good signal quality.
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(a)

(b)

Figure 2. The bSQI and iSQI of an ECG segment. (a) bSQI of lead V fails because extra beats are

erroneously detected by the LT method; (b) iSQI works by comparing detection results on lead V

with those from lead MCL1.

2.1.3. Kurtosis of the ECG: kSQI. From the central limit theorem we know that random

uncorrelated processes, such as thermal noise, tend to have Gaussian distributions. Conversely,

correlated signals tend to have non-Gaussian distributions. A simple measure of how Gaussian-

like a signal appears to be is kurtosis, the fourth standardized moment of a distribution, which

measures the relative peakedness of a distribution with respect to a Gaussian distribution.

The kurtosis, K, of signal x with mean µx and standard deviation σ is defined as K =

E{(x −µx)
4}/σ 4 where E{} is the mathematical expectation operator. The empirical estimate

of kurtosis, K̂ , of a discrete signal xi is given by

K̂ =
1

M

M
∑

i=1

[

xi − µ̂x

σ̂

]4

(3)

where µ̂x and σ̂ are the empirical estimate of the mean and standard deviation of xi respectively,

and M is the number of samples in the dataset. The kurtosis of a Gaussian distribution is equal

to 3 and clean, sinus rhythm ECG generally has a kurtosis larger than 5 (He et al 2006).

Muscle artifact has a kurtosis around 5 and baseline wander and power-line interference have

kurtosis lower than 5 (Clifford 2006). The kurtosis of an ECG segment was calculated for 10

s epochs (centered ± 5 s around the current beat) and the kurtosis-based SQI (kSQI) is defined

by

kSQI (k) =

{

1 if kurtosis (k,w) > 5

0 if kurtosis (k,w) � 5
. (4)

Low kSQI usually indicates low frequency noise such as baseline wonder, Gaussian

(thermal observation) noise and high frequency sinusoidal noise (power-line interference).

2.1.4. Spectral distribution of ECG: sSQI. Since the QRS energy is mainly concentrated in

a 10 Hz wide frequency band, centered around 10 Hz (Murthy et al 1978), the ratio of the

power spectral density (PSD) in this band compared to the PSD in the overall signal provides
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a measure of the signal quality. The spectral distribution ratio (SDR) of an ECG segment was

defined to be the ratio of the sum of the power, P, of the ECG between frequencies, f, of 5 Hz

and 14 Hz to the power between 5 Hz and 50 Hz as follows:

SDR(k) =

∫ f =14

f =5

P(k,w) df

/∫ f =50

f =5

P(k,w) df . (5)

When the SDR is low, high frequency noise contamination in the ECG, such as muscle

artifact, is likely. When the SDR is extremely high, an increased presence of QRS-like artifact,

such as electrode motion, is likely. Moderate values of SDR indicate good ECG quality. Thus,

the spectral distribution signal quality index (sSQI) is defined as

sSQI (k) =

{

1 if SDR � 0.5 and SDR � 0.8

0 if SDR < 0.5 or SDR > 0.8.
(6)

These thresholds were empirically determined through repeated observations and can be

adjusted slightly with little effect.

2.1.5. Combined ECG SQI. The combined ECG signal quality index (ECGSQI) is derived

by combining the four SQI metrics detailed above as follows:

ECGSQI (k) =















max(bSQI (k), iSQI (k)) if kSQI (k) = 1 & sSQI (k) = 1

bSQI (k) if kSQI (k) = 1 & sSQI (k) = 0

max(bSQI (k), iSQI (k))∗η if kSQI (k) = 0 & sSQI (k) = 1

bSQI (k)∗η if kSQI (k) = 0 & sSQI (k) = 0

(7)

where η is a positive coefficient less than unity that indicates the presence of spectral or

statistical noise. In this implementation we chose η = 0.7, reducing the SQI by 30% if such

noise is detected. However, the actual value of this coefficient is fairly arbitrary, since a value

for the overall SQI must be tuned to a particular application. In effect, η can be thought as the

boundary between moderate and high quality data.

