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One of the most common analysis tasks in genomic research is to iden-
tify genes that are differentially expressed (DE) between experimental condi-
tions. Empirical Bayes (EB) statistical tests using moderated genewise vari-
ances have been very effective for this purpose, especially when the number
of biological replicate samples is small. The EB procedures can, however, be
heavily influenced by a small number of genes with very large or very small
variances. This article improves the differential expression tests by robustify-
ing the hyperparameter estimation procedure. The robust procedure has the
effect of decreasing the informativeness of the prior distribution for outlier
genes while increasing its informativeness for other genes. This effect has
the double benefit of reducing the chance that hypervariable genes will be
spuriously identified as DE while increasing statistical power for the main
body of genes. The robust EB algorithm is fast and numerically stable. The
procedure allows exact small-sample null distributions for the test statistics
and reduces exactly to the original EB procedure when no outlier genes are
present. Simulations show that the robustified tests have similar performance
to the original tests in the absence of outlier genes but have greater power
and robustness when outliers are present. The article includes case studies for
which the robust method correctly identifies and downweights genes associ-
ated with hidden covariates and detects more genes likely to be scientifically
relevant to the experimental conditions. The new procedure is implemented
in the limma software package freely available from the Bioconductor repos-
itory.

1. Introduction. Modern genomic technologies such as microarrays and
RNA sequencing have made it routine for biological researchers to measure gene
expression on a genome-wide scale. Researchers are able to measure the expres-
sion level of every gene in the genome in any set of cells chosen for study under
specified treatment conditions. This article focuses on one of the most common

Received October 2014; revised December 2015.
1Supported in part by the University of Melbourne (Ph.D. scholarship to BP), by the National

Health and Medical Research Council (Fellowship 1058892, Program Grant 1054618 and the IRIISS)
and by a Victorian State Government OIS grant.

Key words and phrases. Empirical Bayes, outliers, robustness, gene expression, microarrays.

946

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/16-AOAS920
http://www.imstat.org


ROBUST EMPIRICAL BAYES 947

analysis tasks, which is to identify genes that are differentially expressed (DE)
between experimental conditions.

Gene expression experiments pose statistical challenges because the data are of
extremely high dimension, while the number of independent replicates of each
treatment condition is often very small. Simply applying univariate statistical
methods to each gene in succession can produce imprecise results because of the
small sample sizes. Substantial gains in performance can be achieved by leveraging
information from the entire dataset when making inference about each individual
gene.

Empirical Bayes (EB) is a statistical technique that is able to borrow informa-
tion in this way [Efron and Morris (1973), Morris (1983), Casella (1985)]. EB
has been applied very successfully in gene expression analyses to moderate the
genewise variance estimators [Baldi and Long (2001), Wright and Simon (2003),
Smyth (2004)]. These articles assume a conjugate gamma prior for the genewise
variances and produce posterior variance estimates that are a compromise between
a global variance estimate and individual genewise variance estimates. The poste-
rior variance estimators can be substituted in place of the classical estimators into
linear model t-statistics and F -statistics. Wright and Simon (2003) and Smyth
(2004) derived exact small-sample distributions for the resulting moderated test
statistics. They showed that the EB statistics follow classical t and F distributions
under the null hypothesis but with augmented degrees of freedom. The additional
degrees of freedom of the EB statistics relative to classical statistics represent the
information that is indirectly borrowed from other genes when making inference
about each individual gene.

EB assumes a Bayesian hierarchical model for the genewise variances, but, in-
stead of basing the prior distribution on prior knowledge as a Bayesian procedure
would do, the prior distribution is estimated from the marginal distribution of the
observed data. Smyth (2004) developed closed-form estimators for the parame-
ters of the prior distribution from the marginal distribution of the residual sample
variances. This procedure is implemented in the limma software package [Ritchie
et al. (2015)] and the resulting EB tests have been shown to offer improved statisti-
cal power and false discovery rate (FDR) control relative to the ordinary genewise
t-tests, especially when the sample sizes are small [Kooperberg et al. (2005), Murie
et al. (2009), Ji and Liu (2010), Jeanmougin et al. (2010)]. The limma software
has been used successfully in thousands of published biological studies using data
from a variety of genomic technologies, especially studies using expression mi-
croarrays and RNA-seq.

