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Abstract
Regularizing images under a guidance signal has been

used in various tasks in computer vision and computational

photography, particularly for noise reduction and joint up-

sampling. The aim is to transfer fine structures of guidance

signals to input images, restoring noisy or altered struc-

tures. One of main drawbacks in such a data-dependent

framework is that it does not handle differences in structure

between guidance and input images. We address this prob-

lem by jointly leveraging structural information of guid-

ance and input images. Image filtering is formulated as

a nonconvex optimization problem, which is solved by the

majorization-minimization algorithm. The proposed algo-

rithm converges quickly while guaranteeing a local mini-

mum. It effectively controls image structures at different

scales and can handle a variety of types of data from differ-

ent sensors. We demonstrate the flexibility and effectiveness

of our model in several applications including depth super-

resolution, scale-space filtering, texture removal, flash/non-

flash denoising, and RGB/NIR denoising.

1. Introduction and Background

Many tasks in computer vision and computational pho-

tography can be formulated as ill-posed inverse problems,

and thus theoretically and practically, require regulariza-

tion. In the classical setting, this is used to obtain a

smoothly varying solution and/or ensure stability [4]. Re-

cent work on joint regularization (or joint filtering) [10, 15,

33] provides a new perspective on the regularization pro-

cess, with a great variety of applications including stereo

correspondence [28, 34], optical flow [28], joint upsampling

[8, 15, 20, 25], dehazing [10], noise reduction [27, 33], and

texture removal [35]. The basic idea of joint regularization

is that the structure of a guidance image is transferred to

an input image, e.g., for preserving sharp structure transi-

tions while smoothing the input image. It assumes that the

guidance image has enough structural information to restore

noisy or altered structures in the input image.

Joint regularization has been used with either static or
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dynamic guidance images. Static guidance regularization

(e.g., [10]) provides an output image by modulating the in-

put image with an affinity function that depends on the sim-

ilarity of features in the guidance signal. This static guid-

ance is fixed during the optimization. It can reflect inter-

nal properties of the input image itself, e.g., its gradient

[15, 26], or be another signal aligned with the input im-

age, e.g., a near infrared (NIR) image [33]. This framework

determines the structure of the output image by referring

to that of the guidance image only, and does not consider

structural (or statistical) dependencies and inconsistencies

between input and guidance images. This is problematic,

especially in the case of data from different sensors, e.g.,

depth and color images. Dynamic guidance regularization

(e.g., [35]) uses an affinity function obtained from the regu-

larized input image. It is assumed that the affinity between

neighboring pixels can be determined more accurately from

already regularized images, than from the input image it-

self [2, 35]. This method is inherently iterative, and dy-

namic guidance (the regularized input image, i.e., a poten-

tial output image) is updated at every step. In contrast to

static guidance regularization, dynamic guidance regular-

ization does not use static guidance and takes into account

of the properties of the input image. Data-dependent static

guidance is needed to impose structures on the input im-

age, especially when the input image is not enough in it-

self to pull out reliable information, e.g., joint upsampling

[8, 15, 20, 25].

We present a unified framework for image filtering tak-

ing advantage of both static and dynamic guidances. We

address the aforementioned problems by fusing appropri-

ate structures of static and dynamic guidance images, rather

than unilaterally transferring structures of guidance images

to the input image. To encourage comparison and future

work, our source code is available at our project webpage1.

2. Related Work

Static or dynamic guidance can be implicit or explicit.

Implicit regularization stems from a filtering framework.

The input image is filtered using a weight function that de-

pends on the similarity of features in the guidance image

1http://www.di.ens.fr/willow/research/sdfilter

http://www.di.ens.fr/willow/research/sdfilter


(a) (b) (c) (d) (e)

Figure 1. Comparison of static and dynamic guidance regularization methods. Given (a) a HR color image, (b) a LR depth map is upsampled

(⇥8) by our model using (c) static guidance only, (d) dynamic guidance only, and (e) joint static and dynamic guidance. See Sec. 4.1 for

details. (Best viewed in color.)