The rationale for the logic in (7) is as follows: if sSQI and kSQI indicate good quality

ECG, we can trust the bSQI and iSQI metrics, and therefore we set the ECGSQI to be the

maximum of these two metrics. If, however, sSQI is low, out-of-band noise is present and we

can only trust bSQI. (We do not trust iSQI in this situation because artifact can often be present

on both channels and result in matched detections of artifact on both channels. However, this

artifact is not likely to be spectrally coherent and will present a low value of sSQI.) If kSQI

indicates the signal is of low quality, we follow the same logic, but we trust bSQI or iSQI less

(by a multiplicative factor, η). Figure 3 illustrates the process of deriving an ECGSQI value

for a particular 13 s segment of two-lead ECG (MCL1 and AVF leads). Note that the metric is

calculated for a ± 5 s window around each beat. The second and third traces are the outputs

from the two QRS detectors (LT and DF) applied to the MCL1 lead (denoted by a subscripted

‘1’). The upper trace (DF2) is the output of the digital filter QRS detector on the other lead

(AVF). The lower five traces represent the different SQIs described above. The fourth trace

comprises vertical markers for each of the consensus beat detections and the associated bSQI

on the MCL1 lead. The consensus of DF1 and DF2 (the inter-lead signal quality, iSQI) is given

on the fifth trace. The sixth trace illustrates the output of the kurtosis-based metric (kSQI)

and the seventh trace the effect of the spectral thresholding metric, sSQI, on lead MCL1. The

resultant combined ECGSQI metric is shown on the final (lower) trace. Note that although

each metric indicates the noisy portion of the signal has lower SQI, each metric contributes to

a lowered overall ECGSQI during the noisy period. Note also that since the bSQI and kSQI
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(a) (b) (c) (d) (e)

Figure 3. An example of the calculation of ECGSQI. bSQI, kSQI and sSQI are based on lead

MCL1 and iSQI is based on leads MCL1 and AVF. Segments (a) and (e) possess good kSQI,

sSQI and ECGSQI; segments (b) and (d) possess good kSQI but bad sSQI and medium ECGSQI;

segment (c) possesses low kSQI and sSQI, and hence low ECGSQI. Note the ECGSQI illustrated

here is relative to the MCL1 lead.

are calculated for the MCL1 lead in figure 3, the ECGSQI illustrated is relative to that lead, as

it is the noisiest lead. If the bSQI and kSQI for the AVF lead were used, the ECGSQI would

be a little higher, since the AVF lead is less noisy. It is actually the higher ECGSQI that is

usually reported.

2.1.6. Signal quality assessment of ABP. Two previously developed ABP signal quality

assessment methods, wSQI (Zong et al 2004) and jSQI (Sun et al 2006), were employed to

obtain the SQI of ABP. The wSQI algorithm consists of an ABP pulse detection routine, using

an open-source ABP onset detection algorithm, wabp (Zong et al 2003a), a waveform feature

extraction routine, a waveform feature fuzzy representation and a fuzzy reasoning procedure to

produce the SQI. This algorithm was previously trained on data from the MIMIC DB (Moody

and Mark 1997) and has been shown to give an accurate assessment of ABP signal quality in

previous studies (Zong et al 2004). A wSQI value is associated with each beat and possesses

a continuous value between 0 and 1 (poor to excellent quality). Values of wSQI above 0.5

corresponded to good signal quality, where reliable heart rate and blood pressure estimates

can be made. The jSQI algorithm uses the same beat detection algorithm (a direct translation

from the C programming language to Matlab) and identifies a series of features in each ABP

pulse. Plausible heuristic constraints are set on the ABP amplitudes, slopes and beat-to-beat

variations in each pulse in order to generate a signal abnormality index, jSQI, which takes

a binary value: 0 for normal beats and 1 for abnormal beats (physiologically abnormal or

noise/artifact).

The ABP signal quality index (ABPSQI) is calculated by combining wSQI and jSQI as

follows:

ABPSQI (k) =

{

wSQI if jSQI = 0

wSQI∗η if jSQI = 1
(8)

where 1 � η � 0 is the positive coefficient chosen to be η = 0.7, i.e. if jSQI indicated a

good quality signal, wSQI can be believed. Otherwise, wSQI is trusted less and is therefore
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multiplied by the coefficient η. Although this coefficient may differ from the analogous

coefficient in (7), we chose equivalent values, for consistency in interpretation.