This article improves the limma EB differential expression tests by robustifying
the hyperparameter estimation procedure. As in the original method, we fit ge-
newise linear models to the log-expression values and extract residual variances,
but now we give special attention to residual variances that are exceptionally large
or exceptionally small. Genes corresponding to extreme variances will be consid-
ered “outliers.” Following terminology used in the genomics literature, we refer
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to outlier genes with large variances as “hypervariable genes.” We show that, for
certain genomic datasets, a small number of outlier genes can have an undesirable
influence on the hyperparameter estimators, decreasing the effectiveness of the EB
differential expression procedures. (Figure 1 plots residual standard deviations for
three datasets. In each study there are special biological factors that cause a sub-
set of the genes to have larger than expected residual variances.) We show that
in such cases the effectiveness of EB can be restored by a robust approach that
isolates the outlier genes. We develop a robust estimation scheme with a positive
breakdown point for the hyperparameters and incorporate this into the differential
expression procedure. The robust EB procedure has the effect of decreasing the
informativeness of the prior distribution for hypervariable genes while increasing
its informativeness for other genes. This effect has the double benefit of reduc-
ing the chance that hypervariable genes will be spuriously identified as DE while
increasing statistical power for the main body of genes.

Our robust EB approach uses more diffuse prior distributions for the variances
of hypervariable genes. A conjugate prior is still used for each gene and this al-
lows us to preserve a key feature of the original EB differential expression proce-
dures, which is the ability to derive exact small-sample null distributions for the
test statistics. Our robust EB approach is fast and numerically stable without diffi-
cult convergence issues. It reduces exactly to the original EB procedure when there
are no hypervariable genes. Simulation studies show that the robustified tests for
differential expression have similar performance to the original tests in the absence
of outlier genes but have greater power and robustness when they are present.

To the best of our knowledge, there has been no previous work on robust EB for
variances. Most robust EB schemes in other contexts have been based on heavy-
tailed prior distributions. We have avoided such an approach because crucial ad-
vantages of the original DE procedures would thereby be lost, in particular, the pos-
terior mean variance estimators would no longer be available in closed form and
the test statistics would no longer yield exact p-values. Efron and Morris (1972)
proposed limited translation rules when estimating means of standard normal dis-
tributions. This proposal originated the idea of limited learning for extreme cases,
but with the aim of limiting the bias in extreme cases rather than improving es-
timation of the hyperparameters. Gaver and O’Muircheartaigh (1987) analyzed a
Poisson process using a heavy-tailed (log-Student) prior distribution for the Pois-
son mean. This approach achieves insensitivity to outliers but loses efficiency as
well as being less mathematically tractable. Liao, McMurry and Berg (2014) es-
timated log-fold expression changes and achieved robustness with respect to mis-
specified working priors by conditioning on the rank of each estimated log-fold
change rather than on the actual observation. Again, this is less mathematically
tractable than our approach.

Our robustified EB procedure has been implemented in the limma software
package and can be invoked by the option robust=TRUE in calls to the eBayes
or treat [McCarthy and Smyth (2009)] functions. Invoking the option requires
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FIG. 1. Hypervariable genes for the three case study datasets. Left panels plot genewise residual

standard deviations vs average log 2-expression. Right panels show probability plots of the standard

deviations after transforming to equivalent normal deviates. Hypervariable genes are marked by

chromosome number in panels (a)–(d) and by gene function in panels (e)–(f). For each dataset the

hypervariable genes have clear biological interpretations.
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no other changes to the analysis pipelines from a user point of view. All down-
stream functions recognize and work with robust EB results as appropriate.

The following sections review the EB approach to differential expression, then
derive the robust estimators and modified differential expression scheme. We eval-
uate the performance of the robustified procedure using simulations, then present
three case studies in which the EB approach identifies genetic instabilities specific
to each study. We give a detailed analysis of a microarray study of PRC2 function
in pro-B cells for which a gender effect produces hypervariable genes. The EB
procedure is effective at downweighting sex-linked genes associated with the un-
wanted covariate in favor of genes of more scientific interest. Finally, we discuss
possible generalizations of our robust EB approach to other contexts.

