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ABSTRACT Automated recognition of human activities or actions has great significance as it incorporates

wide-ranging applications, including surveillance, robotics, and personal health monitoring. Over the past

few years, many computer vision-based methods have been developed for recognizing human actions

from RGB and depth camera videos. These methods include space–time trajectory, motion encoding, key

poses extraction, space–time occupancy patterns, depth motion maps, and skeleton joints. However, these

camera-based approaches are affected by background clutter and illumination changes and applicable to a

limited field of view only. Wearable inertial sensors provide a viable solution to these challenges but are

subject to several limitations such as location and orientation sensitivity. Due to the complementary trait

of the data obtained from the camera and inertial sensors, the utilization of multiple sensing modalities

for accurate recognition of human actions is gradually increasing. This paper presents a viable multimodal

feature-level fusion approach for robust human action recognition, which utilizes data frommultiple sensors,

including RGB camera, depth sensor, and wearable inertial sensors. We extracted the computationally

efficient features from the data obtained from RGB-D video camera and inertial body sensors. These

features include densely extracted histogram of oriented gradient (HOG) features from RGB/depth videos

and statistical signal attributes from wearable sensors data. The proposed human action recognition (HAR)

framework is tested on a publicly available multimodal human action dataset UTD-MHAD consisting

of 27 different human actions. K-nearest neighbor and support vector machine classifiers are used for training

and testing the proposed fusion model for HAR. The experimental results indicate that the proposed scheme

achieves better recognition results as compared to the state of the art. The feature-level fusion of RGB

and inertial sensors provides the overall best performance for the proposed system, with an accuracy rate

of 97.6%.

INDEX TERMS Dense HOG, depth sensor, feature-level fusion, human action recognition, inertial sensor,

RGB camera.

I. INTRODUCTION

Human action recognition (HAR) or activity recognition

is an imperious area of research in signal and image

processing. HAR mainly involves automatic detection,

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhaoxiang Zhang.

localization, recognition, and analysis of human actions from

the data obtained from different types of sensors, including

RGB camera, depth sensor, range sensor, or inertial sensor.

Action detection involves determining the presence of the

action of interest in a continuous data stream, whereas action

localization estimates when and where an action of interest

appears. The goal of action recognition or classification is
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to determine which action appears in the data. In the past

few years, the research on HAR has gained significant pop-

ularity and is becoming increasingly vital in a variety of

disciplines. Detecting and recognizing human activities is

the core of many human-computer interaction (HCI) appli-

cations, including visual surveillance, video analytics, assis-

tive living, intelligent driving, robotics, telemedicine, sports

annotation, and health monitoring [1]–[6]. Various sensor

modalities have been utilized to monitor human beings and

their activities. HAR approaches can generally be classi-

fied into two main categories depending upon the type of

sensors used. These include vision-based HAR and inertial

sensor-based HAR.

Earlier vision-based action recognition studies involved

the use of RGB video sequences captured by conventional

RGB cameras to recognize a human activity [7], [8]. These

studies are mostly based on template-based or model-based

approaches [9]–[11], space-time trajectory [12], motion

encoding [13], and key poses extraction [14]. Numerous

feature extraction methods have been proposed for HAR

using RGB video data, which achieved successful recogni-

tion results. Particularly, these methods include 3D gradient-

based spatiotemporal descriptor [15], spatiotemporal interest

point (STIP) detector [16], motion-energy images (MEIs)

and motion history images (MHIs) [17], [18]. The evolu-

tion of deep learning schemes, i.e., deep learning based

convolutional neural networks (CNN) and Long Short-Term

Memory (LSTM) networks, has motivated the researchers

to explore its application for action recognition from RGB

videos [19]–[22]. The increasing popularity of HAR using

RGB camera has also been heavily investigated in recent

years [23]–[26]. These papers have provided a comprehen-

sive discussion on different features and algorithms used in

the literature for efficient HAR. With all their benefits, there

exist some limitations in utilizing RGB cameras for monitor-

ing human activities. For example, conventional RGB images

lack 3D action data, which ultimately affects the recognition

performance.

The advancement in image acquisition technology has

made it possible to capture 3D action data using depth sen-

sors. The depth images obtained for these sensors are insen-

sitive to changes in illumination compared to conventional

RGB images. Moreover, these depth images also provide

a way to obtain 3D information of a person’s skeleton to

recognize human actions in a better way. Therefore, many

researchers have put their efforts in recognizing human

actions based on depth imagery [27]–[31]. Several feature

extraction, description, and representation techniques have

been developed for depth sensor-based HAR. These include

depth motion maps (DMMs) [32], bag of 3D points [33], pro-

jected depth maps [34], space-time occupancy patterns [35],

spatiotemporal depth cuboid [36], surface normal [37], and

skeleton joints [38]. Recently, a few research studies pro-

posed deep learning based methods for HAR using depth

camera and skeleton joints [39]–[42]. In [43], the authors

utilized CNN and LSTM for skeleton-based activity

recognition. The authors in [44] proposed a deep bilinear

learning method for RGB-D action recognition. A compre-

hensive study about RGB-D based humanmotion recognition

using deep learning approaches is presented in [45]. Although

vision-based HAR is continuously progressing, it is exposed

to many hindrances such as camera position, a limited

angle of view, subject disparities in carrying out different

actions, occlusion, and background clutter. Furthermore,

camera-based HAR systems require an extensive amount of

hardware resources to run computationally complex com-

puter vision algorithms. These limitations are addressed by

low-cost, computationally efficient, and miniaturized inertial

sensors.