2.2. Kalman filtering for HR and ABP tracking

2.2.1. Kalman filtering algorithm. The KF is an optimal state estimation method for a

stochastic signal (Brown 1983, Welch and Bishop 2004) that estimates the state of a discrete-

time controlled process, x, with measurement data z, where x and z are governed by the linear

stochastic difference equations

xk = Axk−1 + Buk + wk−1, (9)

zk = Hxk + vk. (10)

The random variables w and v are independent, white, and possess normal probability

distributions, p(w) ∼ N(0, Q) and p(v) ∼ N(0, R). The matrices A,B,H are the coefficient

state transition matrices, Q is the state noise covariance, R is the measurement noise covariance

and u is an optional control input to the state x.

The KF algorithm is given by the following equations:

x̂−
k = Ax̂k−1 + Buk (11)

P −
k = AP k−1A

T + Q (12)

Kk = P −
k HT (HP −

k HT + R)−1 (13)

x̂k = x̂−
k + Kk(zk − H x̂−

k ) (14)

P k = (I − KkH)P −
k (15)

where x̂−
k and x̂k are a priori and a posteriori state estimate before and after a given

measurement zk , P −
k and P k are the error covariance of a priori and a posteriori estimate,

rk = zk − H x̂−
k is the measurement innovation (or residual) and Kk is the gain required to

minimize the a posteriori error covariance, P k .

We implemented a KF to estimate the HR derived from ECG and ABP separately and

the systolic, mean and diastolic blood pressure derived from ABP (Zong et al 2004). The

performance of the algorithm on blood pressure estimation will be reported in a separate article

(Li et al 2007). Combining the outputs from each KF was performed in a similar manner

to Townsend and Tarassenko (Townsend 2001, Tarassenko et al 2002, 2003). However, in

order to more heavily weight estimates derived from cleaner data, we propose the use of the

SQI (either ECGSQI or ABPSQI depending on the source) to adjust the measurement noise

covariance, R, when Kk is updated. When the SQI is low, zk should be trusted less, so Kk

should be small, and hence we force R to be large. This is achieved by modifying R as

follows:

R → R · exp(1/SQI 2 − 1). (16)

This nonlinear weighting function therefore tends to unity as the SQI tends to unity and

so does not affect the measurement noise covariance. This has the effect of forcing the KF

to trust the current measurement, zk , and elevating the Kalman gain, Kk . At low SQIs R

tends to infinity (but in practice is limited to a large value) and forces the KF to reduce Kk

and hence trust the previous measurements more. Furthermore, an upper limit that defines the

cusp between good and bad data, SQIth, is defined. When SQI < SQIth, the KF is not updated.

The determination of the value of SQIth is described in section 3.1.
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2.2.2. KF initialization and operation. Following Tarassenko et al (2002), we pick the

simplest form of the KF, and set the state to be a scalar, the heart rate. (Each matrix associated

with the KF is now denoted in plain face to reflect that they are scalars.) The heart rate can be

calculated in many ways and is expressed as an average number of beats per minute (bpm).

We considered three methods: (a) the number of detected beats in a given window (scaled to

one minute), (b) 60 divided by the mean RR (peak-to-peak) interval in a given window and

(c) 60 divided by the median RR interval in a given window. We used a window length of 10 s,

which is typical in clinical practice. Furthermore, the heart rate at each moment is assumed

to be approximately equal to the heart rate at the next moment (A ≈ 1). After neglecting the

control input, (11) then reduces to x̂−
k = x̂k−1. In order to initialize the KF, one must estimate

Q, the state noise covariance matrix, and R, the measurement noise covariance, to calculate

P −
k and Kk . R was similarly initialized to unity, noting that it is immediately modified by

the SQI to reflect our trust in the data. Q was empirically adjusted to have an initial value

of Q = 0.1. Values of Q ≪ 0.1 lead to the KF trusting the state estimate too much and not

adapting to the new initial observations. Values of Q ≫ 0.1 lead to the KF trusting the new

observations too much and simply following new HR observations too closely. Setting H to

unity then allows us to estimate the Kalman gain, Kk , from (13) and hence the a posteriori

error covariance estimate, Pk , from (15). The filter can then be run online with only a few

iterations (heart beats) for convergence. The Kalman residual is then given as rk = zk − x̂−
k

at each update (each detected beat).