2. Linear models and moderated t-statistics. Consider a genomic experi-
ment in which the expression levels of G genes are measured for n RNA samples.
We follow the notation and linear model formulation introduced by Smyth (2004).
Write ygi for the log-expression level of gene g in sample i. The log-expression
values satisfy genewise linear models

E(yg) = Xβg,

where yg is the column vector (yg1, . . . , ygn)
T , X is an n×p design matrix of full

column rank representing the experimental design and βg is an unknown coeffi-
cient vector that parametrizes the average expression levels in each experimental
condition. For each gene, the ygi are assumed independent with

var(ygi) = σ 2
g /wgi,

where σ 2
g is an unknown variance and the wgi are known weights. The least squares

coefficient estimator is

β̂g =
(

XT WgX
)−1

XT Wgyg,

where Wg is the diagonal matrix with elements wg1, . . . ,wgn. The residual sample
variances are

s2
g = (yg − µ̂g)

T (yg − µ̂g)/dg,

where µ̂g = Xβ̂g and dg is the residual degrees of freedom. Usually dg = n − p,
but genes with missing y values or zero weights may have smaller values for dg .
Conditional on σ 2

g , dgs
2
g/σ 2

g is assumed to follow a chi-square distribution with dg

degrees of freedom, an assumption we write as

s2
g |σ 2

g ∼ σ 2
g χ2

dg
/dg.

We assume a conjugate prior distribution for σ 2
g in order to stabilize the ge-

newise estimators. The σ 2
g are assumed to be sampled from a scaled inverse chi-

square prior distribution with degrees of freedom d0 and location s2
0 ,

σ 2
g ∼ s2

0d0/χ
2
d0

.
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It follows that the posterior distribution of σ 2
g given s2

g is scaled inverse chi-square,

σ 2
g |s2

g ∼
d0s

2
0 + dgs

2
g

χ2
d0+dg

,

and the posterior expectation of 1/σ 2
g given s2

g is 1/s̃2
g with

s̃2
g =

d0s
2
0 + dgs

2
g

d0 + dg

.

The s̃2
g are the EB moderated variance estimators. The moderated t-statistic for a

given coefficient βig is

t̃gj = β̂gj

s̃g
√

vi

,

where vi is the ith diagonal element of (XT WgX)−1. If the null hypothesis βgj = 0
is true, then t̃gj follows a t-distribution on dg + d0 degrees of freedom [Smyth
(2004)]. In general, any ordinary genewise t or F -statistic derived from the linear
model can be converted into an EB moderated statistic by substituting s̃2

g for s2
g , in

which case the denominator degrees of freedom for the null distribution increase
from dg to d0 + dg .

3. Robust hyperparameter estimation. Under the above hierarchical model,
s2
g follows a scaled F -distribution on dg and d0 degrees of freedom,

s2
g ∼ s2

0Fdg,d0 .

The log-variances log s2
g follow Fisher’s z-distribution, which is roughly symmet-

ric and has finite moments of all orders. The limma package estimates the hy-
perparameters s2

0 and d0 by matching the theoretical mean and variance of the
z-distribution to the observed sample mean and variance of the zg . The empirical
estimates s2

0 and d0 are then substituted into the above formulas to obtain t̃gj and
to conduct genewise statistical tests for differential expression.

As the observed variance of the log s2
g increases, the estimated value of d0 de-

creases, meaning that less information is borrowed from the prior to form the mod-
erated t-statistics. In the examples shown in Figure 1, the variance of log s2

g would
be much reduced if a small number of the most variable genes were excluded. We
therefore seek to replace limma’s moment estimation scheme for the hyperparam-
eters with a robust version.

Our approach is to apply moment estimation to the Winsorized sample vari-
ances. The idea of Winsorizing is to reset a specified proportion of the most ex-
treme sample variances to less extreme values [Tukey (1962)]. Let pu and pl be
the maximum proportion of outliers allowed in the upper and lower tails of the
s2
g respectively. Typical values are pl = 0.05 and pu = 0.1, although any values



952 B. PHIPSON ET AL.

strictly between 0 and 0.5 are permissable. Let ql and qu be the corresponding
quantiles of the empirical distribution of s2

g , so that pl of the variances are less
than or equal to ql and pu are greater than or equal to qu. The empirical Winsoriz-
ing transformation is defined by

win
(

s2
g

)

=

⎧

⎪

⎨

⎪

⎩

ql if s2
g ≤ ql ,

s2
g otherwise,

qu if s2
g ≥ qu.