Wearable inertial sensors enable dealing with a much

broader field of view and changing illumination conditions

as compared to RGB and depth sensors. They are attached

directly on the human body or entrenched into outfits, smart-

phones, footwear, andwrist watches to track human activities.

They generate 3D acceleration and rotation signals conform-

ing to human action. Hence, like depth sensors, the inertial

sensors also track 3D action data entailing 3-axis acceleration

in case of an accelerometer and 3-axis angular velocity in

case of a gyroscope. Many researchers utilized smartphones,

smart watches, and wearable inertial sensors, incorporating

an accelerometer and gyroscope, for human activity recog-

nition [46]–[48]. In [49], [50], the authors detected complex

human activities by utilizing the built-in inertial sensors of

the smartphone along-with wrist-worn motion sensors. With

the growth of deep learning applications in vision-based

action recognition systems, we witnessed the utilization of

deep learning for sensor-based activity recognition. In [51],

the authors used deep learning for smartphone-sensor based

activity recognition, whereas the authors in [52] used body

sensor data for recognizing human activities. These stud-

ies achieved successful results in detecting and recognizing

human activities. However, with the continuous evolvement

in pulling down the power consumption of wearable sensors,

deep learning based approaches are becoming futile for unob-

trusive human activity monitoring. Moreover, sensor-based

activity recognition approaches have certain other limitations

as well. For instance, sensor readings are sensitive to their

orientation and location on the body. Also, wearing or placing

these sensors on the bodies creates inconvenience for the

users to carry out their tasks in a natural way. Table 1 provides

the pros and cons regarding the use of different sensing

modalities (i.e., RGB camera, depth camera, and inertial

sensors) for HAR.

A conventional HAR system typically makes use of a

single sensor modality, i.e., either a vision-based sensing

modality or a wearable inertial sensor. However, under real-

istic operational settings, no sensor modality alone can han-

dle varying conditions that may take place in real time.

The RGB and depth images from an RGB-D camera and

3D inertial signals from a wearable sensor offer comple-

mentary information. For instance, vision-based sensors pro-

vide global motion features whereas inertial signals give 3D
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TABLE 1. Pros and Cons of different sensing modalities for HAR.

information about local body movement. Hence, by fusing

data from two complementary sensing modalities, the perfor-

mance of HAR systems can be improved. Few existing stud-

ies [53]–[56] utilized the fusion of depth and inertial sensors,

aiming to increase the accuracy of action recognition and

their results revealed significant improvement in recognition.

Some authors also worked on using deep learning formultiple

sensing modalities for robust action recognition [57]–[59].

In [60], the authors utilized deep learning based decision-

level fusion for action recognition using depth camera and

wearable inertial sensors. For depth cameras, CNN based fea-

tures are extracted, whereas, for the inertial sensors, CNN and

LSTM networks are used. Recently, in [61], the authors used

skeleton-based LSTM and spatial CNN models to extract

temporal and spatial features respectively for action recog-

nition. The results of this study revealed that the fusion

of multiple sensing modalities achieved a significant per-

formance improvement compared to single modality based

action recognition. Therefore, in this research work, we pro-

posed a multimodal HAR framework that utilizes the combi-

nation of multiple sensing modalities (e.g., wearable inertial

sensor, RGB camera sensor, and depth camera sensor) for

action classification.

The fusion of multiple sensors can be performed at base-

level (descriptor-level), feature-level (representation-level),

or decision-level (score-level) [12]. Each fusion type has its

own merits and demerits, and the selection of the fusion

method is generally dependent on the type of features and

descriptors. Existing studies for multimodal HAR mostly

focus on the decision-level fusion due to its independence

on the type, length, and numerical scale of different fea-

tures extracted from multiple sensing modalities. Moreover,

decision-level fusion does not require any post-processing

of the extracted features and reduces the dimensions of the

final feature vector for classification. The major drawback

of the decision-level fusion is independent and stand-alone

classification decisions relating to each sensing modality,

which are then combined using some soft rule to make the

final decision. Hence, for n different sensing modalities,

the decision-level fusion requires n classifiers to be trained

and tested independently on each sensing modality. For any

multimodal HAR system, the acquisition of concurrent data

from multiple sources is necessary to collect a sufficient

amount of information for making improved decisions about

human actions. However, with the decision-level fusion, it is

not possible to combine multimodal data at an earlier stage to

produce adequate information for recognizing human actions.

In contrast, the feature-level fusion helps to collect concurrent

features from multiple sensors and integrate them to generate

sufficient information for making a strong decision. More-

over, it provides the best results in the case when the features

extracted from different sensing modalities have the same

dimensions and numerical scale. Therefore, in this study,

we focused on the feature-level fusion of multiple sensing

modalities for robust HAR. We extracted time domain fea-

tures for inertial sensor data, whereas, to obtain the best

results for feature-level fusion, we used densely extracted

Histogram of Oriented Gradients (HOG) [62] as features for

both RGB and depth video data. The features extracted from

multiple sensors are then fused and used to train the machine

learning algorithm for action classification.

The key contributions of this research work are as follows:

• A robust scheme is presented for HAR, which empha-

sized the feature-level fusion of RGB, depth, and iner-

tial sensors to improve the accuracy of human action

classification. Moreover, a detailed analysis is provided

regarding the individual performance of these sens-

ing modalities as well as their combination in HAR,

using two common machine learning classifiers, i.e.,

K-Nearest Neighbor and Support Vector Machine.