[15]. In this way, the structure of the guidance image is

transferred to the input image. The bilateral filter (BF) [30],

guided filter (GF) [10], and weighted median filter (WMF)

[20] have been successfully adapted to static guidance reg-

ularization. Two representative filtering methods using dy-

namic guidance are iterative nonlocal means (INM) [2] and

the rolling-guidance filter (RGF) [35]. They share the same

filtering framework, but differ in that INM is for preserving

textures during noise reduction, while the RGF aims at re-

moving textures through scale-space filtering. This implicit

regularization is simple and easy to implement, but the fil-

tering formalization prevents its wide applicability. For ex-

ample, it is hard to handle input images where information

is sparse, e.g., in image colorization [18]. The local nature

of this approach might introduce artifacts, e.g., halos and

gradient reversal [10]. Accordingly, implicit regularization

has been applied in a highly controlled condition, and usu-

ally employed as a pre- and/or post-processing for further

applications [17, 20]. An alternative approach is to explic-

itly encode the regularization process into an objective func-

tional, while taking advantage of a guidance signal. The ob-

jective functional typically consists of two parts: A fidelity

term describes the consistency between input and output

images, and a regularization term encourages the output im-

age to have a similar structure to the guidance image. The

weighted least-squares (WLS) framework [7] is the most

popular explicit regularization method that has been used in

static guidance regularization [25]. The regularization term

is modeled as a weighted l2 norm. Anisotropic diffusion

(AD) [26] is an explicit regularization framework using dy-

namic guidance. In contrast to INM [2] and the RGF [35],

AD updates both input and guidance images at every step;

The regularization is performed iteratively with regularized

input and updated guidance images. This explicit regu-

larization enables formulating a task-specific model, with

more flexibility than using implicit regularization. Further-

more, this type of regularization overcomes several limita-

tions of implicit regularization, such as halos and gradient

reversal, at the cost of global intensity shifting [7, 10].

Existing regularization methods typically apply to a lim-

ited range of applications and suffer from various artifacts:

For example, the RGF is applicable to scale-space filtering

only, and suffers from poor edge localization [35]. In con-

trast, our approach provides a unified model for many ap-

plications, gracefully handles most of these artifacts, and

outperforms the state of the art in all the cases considered

in the paper. Although the proposed model may look sim-

ilar to WLS [7] and the RGF [35], our nonconvex objec-

tive function needs a different solver. Contrary to iteratively

reweighted least-squares (IRLS) [5], we do not split a non-

convex regularizer but approximate the objective function

by a surrogate (upper-bound) function.

3. Proposed Approach

3.1. Motivation and Problem Statement

There are pros and cons in regularizing images under

static or dynamic guidance. Let us suppose the example of

depth super-resolution, where a high-resolution (HR) color

image (the guidance image) of Fig. 1 (a) is used to upsam-

ple (⇥8) a low-resolution (LR) depth map (the input image)

of Fig. 1 (b). Regularization with static guidance recon-

structs the destroyed depth edges by using the color image

with high signal-to-noise ratio (SNR) [8, 15], as in the red

boxes of Fig. 1 (c). However, this method has difficulties

with handling differences in structure between depth and

color images, transferring all the structural information of

the color image to the depth map, as in the blue boxes of Fig.

1 (c). For regions of high contrast in the color image, e.g.,

textures, the depth is altered according to the texture pat-

tern [3]. Similarly, the gradient of the depth map becomes

similar to that of the color image for regions of low contrast

in the color image, e.g., weak edges. This smoothes depth



edges, and causes jagged artifacts [21]. Regularization with

dynamic guidance utilizes the contents of the depth maps2,

avoiding the problems of static guidance regularization, as

in the blue boxes of Fig. 1 (d). The depth edges are pre-

served, and unwanted structures are not transferred. A lim-

itation is that dynamic guidance only does not utilize the

abundant structural information that exists in the color im-

age. Thus, depth edges are smoothed, and even eliminated

for regions of low contrast in the depth map, as in the red

boxes of Fig. 1 (d). This example illustrates the fact that

static and dynamic guidance complement each other, and

exploiting only one of them is not sufficient to infer high

quality structural information from the input image. This

problem becomes even worse when input and guidance im-

ages come from various types of data and have different

statistical characteristics. Our model jointly leverages the

structures of static (color image) and dynamic (depth map)

guidance, taking advantage of both of them, as shown in

Fig. 1 (e).