Write zg = log win(s2
g) for log-transformed Winsorized variances, and let z̄ and s2

z

be the mean and variance of the observed values of zg .
Define the Winsorized F -distribution as follows. If f ∼ Fdg,d0 , then the Win-

sorized random variable is

win(f ) =

⎧

⎨

⎩

ql if f ≤ ql ,
f otherwise,
qu if f ≥ qu,

where now ql and qu are the lower tail pl and upper tail pu quantiles of the Fdg,d0

distribution.
Write ν(dg, d0) and φ(dg, d0) for the expected value and variance of log win(f ).

An efficient and accurate algorithm for computing ν and φ using Gaussian quadra-
ture is described in the Supplementary Methods [Phipson et al. (2016)].

Assuming that the dg are all equal, the hyperparameter d0 is estimated by equat-
ing s2

z = φ(dg, d0) and solving for d0 using a modified Newton algorithm [Brent
(1973)]. Having estimated d0, the logarithm of the parameter s2

0 is estimated by
z̄ − ν(dg, d̂0).

If the dg are not all equal, then the s2
g are transformed to equivalent random

variables with equal dg before applying the above algorithm. Details of this trans-
formation are given in the Supplementary Methods [Phipson et al. (2016)].

4. Gene-specific prior degrees of freedom. Having estimated d0 and s0 ro-
bustly, we can identify genes that are outliers in that their variances are too large
to have reasonably arisen from the estimated prior. The question naturally arises
as to how to handle such outliers. One reasonable approach would be to ignore
the prior information for such genes, on the basis that the prior appears to be
inappropriate. This approach would assign d0 = 0 for such genes, meaning that
ordinary t-tests would be used for these genes instead of EB moderated statistics.
On the other hand, the prior should in principle still have some limited relevance
even for the outliers. Our approach is to assign gene-specific prior degrees of free-
dom, d0g , whereby d0g = d0 for nonoutlier genes, but outlier genes are assigned
smaller values depending on how extreme the outlier is. In effect, we assume that
each hypervariable gene g has a true variance σ 2

g sampled from s2
0d0g/χ

2
d0g

with
0 < d0g < d0.

We start by identifying a lower bound for the d0g from the largest observed s2
g

value. Specifically, we find doutlier such that the maximum s2
g is equal to the median
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of the s2
0Fdg,doutlier distribution. A fast stable numerical algorithm for finding doutlier

is given in the Supplementary Methods [Phipson et al. (2016)].
Next we evaluate the posterior probability that each gene is a hypervariable

outlier. Let pg be the p-value for testing whether gene g is a outlier, defined by
pg = P(f > s2

g/s2
0) where f ∼ Fdg,d0 . Let π0 be the prior probability that gene g

is not an outlier and let rg be the marginal probability of observing a residual vari-
ance more extreme than s2

g . The posterior probability, given s2
g , that case g is not

an outlier is πg = pgπ0/rg . Assuming that most genes are not outliers, we conser-
vatively set π0 = 1. The marginal probability rq can be estimated empirically from
the rank of s2

g among all the observed values of s2
g , that is, by rg = (r − 0.5)/G

where r is the rank of s2
g . Substituting these values in the above formula yields a

conservative estimate πg = pg/rg .
The initial estimate of πg is not necessarily monotonic in s2

g or pg . We en-
sure that πg is a nondecreasing function of pg in the following manner. First
the cases are ordered in increasing order of pg . Then the cumulative mean π̄g =
(1/g)

∑g
i=1 πi is computed for each g. Let gm be the first value of g for which π̄g

achieves its minimum. All πg for g = 1, . . . , gm are set to the minimum value of π̄g

to allow for the possibility that πg might be small for a group of cases but not for
the most extreme case. Finally, a cumulative maximum filter is applied to the πg ,
after which the πg are nondecreasing. In practice, this process is nearly identical
to using isotonic regression [Barlow et al. (1972)] to enforce monotonicity.

Finally, the genewise prior degrees of freedom are defined by

d0g = πgd0 + (1 − πg)doutlier.

This process ensures that d0g = d0 for most genes, but any gene that is a clear
outlier with a very small pg value will be assigned a much lower value.