• The existing approaches for RGB and depth sensor-

based HAR use different types of features for both RGB
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FIGURE 1. Block diagram of the proposed HAR method.

and depth videos, which becomes infeasible for the

feature-level fusion. The proposed HARmethod address

this issue using RGB-D features based on densely

extracted Histogram of Oriented Gradients (HOG). The

obtained features are finally normalized to achieve the

best recognition performance.

• The proposed HAR method is evaluated on pub-

lically available benchmark dataset University of

Texas at Dallas Multimodal Human Action Dataset

(UTD-MHAD) [53], which covers a wide-ranging set

of 27 different human actions. The results achieved

for the proposed scheme are better than state-of-the-

art results. For demonstrating the effectiveness of

the proposed feature-level fusion over decision-level

fusion, the obtained results are also compared with the

decision-level fusion results on UTD-MHAD.

The remaining part of the paper is organized as follows.

Section II provides an in-depth discussion of the proposed

method. Section III provides a discussion on the results of

different experiments designed to measure the performance

of the proposed HAR method. Also, we compared the per-

formance of our method against different machine learning

algorithms for HAR. Finally, Section IV concludes the out-

comes of this research work and provide recommendations

for future work.

II. METHODOLOGY OF RESEARCH

The proposed methodology for HAR is shown in Fig. 1,

which consists of three main steps: feature extraction and

description, feature fusion, and action classification. These

steps are explained in detail in the following sub-sections.

A. FEATURE EXTRACTION AND DESCRIPTION

As this research work focuses on the feature-level fusion

of multiple sensor modalities for robust HAR, hence we

extracted different sets of features for inertial sensor data and

RGB/depth videos. It is done because these features provide

the best recognition rate when used for HAR with individual

modality data. The following sections provide the detail of

the feature extraction process for inertial sensor data and

RGB/depth video sequences.

1) FEATURE EXTRACTION FOR INERTIAL SENSOR

The raw data obtained from wearable inertial sensors is

orientation sensitive and often degraded by unwanted noise

produced by either the instrument or unanticipated move-

ment of the participant. Hence, it is crucial to preprocess the

raw data obtained from wearable inertial sensors before any

further processing. For this purpose, the magnitude smag of

both acceleration and rotation signal is calculated, which is

concatenated with existing three-dimensional data to make

the form
(

sx , sy, sz, smag
)

, where sx , sy, and sz represent the

signal values along x, y, and z-axes respectively. The value of

smag is calculated as : smag =

√

s2x + s2y + s2z .

For de-noising of the acquired signals, an average smooth-

ing filter of size 1×3 is applied to the acquired data based on

two nearest neighbors approach. After that, three time domain

features are extracted from both acceleration and gyroscope

signals obtained corresponding to each action trial. These

features are presented in Eq. (1) to Eq. (3).

µ =
1

N

∑

s (n) (1)

µ∇ =
1

N

∑

|s (n) − s(n− 1)| (2)

µ1 =
1

N

∑

|s (n+ 1) − 2s (n) + s(n− 1)| (3)

where, µ represents the mean of the signal s(n), µ∇ is

the mean of absolute values of the first difference of the

signal s(n), µ1 is the mean of absolute values of the sec-

ond difference of the signal s(n), and N represents the

count of total samples in the signal s(n) at a sampling rate

of 50 Hz. These features are extracted for all four channels,

i.e., (sx , sy, sz, smag), of the accelerometer and gyroscope and

then concatenated for each sensor to form the resultant feature

vector. Hence, for each data sequence, we obtained a feature

vector of size [1 × (3 (# of features) × 4 (# of dimensions

per sensor)] = [1×12] per sensor. As there are 861 data

sequences in total, hence we get 861 different feature vectors

per sensor with each feature vector having a length equal
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to 12. These feature vectors are later used in the classification

stage for HAR.

2) FEATURE EXTRACTION FOR RGB/DEPTH SENSOR

For RGB and depth video data, we employed the general

Bag-of-Words (BoWs) pipeline for HAR, which is visualized

in Fig. 2. The BoWs method [63] has been successfully

adapted from static images to the motion clips and videos

through local space-time descriptors. It has many successful

applications in HAR [15], [64], [65]. For human action clips,

BoWs may be specified as a bag of action patches that occur

in the action frames for many times. We used the BoWs

approach to transform locally extracted feature descriptors

from an action clip into a fixed-sized vector needed for

classification.

The proposed BoWs-based approach for HAR consists of

the following steps:

1) Local Feature Description: For extracting features

from RGB and depth videos, we utilized the dense

sampling of local visual descriptors, since densely sam-

pled descriptors are more accurate than keypoint-based

sampling [66], [67]. As a type of local visual descrip-

tors, we paid attention to densely extracted 3D vol-

umes of HOG [68]. For calculating dense HOG, firstly

the gradient magnitude response is computed in both

horizontal and vertical directions, which resulted in a

2D vector field per frame. Haar features are used to

calculate gradient magnitude response as these features

are faster and obtain better results for HOG [62]. Next,

we divided the input video into dense blocks of size

15 × 15 pixels × 20 frames. For every single block,

the magnitude is quantized inO orientation bins (where

O = 8), which is done by dividing each response

magnitude linearly over two neighboring orientation

bins. After that, we concatenated the responses of mul-

tiple adjacent blocks in both spatial and temporal direc-

tions. For this purpose, we concatenated the descriptors

of 33 blocks in the spatial domain and two blocks in

the temporal domain, resulting in a 144-dimensional

HOG descriptor. The size of each HOG descriptor is

then reduced to half using Principal Component Anal-

ysis (PCA), which lead to a 72-dimensional descriptor.