2.3. Data fusion for HR estimation

Once a Kalman filtered HR signal has been derived from the ECG and ABP signals separately,

they must be combined to derive a robust consensus estimation of HR. By modifying the

approach of Townsend and Tarassenko (Townsend 2001, Tarassenko et al 2002, 2003), we use

the SQI-weighted residual error, r, of each KF:

HR =
σ 2

2

σ 2
1 + σ 2

2

HR1 +
σ 2

1

σ 2
1 + σ 2

2

HR2 (17)

where HR1 is the heart rate derived from the ECG and HR2 is derived from the ABP, and the

SQI-scaled innovations are given by σ 2
1 = (r1/SQI1)

2 and σ 2
2 = (r2/SQI2)

2. In this way,

when one channel (e.g. channel 1) is corrupted by artifact and the HR (HR1) is miscalculated,

the SQI (SQI1) will be low and the sudden change of HR (HR1) will make the residual error

(r1) large. The weighted innovation
(

σ 2
1

)

will therefore be large and the weighting for HR1,

σ 2
2

/(

σ 2
1 +σ 2

2

)

, will be small. The estimation of the HR will then rely more on HR2 than HR1.

There are four general scenarios for our robust estimation-based algorithm:

(1) Normal, stable HR. Low residual error and high SQI on both channels, so that both HR1

and HR2 are weighted approximately equally and the fused HR can be trusted.

(2) Large, but physiologically reasonable changes of HR. A high residual error and high SQI

on both channels. Even though the residual may be relatively high, it is high for both

channels, both HR1 and HR2 are again weighted approximately equally and the fused

HR can be trusted.

(3) Artifact on one channel. A low SQI and high residual error (and sometimes low depending

on the artifact type) on one channel only. The HR information of this channel will be

ignored because of the low SQI weighting and the fused HR can be trusted.

(4) Artifact on both channels. HR information is corrupted on both channels leading to a

low SQI on both channels. In this case, the current HR should not be trusted and the KF

makes a guess based upon the previous HR values and current (learned) Kalman gain.
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It should be noted that this fusion estimation can be extended to an arbitrary number of n

channels for any parameter X as follows (Townsend 2001):

X =

n
∑

k=1

(

∏n
i=1,i �=k σ 2

i
∑n

i=1

(
∏n

j=1,j �=i σ 2
j

) · Xk

)

k = 1, 2, . . . , n. (18)

This formulation is particularly useful for the ICU data where multiple estimates

of the same physiological parameter can be derived. For example, one might use the

photoplethysmogram, or pulmonary arterial pressure, as well as the ABP and ECG to determine

physiological parameters such as HR, ABP or cardiac output.

2.4. Evaluation data

2.4.1. Clean normal data. The HR fusion algorithm was evaluated on a large subset of

the MIMIC II database (Saeed et al 2002). The following criteria were used to determine

low-noise segments of the database: ECGSQI � 0.95 and ABPSQI � 0.95 and � 1 h duration,

with the ABP and at least one channel of ECG simultaneously present. From the 2500 patients

comprising a total of 150 000 h of simultaneous ECG and ABP data, the clean dataset included

437 subjects, comprising 3762 1 h or longer (1.62 ± 0.69 h) data segments or 6084 h in total.

(This illustrates how rare it is for an ICU patient to have 1 h of undisturbed physiological data.)

ECG noise and ABP noise were separately added to the clean dataset at different SNRs to

generate the noisy evaluation dataset. It should be noted that previous studies have shown that

artifact occurs more frequently when there is a change in the heart rate (Clifford et al 2002),

and therefore our data are likely to be biased toward non-changing heart rates. However, if we

analyze the distribution of true HR range (maximum HR–minimum HR) for each segment of

the clean dataset we find that a large number of test segments differ by more than 10 or even

20 bpm (a significant change in HR). The distribution is approximately log-normal with a

mean of 13.3 bpm and a standard deviation of 8.9 bpm.

2.4.2. Additive noise. The ECG noise introduced included electrode motion artifact (EM),

baseline wander (BW) and muscle artifact (MA), each with two channels of simultaneously

recorded data, taken from PhysioNet’s NSTDB database (Moody et al 1984, Goldberger

et al 2000). [Since no ABP noise-stress test database exists, realistic artificial ABP artifacts

were used to test the ABP. The description of these artifacts is extensive and the analysis will

be presented in a forthcoming paper (Li et al 2007).] If more than two channels of ECG are

present, the first channel of the NSTDB is added to the odd channels and the second channel

of the NSTDB is added to the even channels.