5. Covariate dependent priors. In gene expression experiments, the vari-
ance of the log-expression values often depends partly on the magnitude of the
expression level [Sartor et al. (2006), Law et al. (2014)]. It is therefore helpful to
extend the EB principle to permit the prior variance s2

0 to depend on the average
log-expression Ag of each gene. This extension generalizes the prior distribution
for σ 2

g to be gene-specific:

σ 2
g ∼ s2

0gχ
2
d0

/d0,

where s2
0g varies smoothly with Ag . In other words, the prior distribution depends

on the covariate Ag . Such a strategy is implemented in the limma package [Ritchie
et al. (2015)].

Our strategy for robust EB with a variance trend is as follows. First we fit a
robust lowess trend [Cleveland (1979)] to log s2

g as a function of Ag . We detrend
the log s2

g by subtracting the fitted lowess curve, then apply the robust EB algorithm

described above to the detrended variances. The final genewise prior values s2
0g are
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the product of the unlogged lowess trend and the s2
0 estimated from the detrended

variances.

6. Software implementation. The robust hyperparameter estimation strategy
described above is implemented in the limma function fitFDistRobustly.
The tail proportions for Winsorizing are user settable with defaults pl = 0.05 and
pu = 0.1. This function is called by squeezeVar, which computes EB moder-
ated variances. squeezeVar in turn is called by user-level functions including
eBayes and treat in the limma package, and estimateDisp and glmQL-
Fit in the edgeR package [Robinson, McCarthy and Smyth (2010)]. These func-
tions integrate the robust EB strategy into analysis pipelines for gene expression
microarrays and RNA-seq. glmQLFit is also called in analysis pipelines of the
csaw and diffHic packages for the analysis of ChIP-seq and Hi-C sequencing data
[Lun and Smyth (2015a, 2016)].

7. Evaluation using simulated data. Simulations were used to evaluate the
performance of the robust hyperparameter estimators. Expression values were gen-
erated for 10,000 genes and 6 RNA samples. The RNA samples were assumed to
belong to two groups, with three in each group, leading to a linear model with
dg = 4 residual degrees of freedom. Genewise variances and expression values
were generated according to the hierarchical model of Section 2 with s0 = 0.2 and
with d0 = 2, 4 or 10. Both the standard and robust hyperparameter estimators were
found to be accurate in the absence of outliers [Figures 2(a), (c)]. When 250 hy-
pervariable genes were included, however, the robust estimators were considerably
more accurate than the standard [Figures 2(b), (d)]. The hypervariable genes were
simulated to have d0g = 0.5. Next we checked type I error rates for the EB t-tests
in the absence of outliers. Both standard and robust tests were found to control
the error rate correctly (Table 1). In all simulations, the tail proportions pl and pu

were at their default values.
Finally, we evaluated statistical power and FDR control. Each simulated dataset

now included 500 DE genes, with log-fold changes generated from a N(0,4) dis-
tribution. In the absence of hypervariable genes, the standard and robust EB tests
were indistinguishable in terms of false discoveries or power [Figures 3(a), (c)]. In
the presence of 250 outliers, the robust tests consistently gave fewer false discov-
eries [Figure 3(b)] and higher power [Figure 3(d)]. As expected, the improvement
achieved by the robustified tests was greater for larger values of d0. For simplicity
of interpretation, no genes were both DE and hypervariable in these simulations.

8. Case studies.

8.1. Loss of polycomb repressor complex 2 function in pro B cells. Polycomb
group proteins are transcriptional repressors that play a central role in the estab-
lishment and maintenance of gene expression patterns during development. Suz12
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FIG. 2. Boxplots of standard and robust hyperparameter estimates from 1000 simulated datasets.
True values are 0.4 for s2

0 and either 2, 4 or 10 for d0. Panels (a) and (c) show estimates when no

outliers are present. Panels (b) and (d) show estimates when the data includes 250 hypervariable

genes.

is a core component of Polycomb Repressive Complex 2 (PRC2). Majewski et al.
(2008, 2010) studied mice with a mutation in the Suz12 gene that results in loss
of function of the Suz12 protein and hence PRC2. They profiled gene expression
in hematopoietic stem cells from these mice. Here we describe a gene expression
study of a different hematopoietic cell type from the same Suz12 mutant mice
strain. This study profiles gene expression in pro-B cells, an early progenitor im-
mune cell intermediate in a series of development stages between hematopoietic
stem cells and mature B-cells.