Finally, L1-normalization is performed followed by the

square root to obtain final descriptor representation.

2) Visual Codebook Construction: The number of sig-

nificant interest points and densely extracted HOG

features may change for different videos, which results

in feature vectors having different size. However,

to train a classifier, a fixed size feature vector is

required for all data sequences. For this purpose,

we clustered the features extracted from all training

videos into ‘’ clusters using k-means clustering. The

center of each cluster is considered as a visual word.

A group of these visual words together make a visual

vocabulary or codebook.

FIGURE 2. General pipeline for BoWs representation of dense HOG
features extracted from RGB and depth video sequences.

3) Histogram ofWords Generation:After constructing the

visual vocabulary/codebook from the training videos,

the next step is to quantize the HOG descriptors from

each training/testing video into a fixed-sized vector

known as a histogram of words. Histogram of words

shows the frequency of each visual word that is present

in a video sequence. So, for a given video, each of HOG

descriptor is compared with all visual words and voting

is performed for the best matching visual word, which

resulted in a histogram of the visual words for that

video. In this manner, all training and testing videos

are quantized into k-dimensional vectors referred to as

Bag-of-Words. After computing BoWs for training and

testing video data, classifiers are applied for learning

and recognition of human actions.

B. FEATURE FUSION

After extracting features from inertial sensors and RGB/depth

videos, we performed their fusion for HAR. For this pur-

pose, we independently computed feature vector for the data

obtained from each sensing modality (i.e., RGB/depth sensor

and inertial sensor) and concatenated the individual feature

vectors obtained from the multimodal data related to the same

action at the same time, which resulted in a new high dimen-

sional feature vector. This resultant feature vector possessed

more feature information to better recognize human actions

compared to the feature vector obtained for single sensing

modality.

For the feature-level fusion, it is necessary to balance

different feature sets obtained corresponding to the data from

different sensing modalities. Balancing different feature sets
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means that the concatenated features must have the same

numerical scale and similar length. Hence, we applied the

min-max normalization technique [69] on the feature sets

obtained for RGB/depth and inertial sensors before concate-

nating them to produce a single resultant vector. The purpose

of employing feature normalization is to modify the numer-

ical ranges and scaling parameters of the individual feature

sets to transform these values into a new feature domain,

having a similar numerical scale. Themin-max normalization

scheme preserves the original score distribution and maps the

values into a standard range [0, 1] according to the formula

given in Eq. (4).

x ′ =
x − min (Fx)

max(Fx) − min (Fx)
(4)

where, x is the value to be normalized and x ′ is the nor-

malized value, Fx represents the function that produces

x, min(Fx) and max(Fx) donates the minimum and max-

imum values of Fx respectively for all possible values

of x.

The size of the feature vector obtained in the case of inertial

sensor data is fixed for each data sequence, i.e., [1×12].

On the other hand, the feature vector extracted for RGB/depth

video sequences is of size [1×k], where k is the number of

visual words in BoWs representation of densely extracted

HOG features. The variable k is introduced to balance the

length of the fused feature vectors for RGB/depth and inertial

sensor data, and to find out the effect of varying feature

lengths on the feature-level fusion. The feature sets obtained

are firstly normalized and then concatenated together for

fusion. So, after feature-level fusion of a single inertial sensor

and RGB/depth sensor, we obtained a final feature vector of

size [1× (12+ k)]. When performing the feature-level fusion

of both accelerometer and gyroscope with RGB/depth sensor,

we got a final feature vector of size [1 × (12 × 2 + k)].

C. ACTION RECOGNITION

After feature extraction and fusion from multiple sensor

modalities, the next process is choosing a suitable classi-

fier for training the proposed framework for HAR and to

test it. Two popular classifiers, i.e., K-Nearest Neighbors

(K-NN) and Support VectorMachine (SVM), are used for this

purpose because of their efficient recognition performance

in existing state-of-the-art studies [8], [70]–[72]. Moreover,

we anticipated comparing their recognition performance

when the fusion of different sensing modalities is used for

HAR.

III. EXPERIMENTAL RESULTS

In this section, we first briefly describe the dataset used

for experimentation along with experimental design and

evaluation metrics. We then provide information regarding

the implementation of our proposed framework. After that,

we compare our algorithm with existing state-of-the-art HAR

methods. Finally, we discuss the qualitative results to provide

essential intuitions of the proposed method.

A. DATASET AND IMPLEMENTATION DETAILS

We evaluated the proposed method on a publicly accessi-

ble multimodal HAR dataset UTD-MHAD, which entails

27 human actions carried out by eight subjects (four females

and four males). Fig. 3 provides a list of these actions with

example images. Each subject repeated every action four

times. Hence, there were overall 864 trimmed data sequences

(8 (no. of subjects) × 4 (no. of trials per action per subject)

× 27 (no. of action)). During data recording, three data

sequences were corrupted; hence after removing the cor-

rupted sequences, 861 data sequences were left in the dataset.

Four sensing modalities including RGB, depth, skeleton joint

positions, and the inertial sensors (3-axis acceleration and

3-axis rotation signals) were used for data recording pur-

pose. The dataset was collected using a Microsoft Kinect

sensor (at a rate of 30 frames per second) and a wearable

inertial sensor (at a sampling rate of 50 Hz) in an indoor

setting. A Bluetooth enabled hardware module was used

as a wearable inertial sensor to record triaxial acceleration

(using an accelerometer) and triaxial angular velocity (using

a gyroscope). This sensing module was worn on the subject’s

right wrist for actions 1 to 21, whereas for actions 22 to

27, the sensor was placed on the subject’s right thigh. For

synchronizing data from different sensing modality, times-

tamp value was recorded for each data sample. The dataset

is comprised of four data files for each segmented action

trial, which correspond to four sensing modalities. A more

detailed explanation regarding the dataset can be found

in [53].