Each of the three ECG noise types (MA, BW, EM) were added separately to each ECG

lead of the clean dataset of varying SNRs, for every other 5 min epoch in the clean data (giving

six noisy 5 min periods, each followed by 5 min of clean data in each hour). The SNR during

the noisy segments was set to a value of 24, 18, 12, 6, 0 and −6 dB separately, giving a total

of six different datasets (with different SNRs). Figure 4 illustrates the clean data and noisy

ECG data with differing SNR levels.

2.4.3. Abnormal data. As mentioned above, HR estimation is extremely important as a

first-order estimate of cardiovascular system performance. However, the exact value of the

HR depends on the size of the window over which it is calculated. Although a multi-

scale HR metric may be more appropriate, it is not as easy to interpret, and we have

therefore used the clinical convention of measuring the HR over (non-overlapping) 10 s
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(a)

(b)

Figure 4. An example of 20 s of evaluation data. (a) Clean data with two leads of ECG (lead II

and MCL1) and one ABP signal; (b) MA noise at different SNRs; (c) BW noise at different SNRs;

(d) EM noise at different SNRs (SNR = 24, 18, 12, 6, 0 and −6 dB).

epochs. However, arrhythmias may manifest over time scales much shorter than this (often

5 s or less). It is therefore important to ensure that the algorithm works on both normal and

abnormal rhythms and hence we require another dataset on which to test our algorithm. In

a related piece of work (Clifford et al 2006, Aboukhalil et al 2007), we developed a false

alarm suppression algorithm for the ICU using a subset of over 5500 life-threatening alarms

(asystole, bradycardia, tachycardia, ventricular tachycardia and ventricular flutter/fibrillation)

taken from the same MIMIC II database, for which we have 45,000 h of simultaneous ECG

and ABP data. This includes 707 episodes of bradycardia (of which 506 are true and 201 false)

and 1877 episodes of tachycardia (of which 1444 true and 433 false). These false alarm rates

are typical of alarms in the ICU, which can be as high as 90% (Aboukhalil et al 2007), but

for life-threatening alarms are usually around 40% (Aboukhalil et al 2007). Therefore, this

subset of the MIMIC II data provides an excellent test set for the HR estimation algorithms.

We do not consider the algorithm presented in this paper to be applicable to asystole, since
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(c)

(d)

Figure 4. (Continued.)

asystoles shorter than 10 s would not be detected. Furthermore, ventricular arrhythmias are

waveform morphology related, and therefore are not relevant to the HR-tracking algorithm

presented here. If we consider 20 s epochs around each bradycardia and tachycardia alarm
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(with the alarm occurring at 17 s in the epoch) then we are able to construct a new test set

of 2584 events (1950 true episodes) and over 14 h (861 min) of simultaneous ECG and ABP

with episodes of significant changes in the heart rate.

2.5. Gold standard HR calculation method

Following standard clinical practices, we calculate the HR (and SQI) for each (non-

overlapping) 10 s epoch of ECG and ABP. We have shown that the Kalman filter-based

fusion approach (equation 17) described in this work leads to an accurate estimate of HR with

an average absolute error of 0.02 ± 0.12 bpm and zero bias (Clifford and Li 2007). This

modified Kalman fused estimate is therefore used as the ‘Gold Standard’ HR by which to

evaluate the method under noisy conditions.

3. Results

3.1. HR estimation for varying ECG noise levels

The HR is easily calculated from a clean electrocardiogram (ECG) or blood pressure (BP)

signal by counting the number of pulses or wave packets representing each beat that are

observed in 1 min. However, HR is generally measured by counting beat intervals over

smaller windows than 60 s (typically 10–30 s) and the result is scaled to units of bpm by

multiplying by 60/T, where T is the size of the temporal window in units of seconds. To

simulate current clinical practices and evaluate the estimation method presented in this paper,

seven HR estimation methods were chosen for evaluation, namely:

(1) HR estimation from single channel QRS detector (DF or LT),

(2) HR estimation from single channel QRS detector using sample-and-hold when SQI <

SQIth (SH1) [This simulates the operation of single channel ICU equipment behavior],

(3) Sample-and-hold combined with HR estimate selected at each epoch from the leads with

the highest SQI (SHm) [to simulate multichannel ICU equipment behavior],

(4) HR estimation using the Kalman filter and SQI (KF),

(5) HR estimation from ABP beat analysis (wabp),

(6) HR estimation using the Kalman filter and SQI from ABP beat analysis (KFABP),

(7) HR estimation by fusing ECG and ABP HR estimates after KF (FUSE).