Our interest is to study development, so cells were isolated from 16-day embry-
onic mice. For this study, RNA was extracted from foetal pro B cells that were iso-
lated from the liver of four wild-type mice and four Suz12 mutant mice. RNA was
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TABLE 1
Type I error rates for standard and robust EB t-tests. Datasets were simulated with different d0

values but with no DE genes and or outliers. The table gives the mean error rate over all genes in

1000 simulated datasets for various p-value cutoffs

Nominal error rate

d0 Method 0.001 0.01 0.05 0.1

2 Standard 0.000996 0.00998 0.05001 0.09994
Robust 0.000996 0.00998 0.04996 0.09983

4 Standard 0.001008 0.01002 0.05008 0.10012
Robust 0.001013 0.01004 0.05006 0.10005

10 Standard 0.001017 0.01005 0.05018 0.10008
Robust 0.001033 0.01010 0.05021 0.10005

hybridized at the Australian Genome Research Facility to Illumina Mouse Whole-
Genome-6 version 2 BeadChips, a microarray platform containing about 48,000
60-mer DNA sequences probing most genes in the genome. Intensities were back-
ground corrected, quantile normalized and transformed to the log2-scale using the
neqc function [Shi, Oshlack and Smyth (2010)]. One of the Suz12 mutant samples
was discarded because it clustered with the wild type instead of the Suz12 samples,
leaving four wild type and three Suz12 mutant samples. Probes were filtered from
further analysis if they failed to achieve a detection p-value of less than 0.01 in at
least two of the remaining samples, leaving 14,084 probes for analysis.

Linear modeling was applied to the normalized log-expression values, resulting
in a residual sample variance on 5 degrees of freedom for each probe. Figure 1(a)
shows the residual standard deviation plotted against the average log intensity for
each probe. The gray curve shows the estimated trend for the prior variance. The
robust algorithm identified a number of outlier variances [Figure 1(b)]. The non-
robust estimate of the prior degrees of freedom was 11.9. The robust algorithm
estimated prior degrees of freedom 14.1 for most genes, but with prior degrees of
freedom as low as 0.5 for the outlier variances [Figure 4(a)].

Further examination showed that many of the probes identified as outliers cor-
responded to genes known to have sex-linked expression, including many on the X
or Y chromosomes [Figure 1(a), (b)]. The most outlying variances corresponded
to Y chromosome genes Erdr1 and Eif2s3y up-regulated in males, and X chromo-
some gene Xist, known to be up-regulated in females. Other outlier genes were
ribosomal genes Rn18s and Rpl7a, suggesting ribosomal RNA retention in one or
more samples, and hemoglobin genes Hbb-y and Hbb-b1, suggesting red blood
or bone marrow content in some tissue samples. None of these genes should be
related to the Suz12 mutation.

Differential expression between the Suz12 mutants and the wild-type mice was
assessed using EB moderated t-statistics. P -values were adjusted to control the



ROBUST EMPIRICAL BAYES 957

FIG. 3. Detection of differential expression. Panels (a)–(b) show the number of false discoveries

among the 500 top-ranked genes. Panels (c)–(d) show power, the proportion of truly DE genes se-

lected as significant at various FDR cutoffs. Results are averaged over 1000 simulations. Simulations

(b) and (d) include 250 hypervariable genes. Results are shown for both standard and robust EB tests

and for three values of the prior degrees of freedom.

false discovery rate at less than 5% [Benjamini and Hochberg (1995)]. The stan-
dard and robust procedures found 251 down-regulated and 35 up-regulated probes
in common [Figure 4(b)]. However, 22 and 16 down-regulated genes were found
only by the robust or standard procedures respectively. The nonrobust unique genes
tended to be sex linked or hemoglobin related (Xist, Apoa2, Hbb-b1, etc.), whereas
the robust unique genes were related to programmed cell death (Bcl2l1), cell cy-
cle (Ccne2) or chromatin remodeling (Myst2). For up-regulated genes, 8 and 10
unique probes were found by the robust and standard procedures respectively. The
nonrobust unique genes tended to be Y chromosome sex-linked genes (Ddx2y,
Erdr1 etc.), whereas the robust unique genes appeared related to the PRC2 process
of interest.
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FIG. 4. (a) Square-root standard deviation plotted against average log intensity for each probe.
The gray line shows the trended estimate of the prior variance. Points are colored by the estimated

prior degrees of freedom: probes with larger sample variances have smaller df. (b) Venn diagram

showing overlap of the numbers of significant genes for Suz12 versus wild type using the standard

and robust methods.