For implementing the proposed HAR method, K-NN and

SVM classifiers are trained and tested on UTD-MHAD. For

K-NN classifier, the parameter ‘K’ is set to 1, and an equal

weight Euclidean distance metric is used for similarity mea-

sure. The Nearest neighbor parameter ‘K’ is different from

‘k’ as ‘k’ is the number of visual words in BoWs repre-

sentation of RGB/depth video features. On the other hand,

a quadratic kernel is applied for SVM classifier with a one-

vs-one approach for multi-class classification. For ensuring

any impartiality in results, an 8-fold stratified cross-validation

method is used to assess the performance of these classifiers

in action recognition. As a result, all action instances in the

dataset are split randomly into eight sets and one set is used

for testing while the remaining sets are used for training.

This process is repeated eight times such that each set of

instances participated in training and testing of the classifiers

in different iterations. For all eight iterations, the classifiers

are evaluated, and the average results of these iterations are

computed, which are presented in this section. The perfor-

mance metrics used for evaluating the classifier performance

for the proposed HAR scheme are accuracy, precision, recall,

and f-measure.

B. ACTION RECOGNITION RESULTS AND ANALYSIS

For feature-level fusion, we concatenated the individual

feature sets extracted from inertial sensor data and the

corresponding RGB and/or depth video sequence after
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FIGURE 3. Set of 27 human actions in UTD-MHAD with sample image.

TABLE 2. HAR results obtained using inertial sensors (accelerometer (Acc.), gyroscope (Gyro.), and their feature-level fusion).

min-max normalization. Although feature-level fusion seems

to be simple and straightforward, it suffers from some sev-

eral deficiencies. First, the increase in the dimensionality

of the fused feature vector raises the computational com-

plexity of classification. Second, the dimensionality of the

RGB/depth features is typically much higher than the features

extracted for inertial sensor data, which ultimately degrades

the fusion purpose. We address these issues using a variable

length feature vector for RGB and depth data sequences.

The size of the feature vector obtained from inertial sensor

data is equal to 1×12. On the other hand, the length of

each feature vector extracted for RGB/depth video sequence

is equal to the number of clusters k in BoWs represen-

tation of dense HOG features. We evaluated HAR results

for varying values of k (starting from 10 to 30) to analyze

the effect of varying feature vector length on recognition

performance. Choosing k higher than 30 increases the dif-

ference between the lengths of the fused feature vectors

obtained from RGB/depth and inertial sensor data. Hence,

the feature sets become imbalanced and as a result, the

feature-level fusion becomes ineffective. Also, higher values

of k mean a higher number of clusters in BoWs feature repre-

sentation and smaller distance between the cluster centroids

or visual words. So, the chance of visual words misclas-

sification enhances, which eventually decreases the recog-

nition performance. The detailed results of HAR obtained

using different sensor modalities individually as well as their

combination are presented and discussed in the following

sections.

1) PERFORMANCE ANALYSIS OF INERTIAL SENSOR-BASED

HAR

This section discusses the results of HAR obtained using only

the inertial sensors for recognition. Table 2 summarizes these

results for the different combination of sensors. The results of

HAR are provided individually for each inertial sensor as well

as their feature-level fusion. It can be observed that K-NN

classifier provides better performance than SVM classifier in

recognizing human actions based on a single inertial sensor

or their combination. The accuracy rate achieved for K-NN
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TABLE 3. HAR results obtained using depth sensor, RGB sensor, and their feature-level fusion.

classifier in recognizing human actions using accelerometer

and gyroscope individually is 78.5% and 76.6% respectively.

These accuracy rates are 1.9% and 3.8% better than the

accuracy values achieved for SVM classifier when using

these sensors individually. The overall performance of an

accelerometer in recognizing human actions is better than

the gyroscope. Moreover, it can be observed that the fusion

of these inertial sensors improves the overall recognition

accuracy to 91.6% and 90.5% when classified using K-NN

and SVM classifiers individually. Overall, K-NN classifier

provides better results as compared to SVM classifier in

classifying human actions based on the feature-level fusion

of inertial sensors.

2) PERFORMANCE ANALYSIS OF RGB AND DEPTH

SENSOR-BASED HAR

This section provides the detailed results obtained for HAR

using depth and RGB sensors individually as well as their

combination. These results are computed for different values

of k , where k is the number of visual words in BoWs rep-

resentation of dense HOG features extracted for each depth

and RGB video sequence. This parameter k represents the

length of the final feature vector obtained for depth and RGB

video sequence. Varying the value of k affects the recognition

results as depicted in Table 3. The lower value of k indicates

less number of visual words in BoWs representation of dense

HOG features, which provides lower action recognition per-

formance. As we keep on increasing the value of k , the results

become saturated. Hence, using a very high value of k might

result in only a little performance improvement, but at the

expense of increased computational cost. Hence, a moderate

value of k leads to better recognition rate and lesser compu-

tational cost as well.