To determine a reasonable value of SQIth for the sample-and-hold and Kalman filter

algorithms, we removed the Kalman gain (Kk) update and SQI threshold control at the Kalman

filter step. Figure 5 illustrates the root mean squared error (rMSE) of the difference between

the Kalman filtered HR and ‘Gold standard’ HR. The error becomes larger when the signal

quality is low. Although a value of SQIth = 0.7 appears to be a good choice of SQIth, a lower

value is actually appropriate. This is because, if the SQIth is set too high, the Kalman filter will

stop updating on some physiologically real HR changes. Through trial and error we selected

SQIth = 0.5.

Table 1 provides the mean SQI for each HR estimation method averaged over the whole

evaluation dataset. Average SQI is given for each of the three different types of noises and

over the entire range of SNRs considered.

3.2. HR estimation during bradycardia and tachycardia

To determine whether the HR estimation algorithm correctly tracks changes in the heart rate un-

der extreme circumstances, we evaluated whether our algorithm accurately tracked HR during
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Figure 5. Root mean squared error (rMSE) of the HR difference between the Kalman filtered HR

and ‘Gold standard’ HR without SQI control.

Table 1. ECGSQI and HR estimation error for different types of noise and SNR.

Noise SNR HR (LT) HR (DF) HR (SH1) HR (SHm) HR (KF) HR (FUSE)

type (dB) ECGSQI rMSE (bpm) rMSE (bpm) rMSE (bpm) rMSE (bpm) rMSE (bpm) rMSE (bpm)

MA 24 1.00 ± 0.04 3.1 ± 2.8 2.8 ± 2.4 1.8 ± 1.1 1.9 ± 1.1 1.1 ± 0.9 0.9 ± 0.8

18 0.97 ± 0.08 3.8 ± 3.5 2.8 ± 2.4 1.9 ± 1.3 1.9 ± 1.1 1.1 ± 0.9 0.9 ± 0.8

12 0.66 ± 0.30 35.3 ± 30.3 3.2 ± 2.8 3.0 ± 2.7 2.2 ± 1.6 1.6 ± 1.4 1.0 ± 0.8

6 0.22 ± 0.28 80.7 ± 48.7 19.0 ± 17.0 3.2 ± 2.8 2.5 ± 2.0 2.1 ± 1.8 1.0 ± 0.9

0 0.08 ± 0.19 105.6 ± 46.9 42.7 ± 29.7 3.9 ± 3.6 2.6 ± 2.0 2.3 ± 2.0 1.0 ± 0.8

−6 0.03 ± 0.10 123.1 ± 38.9 51.1 ± 30.1 4.0 ± 3.7 2.6 ± 2.0 2.4 ± 2.0 1.0 ± 0.8

BW 24 0.98 ± 0.07 3.09 ± 2.71 2.8 ± 2.4 1.8 ± 1.2 1.91 ± 1.13 1.1 ± 0.9 0.9 ± 0.8

18 0.90 ± 0.12 3.11 ± 2.72 2.8 ± 2.4 1.8 ± 1.2 1.91 ± 1.13 1.1 ± 0.9 0.9 ± 0.8

12 0.78 ± 0.12 3.13 ± 2.75 2.8 ± 2.4 1.9 ± 1.2 1.91 ± 1.13 1.1 ± 1.0 1.0 ± 0.8

6 0.70 ± 0.08 4.32 ± 4.00 2.8 ± 2.4 1.9 ± 1.3 1.93 ± 1.16 1.3 ± 1.0 1.0 ± 0.8

0 0.64 ± 0.15 21.24 ± 20.44 4.8 ± 4.5 1.9 ± 1.4 2.00 ± 1.26 1.4 ± 1.2 1.0 ± 0.8

−6 0.49 ± 0.27 50.19 ± 44.48 16.8 ± 15.8 2.8 ± 2.4 2.82 ± 2.33 2.5 ± 2.3 1.0 ± 0.8