Investigation after the analysis confirmed that two of the Suz12 mutant embryos
were in fact female, whereas all the other mice were male. This sex imbalance was
an unwanted complication in the experiment, difficult to avoid without sex typing
of the embryo mice at the time of tissue collection. The results show that the robust
EB method was successful in identifying and downweighting genes that are asso-
ciated with the hidden covariate. The robust procedure results in more statistical
power to detect other genes that are more likely to be of scientific significance.

8.2. RNA-seq profiles of Yoruba HapMap individuals. As part of the Interna-
tional HapMap project, RNA-Seq profiles were made of cell lines derived from B
lymphocytes from 69 different Yoruba individuals from Ibadan, Nigeria [Pickrell
et al. (2010a, 2010b)]. Genewise read counts were obtained from the tweeDEse-
qCountData package version 1.8.0 from Bioconductor and were transformed to
log 2-counts per million with precision weights using voom [Law et al. (2014)].
The analysis compares males to females. Figure 1(c) shows the genewise stan-
dard deviations and Figure 1(d) gives a probability plot of the standard deviations
against the fitted Fd,d0 distribution. The hypervariable genes were identified as B
cell receptor segments on chromosomes 2 and 22. B cells contain a random selec-
tion of these segments in order to generate a repertoire of antigen binding sites.
The robust analysis reveals that the cell lines were clonal, each cell line apparently
derived from a single B cell or from a very small number of original cells. It would
be appropriate to remove the receptor segments from the RNA-seq analysis, and
the robust EB procedure effectively achieves that.
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8.3. Embryonic stem cells. Sheikh et al. (2015) used RNA-seq to profile em-
bryonic stem cells. Genewise read counts were transformed using voom. Fig-
ure 1(e) shows the genewise standard deviations and Figure 1(f) gives a probability
plot of the standard deviations against the fitted Fd,d0 distribution. The hypervari-
able genes are predominately associated with the ribosome or with hemoglobin,
suggesting inconsistencies in cell purification and RNA processing. Other hyper-
variable genes are located in the major histocompatibility complex, known to be
one of the most variable parts of the genome.

9. Discussion. In recent years we have routinely checked for hypervariable
genes in gene expression studies. We have found that many studies harbor a subset
of outlier genes. In many cases, the identities of the hypervariable genes suggest
a mechanism for their variability. We have analyzed studies, for example, where
the hypervariable genes are enriched for sex-linked genes, for ribosomal genes, for
mitochondrial genes or for B cell receptor segments. In other cases, hypervariable
genes may be associated with a particular cell type suggesting inconsistent cell
population proportions in the different biological samples. In some cases, the rea-
sons why some genes are highly variable between individuals are unknown. The
phenomenon is common enough to be viewed as an unavoidable part of cutting
edge genomic research rather than a result of flawed experimental procedures. In
most cases the studies are overall of high quality.

Hypovariable genes can also arise, although usually for technical rather than
biological reasons. Quantile normalization [Bolstad et al. (2003)] of expression
data can occasionally produce expression values that are numerically identical for
all samples for a given gene when the number of samples is small. Sequencing
data can also give rise to variances that are zero or very small because of the
discreteness of read counts.

This article describes a robustified version of EB differential expression analy-
sis. This procedure protects against hyper and hypovariable genes in the sense that
it allows nonoutlier genes to share information among themselves as if the outlier
genes were not present. In many cases, this results in a gain in statistical power for
the nonoutlier genes. Hypervariable genes are not removed from the analysis but
instead borrow less information from the ensemble and are assigned test statistics
closer to ordinary t-statistics. Hypovariable genes, on the other hand, are mod-
erated as for nonoutlier genes—this increases their posterior variances closer to
typical values.