It can be observed from Table 3 that K-NN classifier

achieves maximum accuracy rate for HAR using depth and

RGB sensor individually, which is 81.5% and 85.2% respec-

tively for k = 25. Also, the difference between the accuracy

rate achieved for k = 5 and k = 10 is very high, which

reduces as the value of k is increased. In the case of SVMclas-

sifier, the maximum accuracy rate achieved using depth and

RGB sensor individually is 72% and 77.6% when k reaches

30. These results indicate that the individual performance of

the RGB sensor in recognizing human actions, based on dense

HOG features, is better than the performance of the depth

sensor. It is because of the reason that RGB video provides

rich texture information as compared to depth video, which is

very useful for extracting dense HOG features. Moreover, the

feature-level fusion of RGB and depth sensor improves HAR

performance to 89.3% and 85.4% using K-NN and SVM
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classifier respectively. However, it also increases the dimen-

sionality of the fused feature vector, which raises the compu-

tational complexity of the classification process. Moreover,

it might also degrade the overall recognition performance if

the value of k is set too high.

3) PERFORMANCE ANALYSIS OF HAR BASED ON

FEATURE-LEVEL FUSION OF RGB, DEPTH AND INERTIAL

SENSORS

This section analyzes the performance of HAR when the

feature-level fusion of RGB/depth and inertial sensors is per-

formed. The statistical features computed from inertial sensor

data are different from dense HOG-based features extracted

for RGB/depth video data and have different dimensions.

Feature-level fusion is practically possible when the dimen-

sions of the fused feature vectors are notmuch different. In the

case of inertial sensor data, the feature vector size is 1×12.

Hence, the length of RGB/depth feature vector is kept from

k = 10 to k = 30 for efficient recognition performance.

Table 4 presents the detailed results of HAR based on the

feature-level fusion of RGB/depth and inertial sensors. It can

be observed that K-NN classifier provides better results as

compared to SVM classifier. When using only the accelerom-

eter with a depth sensor, the maximum accuracy rate achieved

for HAR using K-NN classifier is 94.8% (for k = 25).

Whereas, SVM classifier provides a maximum accuracy rate

of 90.6% (for k = 25) for the same combination of sensors.

Adding gyroscope with a depth sensor for feature-level fusion

achieves a maximum accuracy rate of 93.7% and 89.7% using

K-NN and SVMclassifier respectivelywhen k = 25. It shows

that adding accelerometer with a depth sensor provides better

results for HAR as compared to the gyroscope. Adding both

accelerometer and gyroscope with a depth sensor improves

the recognition accuracy to 97% (for k = 30) using K-NN

classifier. In the case of SVM classifier, the accuracy rate

also improves to 95.1% when k = 25. These results indicate

that KNN classifier performs better than SVM classifier in

recognizing human actions.

The recognition results for the feature-level fusion of RGB

and inertial sensors are also presented in Table 4. When

adding accelerometer and gyroscope individually with RGB

sensor, the maximum accuracy rate achieved for HAR using

K-NN classifier is 96.1% (for k = 25) and 95.4% (for k =

25) respectively. In the case of SVM classifier, the addition

of accelerometer with RGB sensor provides a maximum

accuracy rate of 91.3% (for k = 25). Whereas, fusing

gyroscope with RGB sensor gives a maximum accuracy of

90.1% (for k = 30). The best accuracy rate achieved for

the proposed HAR framework is 97.6% (for k = 25) using

K-NN classifier, which is achieved by the fusion of RGB

and inertial sensors (both accelerometer and gyroscope). For

the same combination of sensors, SVM classifier provides

maximum accuracy of 95.5%when k = 25, which is lower as

compared to the accuracy rate obtained for K-NN classifier.

Adding depth sensor with RGB and inertial sensors provides

an accuracy improvement of 0.7% (accuracy =98.3% for

k = 25) and 0.6% (accuracy =96.1% for k = 20) when

evaluated using K-NN and SVM classifier respectively as

shown in Table 5. Hence, K-NN classifier provides the best

accuracy rate of 98.3% for the proposed HAR system using

the feature-level fusion of all four sensors (RGB, depth,

accelerometer, and gyroscope). In general, for any combina-

tion of sensing modalities, the recognition rate achieved for

the proposed HAR method using K-NN classifier is higher

than the accuracy rate obtained for SVM classifier. Further-

more, K-NN classifier also provides lower computational

complexity compared to SVM classifier. Therefore, K-NN

classifier is concluded as the optimal choice for the proposed

action recognition framework.

4) ANALYSIS OF FEATURE-LEVEL FUSION RESULTS FOR HAR

USING K-NN CLASSIFIER

This section compares the best performance achieved for the

proposed HAR method using K-NN classifier when different

sensingmodalities are used. Table 6 provides a comparison of

the average accuracy attained using different sensors along

with the final feature vector length and average process-

ing time. It can be observed that the feature-level fusion

of different sensors increases the length of the final feature

vector, which in return increases the average computational

time. The processing time for the proposed HAR method

is computed using MATLAB on a laptop with a 2.3 GHz

Intel Core-i5 CPU with 8 GB RAM. For each sensor or set

of sensors, the average time taken for feature extraction and

classification can be added to compute the overall average

computational time. For RGB/depth sensor, the average time

is calculated per frame, whereas, for inertial sensors, it is

computed per sample.