EM 24 1.00 ± 0.04 3.04 ± 2.66 2.8 ± 2.4 1.8 ± 1.2 1.92 ± 1.13 1.1 ± 0.9 0.9 ± 0.8

18 0.98 ± 0.07 3.35 ± 2.97 2.8 ± 2.4 2.0 ± 1.5 1.92 ± 1.13 1.1 ± 0.9 0.9 ± 0.8

12 0.79 ± 0.25 18.21 ± 16.28 9.2 ± 8.8 3.0 ± 2.6 2.36 ± 1.77 1.6 ± 1.4 1.0 ± 0.8

6 0.44 ± 0.30 53.81 ± 36.29 39.0 ± 30.1 5.4 ± 5.1 5.35 ± 4.96 3.8 ± 3.5 1.1 ± 0.9

0 0.13 ± 0.23 80.13 ± 33.84 57.5 ± 31.3 3.5 ± 3.1 4.53 ± 4.10 2.9 ± 2.6 1.0 ± 0.8

−6 0.04 ± 0.13 94.31 ± 36.71 54.6 ± 27.4 4.0 ± 3.7 3.80 ± 3.38 2.6 ± 2.3 1.0 ± 0.8

episodes of paroxysmal bradycardia and tachycardia. Based on previous work (Clifford et al

2006), we calculated heart rates using the median of the four shortest RR intervals for tachy-

cardic episodes, and the four longest RR intervals for bradycardic episodes to ensure rapid

changes could be estimated. Of the 707 bradycardia alarms (506 true and 201 false), our

algorithm correctly tracked HR in 167 of the 201 false alarms and 500 of the 506 true alarms.

In other words, the HR estimation algorithm correctly tracked the true abnormal drops in HR

99% of the time and was only ‘fooled’ into tracking the artifacts (that tricked the monitors

into alarming) 17% of the time. In the case of tachycardia, HR was estimated inaccurately in
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Table 2. HR estimation error with and without SQI control.

MA with MA without BW with BW without EM with EM without

SNR SQI rMSE SQI rMSE SQI rMSE SQI rMSE SQI rMSE SQI rMSE

(dB) (bpm) (bpm) (bpm) (bpm) (bpm) (bpm)

24 1.09 ± 0.87 1.05 ± 0.89 1.09 ± 0.88 1.05 ± 0.89 1.09 ± 0.87 1.05 ± 0.89

18 1.09 ± 0.88 1.05 ± 0.89 1.09 ± 0.90 1.05 ± 0.89 1.09 ± 0.88 1.05 ± 0.89

12 1.61 ± 1.43 1.75 ± 1.64 1.14 ± 0.95 1.05 ± 0.89 1.61 ± 1.43 5.19 ± 5.07

6 2.13 ± 1.81 16.85 ± 14.81 1.26 ± 1.04 1.05 ± 0.89 3.82 ± 3.52 27.72 ± 24.01

0 2.31 ± 1.95 40.80 ± 26.73 1.41 ± 1.17 3.06 ± 2.97 2.92 ± 2.56 50.48 ± 30.35

−6 2.40 ± 2.01 50.23 ± 26.70 2.52 ± 2.32 15.55 ± 14.79 2.64 ± 2.27 53.40 ± 24.29

only one of the 1444 true alarms and was estimated correctly in 281 of the 433 episodes of

false alarms. That is, over 99.9% of the true tachycardic episodes were tracked correctly, and

35% of the false episodes were incorrectly tracked as significant heart rate increases.

4. Discussion

SQI plays an important role in eliminating the effect of noise and artifact from HR estimation.

When an appropriate signal quality threshold, SQIth, is selected, noisy data can be eliminated

from the estimate and robust tracking of the HR variations can be performed. Table 2 illustrates

the results of a comparison between the Kalman filtered HR estimation with and without SQI

control. It is evident that when there is no SQI control, the error is much higher when the SQI

is low (and the noise level is high).

The result of multi-lead ECG analysis is usually better than single-lead analysis (Kaiser

and Findeis 2000). This is true when there is only a low level of noise present (when the SNR

is 24, 18 and 12) and for some noise types, such as for the MA noise or the EM noise (as

shown in table 1). If the noise level is high, such as for an SNR of 6, 0 and −6 for EM noise,

each channel is corrupted by serious noise and additional noisy leads cannot provide more

valuable information. In this case, multi-lead analysis (SHm) is not better than single-lead

analysis (SH1). However, the Kalman filter still provides a superior result in all scenarios,

since it rejects noisy segments.