A key feature of our procedure is that a conjugate Bayesian model is used
for each gene, enabling closed-form posterior estimators and exact small-sample
p-values. Robustness is achieved by fitting the prior distribution to nonoutlier
genes and by assigning lower degrees of freedom to the hypervariable outliers.
We have proposed a practical algorithm for assigning prior degrees of freedom to
outlier genes. In practice, the list of DE genes is not sensitive to the exact values
of the prior degrees of freedom, provided that d0g = d0 for nonoutliers and d0g is



960 B. PHIPSON ET AL.

substantially smaller for clear outliers. For many datasets the list of DE genes is
unchanged for a range of reasonable values for doutlier.

The default values for the Winsorizing tail proportions pl and pu work well in
our practical experience. Users, however, may choose to increase the default values
for datasets where high proportions of outlier genes are expected.

Simulations show that the robustified EB procedure estimates the hyperparam-
eters equally as accurately as the original method in the absence of outliers. When
outliers are present, however, the robustified EB procedure was able to simultane-
ously increase power and decrease the false discovery rate when assessing differ-
ential expression.

The robust EB method developed here has been applied not only to microarray
data, but also to data from RNA-seq [Good-Jacobson et al. (2014)], ChIP-seq [Lun
and Smyth (2015b, 2016)] and Hi-C [Lun and Smyth (2015a)] technologies. With
microarrays, the linear models are fitted to normalized log-intensities. With RNA-
seq, the number of sequence reads overlapping each gene can be counted and the
EB models can be applied to the log-counts-per million [Law et al. (2014)]. Al-
ternatively, the robust EB method can be applied to count data by way of quasi-
generalized linear models. Lun, Chen and Smyth (2016) analyzed RNA-seq read
counts used quasi-negative-binomial generalized linear models. The limma robust
EB variance estimation method was applied to the genewise residual deviances,
leading to the construction of EB quasi-F-tests. The robust EB method has also
been used to estimate the prior degrees of freedom for the weighted likelihood ap-
proach used in the edgeR package, again using residual deviances [Chen, Lun and
Smyth (2014)].

In this article we view genes as outliers rather than individual expression values
as outliers. An alternative robustifying approach would be to replace least squares
estimation of the genewise linear models with robust regression [Gottardo et al.
(2006), Zhou, Lindsay and Robinson (2014)], and the limma package has included
an M-estimation option for this purpose for over a decade. In principle, the two
approaches are complementary and both can be used simultaneously, that is, one
could apply the robust EB procedure of this article to variances estimated by ro-
bust regression. The robust regression approach assumes that the expression values
for a gene contain one or two outliers that are “errors,” whereas the other values
are “correct.” Our experience suggests that this scenario is relatively rare for gene
expression data. The outlier-gene approach of this article allows a more general
context in which a hypervariable gene may produce an arbitrary number of incon-
sistent expression values that cannot be meaningfully categorized into correct and
incorrect. The robust regression is only applicable to experimental designs with
at least three expression values per experimental group, whereas the outlier-gene
approach can be usefully applied to any experimental design, even down to studies
with a single residual degree of freedom.

The robust EB strategy of this article could, in principle, be applied in other
EB contexts. The basic idea is to estimate hyperparameters robustly, then to test
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for outlier cases, and finally to assign a more diffuse prior to outlier cases. This
approach may be particularly attractive for use with conjugate Bayesian models
and seems different from previous robust EB strategies.

It is interesting to contrast our approach with the large literature on robust
Bayesian analysis [Berger (1984, 1990), Insua and Ruggeri (2000)]. Robust
Bayesian analysis considers a class of possible prior distributions and tries to limit
or at least quantify the range of posterior conclusions as the prior ranges over the
class. The issues that concern us in this article are different in a number of impor-
tant ways. The issues that we address are specific to empirical Bayes and do not
arise in true Bayesian frameworks for which hyperparameters do not need to be
estimated. Our aim is not to limit the influence of the prior but to increase it for the
majority of genes. Our method applies only to large-scale data with many cases
(probes, genes or genomic regions), whereas robust Bayesian analysis is typically
concerned with individual cases.

SUPPLEMENTARY MATERIAL

Supplementary Methods: Details of computational algorithms (DOI:
10.1214/16-AOAS920SUPP; .pdf). We provide further details of the various nu-
merical algorithms described in this article.
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