From Table 6, it can be seen that the accuracy rate

achieved for HAR with the accelerometer sensor only is

78.5%, whereas, for the gyroscope sensor, it is 76.6%. The

fusion of accelerometer and gyroscope provides an accuracy

of 91.6% at the expense of around 46% (53 microseconds

(µs)) increase in average processing time per sample. The

maximum accuracy rate achieved for HAR using depth and

RGB sensor alone is 81.5% and 85.2% respectively with the

feature vector length of 25. The fusion of depth and RGB

features improved the recognition accuracy to 89.3%, which

is 7.8% and 4.1% better than the individual accuracy rate

achieved using depth and RGB sensor respectively. However,

the fusion increased the average time for feature extraction to

7.34 milliseconds (ms) per frame, which is about 2.6 times

(160%) and 1.6 times (60%) more than the average time

taken for extracting depth and RGB features separately. The

average classification time of the fused feature vector, in this

case, is increased by 9.6% per frame. The fusion of inertial

sensors (both accelerometer and gyroscope) with depth and

RGB sensor separately achieved the maximum accuracy of

97% and 97.6% respectively. This accuracy rate is 12.4% and

15.5% more than the accuracy rate achieved for depth and

RGB sensor individually, with an increase of 8.6% in average

processing time.
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TABLE 4. HAR results obtained using feature-level fusion of depth and inertial sensors (accelerometer (Acc.) and gyroscope (Gyro.)).
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TABLE 5. HAR results obtained using feature-level fusion of RGB, depth, and inertial sensors (accelerometer (Acc.) and gyroscope (Gyro.)).

FIGURE 4. Confusion matrix for HAR results obtained for the feature-level fusion of RGB and inertial sensors (for
k = 25).
∗ Each entry in the confusion matrix represents predicted/total elements for the given class (rows represent ground
truth and columns represent predicted class).

The best accuracy rate obtained for the proposed HAR

approach is 98.3%, which is achieved as a result of the

feature-level fusion of four different sensors including RGB,

depth, accelerometer, and gyroscope sensor. However, in this

case, the average time for classification is increased by 13.5%

when compared with the average classification time taken for

the fusion of inertial sensors with RGB or depth sensor. The

average time required for feature extraction is also increased

with a maximum factor of approximately 2.6, which can be

observed from Table 6. On the other hand, adding inertial

sensors with RGB or depth sensor only results in a slight

increase in the average processing time and provides an

accuracy rate comparable to the maximum accuracy rate. The

accuracy rate achieved by the fusion of RGB and inertial

sensors is 97.6%, which is 8.3% more than that obtained by

feature-level fusion of RGB and depth sensor using K-NN

classifier. Hence, it is evident that the overall performance

of the proposed HAR method (considering the accuracy rate

and the computational time as a trade-off) is better for the

feature level fusion of inertial sensors with only RGB or depth

sensor. In particular, as the RGB sensor provides rich texture

information and inertial sensor tracks 3Dmotion information,

it is concluded that their feature-level fusion provides the

overall best performance for the proposed HAR framework.

Fig. 4 provides the confusion matrix of the best overall

results achieved for the feature-level fusion (using RGB and

inertial sensors) to demonstrate per class recognition accu-

racy of all 27 actions inUTD-MHAD. It can be observed from

the figure that most of the actions are recognized with a very

high individual accuracy. The lowest individual recognition

accuracy achieved is 87.5% for action 20, i.e., right-hand

catch an object.

5) COMPARISON OF FEATURE-LEVEL FUSION AND

DECISION-LEVEL FUSION RESULTS FOR PROPOSED HAR

METHOD

Our proposed method for HAR relies on the feature-level

fusion of multiple sensors for robust action recognition.
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TABLE 6. Comparison of HAR results obtained for the proposed scheme using K-NN classifier with single and multiple sensing modalities.

However, most of the existing studies for multimodal action

recognition [53], [54] focused on decision-level fusion to

achieve effective recognition results as the features being

extracted from different sensors are independent. Instead, the

feature-level fusion requires the numerical scale and dimen-

sions of the fused feature vectors to be similar, which is not

possible with the type of features extracted for RGB and depth

video sequences in the existing studies. Also, the dimensions

of the RGB and depth features are often quite higher as

compared to the inertial sensor features, which is infeasi-

ble for the feature-level fusion. Consequently, the results

obtained for the feature-level fusion are not much consistent

and accurate as compared to the decision-level fusion results

in the literature. In our proposed study, we first balanced

the dimensions and numerical scale of the RGB-D features

(densely extracted HOG) and the statistical signal attributes

computed from the inertial sensors. After that, we performed

multimodal feature-level fusion to achieve the desired HAR

results.

To validate the effectiveness of our feature-level fusion

approach, we also computed the decision-level fusion results

for the proposed scheme and compared both results. For

the decision-level fusion, we followed the same approach as

proposed by the authors in [53], [54]. For the fusion of n

different sensors, we trained n K-NN classifiers separately

by passing the corresponding set of features as an input to

each classifier. During testing, we merged the decision of

each classifier using a logarithmic opinion pool (LOGP) [73]

at the posterior-probability level. For calculating the posterior

probability of each classifier, we used Euclidean distance to

compute the error vector. The final class label for each testing

instance is assigned to the action class with the smallest error.

Fig. 5 shows the comparison of the accuracy rate achieved

for the proposed HAR with the feature-level and decision-

level fusion. For any set of sensing modalities, the percentage

FIGURE 5. Comparison of the maximum accuracy rate achieved for the
proposed HAR framework with the feature-level and decision-level fusion
of different sensors using K-NN classifier. For any combination of sensors,
the feature-level fusion outperforms the decision-level fusion.
∗ Here, ‘A’ represents the accelerometer sensor, ‘G’ represents the
gyroscope, ‘D’ is the depth sensor, and ‘RGB’ represents the RGB sensor.

accuracy achieved for the multimodal feature-level fusion is

higher than that obtained for the decision-level fusion. The

proposed HAR framework with the feature-level fusion of

RGB and inertial sensors provides a 19.3% increase in the

accuracy rate as compared to the decision-level fusion of

the same set of sensors. It substantiates the efficacy of the

proposed feature-level fusion over the decision-level fusion.
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TABLE 7. Comparison of proposed HAR method results with existing studies.