Data fusion of the noisy ECG with the clean ABP can therefore provide a much improved

estimation of HR even when the ECG is corrupted completely by noise and artifact. The

residual of Kalman filter and the SQI estimates provide reliable criteria for the data fusion

stage. Although the ECGSQI metric ranges continuously between 0 and 1, there are two

interesting discontinuities in the metric. First, ECGSQI = η denotes a boundary between

extremely high quality ECG (perhaps useful for diagnostic purposes and beat classification)

and moderate quality ECG, which can still be used for HR estimation (and maybe even

ventricular rhythm analysis). However, if the ECGSQI drops too low, the ECG becomes

untrustworthy, even for heart rate estimation. This second threshold turns out to be around

ECGSQI = 0.5. Therefore, the ECGSQI metric allows for three levels of ECG quality, which

can be used for three different purposes.

Robust and accurate HR estimation has also been demonstrated at both extremely low and

extremely high heart rates by considering episodes of bradycardia and tachycardia. However,

the performance is not symmetric and the data fusion method presented here tracks episodes

of tachycardia more accurately than bradycardia, since the use of a pulsatile waveform almost

always allows one to discard the erroneously high ECG-derived heart rates. Conversely, the

HR fusion method is fooled by artifact into tracking low heart rates less frequently than for high
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heart rates. This is probably due to the higher preponderance of artifacts during tachycardic

rather than bradycardic episodes. This algorithm could therefore serve as a first stage filter to

false alarm reduction algorithms in the ICU. The kSQI metric will not differentiate sinusoidal-

like arrhythmias (such as ventricular flutter), from certain noises, both of which can manifest

low kSQI values (generally below 2). However, since all of the ECG SQI metrics have low

SQIs during such arrhythmias (except perhaps a frequency-adjusted sSQI), they should not

be used to reject such alarms. In such cases, reference must be made to a correlated pressure

waveform (such as the ABP) to determine the truth of such an alarm (Clifford et al 2006,

Aboukhalil et al 2007).

We should note at this point that some of the thresholds for the individual signal quality

metrics have not been tuned to produce optimal results. Further tests on more types of data

may yield a more accurate method. In particular, the ECGSQI metric is undersensitive to

electrode motion (since it is QRS-like in morphology), see figure 5. Our technique would

therefore benefit from isolating a metric (or inventing a new metric) that is particularly

sensitive to electrode motion, such as the deviation of the QRS morphology away from an

average template. However, the current incarnation of the algorithm is still noise-type agnostic

for moderate to high SQI values (ECGSQI � 0.7).

It should also be noted that in our approach the KF uses a trivial model of the cardiovascular

system (the heart rate at each epoch is approximately the same as the next epoch). It is possible

that more complicated models of the HR and ABP could be used and, in particular, the model

could be extended to treat the HR and ABP simultaneously, with a four-dimensional state:

HR, systolic blood pressure (SBP), mean blood pressure (MBP) and diastolic blood pressure

(DBP). Known relationships between these parameters may be utilized to improve the estimate.

Simple models of their relationship to cardiac output could also be used.

5. Conclusion

We have developed a robust HR estimation method based on ECG and ABP beat detection,

signal quality analysis, Kalman filtering and data fusion. By applying this method to an

extensive database of ICU signals, we have demonstrated that good HR estimation is possible

(rMSE � 1 ± 0.9 bpm), even in the presence of high levels of noise and artifact, and during

episodes of extreme bradycardia and tachycardia. By calibrating our SQI output on known

data and noise, it is possible to estimate the error in a given HR estimate on new ECG data,

by determining the SQI value with our metrics. These robust SQI metrics therefore provide

a method for evaluating the physiological signal quality and can be used as guidance for

identifying periods of data for estimating derived health metrics, data mining activities, inputs

to cardiovascular models, selecting training data in machine learning tasks and false alarm

reduction in ICU monitors. Furthermore, the general framework proposed in this paper is

applicable to any multi-parameter input time series where SQIs can be estimated, such as BP

evaluation, cardiac output estimation or even non-biological parameter tracking.
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