6) PERFORMANCE COMPARISON OF PROPOSED HAR

SCHEME WITH STATE-OF-THE-ARTS

This section provides a performance comparison of the pro-

posed scheme for HAR with the existing techniques. The

proposed HAR scheme, based on the feature-level fusion

of RGB and inertial sensors, provides superior recognition

performance on UTD-MHAD compared to existing methods

as shown in Table 7. Chen et al. [53] presented UTD-MHAD

in their study and utilized the decision-level fusion of depth

and inertial sensors (accelerometer and gyroscope) for HAR.

They computed three statistical features for inertial sensor

data and extracted DMMs for depth video sequences. The

authors partitioned the dataset into two equal splits for train-

ing and testing. The data corresponding to four different users

was utilized for training whereas the data from the rest of

the users was used for testing, which resulted in an average

accuracy rate of 79.1%. The authors modified their existing

methodology in [54] to incorporate real-time HAR, which

achieved recognition accuracy of 91.5% using an 8-fold

cross-validation scheme for subject-generic experiments. The

authors also conducted experiments using subject-specific

training and testing, which achieved an average accuracy

rate of 97.2%. Ben Mahjoub and Atri [8] proposed an RGB

sensor-based scheme that utilized the STIP for detecting

significant changes in an action clip. Moreover, they used

the HOG and Histogram of Optical Flow (HOF) as feature

descriptors and achieved an accuracy rate of 70.37% using

SVM classifier. Wang et al. [40] used CNN for HAR and

utilized the skeleton information from the Kinect sensor to

achieve an overall recognition accuracy of 88.1% on UTD-

MHAD. Kamel et al. [41] applied deep CNN for HAR

using depth maps and skeleton information and achieved an

accuracy rate of 87.9% onUTD-MHAD dataset. The research

work in [39] proposed the skeleton optical spectra (SOS)

method based on CNNs to recognize human actions.

The authors encoded the skeleton sequence information into

color texture images for HAR and achieved an accuracy

rate of 86.9% on UTD-MHAD. The authors in [60] utilized

the decision-level fusion for HAR using depth camera and

wearable inertial sensors. They extracted CNN based features

for depth sensor and used CNN and LSTM networks for

inertial sensors. Their study achieved an accuracy of 89.2%

on UTD-MHAD. Recently, Cui et al. [61] used the skeletal

data to extract the temporal and spatial features for action

recognition using LSTM and spatial CNN models respec-

tively. They achieved a maximum accuracy rate of 87.0% on

UTD-MHAD.

Our proposed scheme combines the color and rich texture

information from the RGB sensor with 3D motion informa-

tion obtained from inertial sensors for robust HAR. The pro-

posed scheme for HAR, based on the feature-level fusion of

RGB and inertial sensors, obtained the maximum recognition

accuracy of 97.6% using 8-fold cross-validation, which is

better than the reported results of existing techniques. Fur-

thermore, the proposed scheme is computationally efficient

as the overall length of the fused feature vector is very small,

i.e., 49 (25 + 2 × 12), for the case when performance is

achieved for K-NN classifier using the fusion of RGB and

inertial sensors. On the other hand, in existing techniques,

generally, the dimensions of the feature vector obtained

for RGB/depth video sequence are very high, which makes

the HAR system computationally expensive. Moreover, the

application of CNN for HAR also increases the computa-

tional cost of the system. Moreover, in the case of RGB and

depth sensor fusion, the computational complexity and the

dimensions of the fused feature vector increases significantly.

However, in our proposed method, we quantized the dense

HOG features computed on RGB or depth video sequences to

have a maximum length of 30. Then, we concatenated these

features with those obtained from inertial sensor data for the
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feature-level fusion. In this way, we increased the accuracy

of HAR without making the proposed framework computa-

tionally expensive. Finally, to have a fair comparison with

the results reported for subject-specific experiments in [54],

we also evaluated the proposed HAR scheme using the same

protocols. Using the feature-level fusion of RGB and inertial

sensors, the subject-specific experiments for our proposed

scheme obtained an accuracy rate of 98.2%, which is better

than previously reported results in [54]. Hence, it is concluded

that the proposed scheme provides better recognition results

than state-of-the-art.

IV. CONCLUSION

In this paper, a feature-level fusionmethod has been proposed

for human action recognition, which utilizes data from two

differing sensing modalities: vision and inertial. The pro-

posed system merges the features extracted from individual

sensing modalities to recognize an action using a supervised

machine learning approach. The detailed experimental results

indicate the robustness of our proposed method regard-

ing classifying human actions as compared to the settings

where each sensor modality is used individually. Also, the

feature-level fusion of time domain features computed from

inertial sensors and densely extracted HOG features from

depth/RGB videos reduces the computational complexity and

improves the recognition accuracy of the system as compared

to state-of-the-art deep CNN methods. Regarding classifier

performance, K-NN classifier provides better results for the

proposed HAR system as compared to SVM classifier.

The proposed HAR methods also have some limitations.

For example, it works with pre-segmented actions, which do

not exist in practice. Moreover, it does not incorporate multi-

view HAR, and the orientation of the person whose action

is being recognized remains the same with respect to the

camera. In the future, we plan to extend the proposed HAR

method to address these limitations. Furthermore, we aim to

investigate the specific applications of the proposed fusion

framework using RGB-D camera and wearable inertial sen-

sors.
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