3.2. Model
Given the input image f , static guidance g, and the out-

put image u itself (dynamic guidance), we denote by fi,
gi, and ui; the corresponding image values at pixel i, with

i ranging over the image domain I ⇢ N
2. Our objective

is to infer the structure of the input image by jointly using

static and dynamic guidance. The influence of the guidance

images on the input image varies spatially, and is controlled

by affinity functions that measure similarities between adja-

cent vertices. Various features (e.g., spatial location, inten-

sity, and textures [13, 25]) and metrics (e.g., Euclidian and

geodesic distances [7, 19]) can be utilized to represent dis-

tinctive characteristics of vertices on images, and measure

their similarities.

We minimize an objective function of the form:

E(u) =
X

i

ci(ui � fi)
2 + λΩ(u). (1)

It consists of fidelity and regularization terms, balanced by

the regularization parameter λ. The fidelity term helps the

solution u to harmonize well with the input image f with

confidence ci � 0. The regularization term smoothes the

solution u, and makes it have structures similar to static

and/or dynamic guidance, g and u. In static guidance reg-

ularization, Ω(u) =
P

i,j φµ(gi � gj)(ui � uj)
2 where

φµ(x) = exp(�µx2), and µ controls the smoothness band-

width. In a purely equivalent dynamic guidance setting, one

would take Ω(u) =
P

i,j φ⌫(ui � uj)(ui � uj)
2 for some

ν, and in a mixed setting: Ω(u) =
P

i,j φµ(gi�gj)φ⌫(ui�

uj)(ui � uj)
2. These regularizers may be hard to optimize

2Dynamic guidance is initially set to the upsampled depth map obtained

from static guidance regularization as shown in Fig. 1 (c), not the LR depth

map itself.
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Figure 2. A nonconvex regularizer ψν(x), its surrogate functions

Ψ
y
ν
(x) [left], and a l1 regularizer α|x| (a tight upper bound func-

tion of ψν(x)) [right] when ν = 1 and α = 0.6382. (Best viewed

in color.)

and be unstable. Instead, we choose

Ω(u) =
X

i,j2N

φµ(gi � gj)ψ⌫(ui � uj), (2)

where ψ⌫(x) = (1�φ⌫(x))/ν, i.e., Welsch’s function [11],

and N is in our implementation, the set of image adjacen-

cies, defined in a local 8-neighborhood system.

Nonconvex Regularizer. As shown in Fig. 2, ψ⌫(x) is

a nonconvex regularizer: Welsch’s function acts as a robust

regularizer [11], and thus our objective function makes joint

filtering robust to outliers. Inverse diffusion occurs when

ψ0

⌫
(x) decreases, which enhances features having high-

frequency structures (e.g., edges and corners) during reg-

ularization [6, 9, 26]. It may enhance noise as well, but the

static guidance image with high SNR in our model avoids

this problem. The combination of a fixed weight function

and a nonconvex regularizer is common in variational ap-

proaches [37], and they are typically referred to as image-

and flow-driven regularizers, respectively. Our model dif-

fers from image- and flow-driven regularization in its new

regularizer and solver. It is also more flexible (e.g., we can

handle sparse data of different resolutions). This leads to

new applications such as joint upsampling. Note that most

image- and flow-driven regularization techniques have been

applied to optical flow only. Finally, we are not aware of

existing joint image filters using a nonconvex regularizer.

3.3. Solver
Optimization. Let f = [fi]N⇥1

, g = [gi]N⇥1
, and

u = [ui]N⇥1
denote vectors representing the input image,

static guidance and the output image (or dynamic guidance),

respectively, where N = |I| is the size of images. Let

Wg = [φµ(gi � gj)]N⇥N
, Wu = [φ⌫(ui � uj)]N⇥N

, and

C = diag ([c1, . . . , cN ]). We can rewrite our objective func-

tion in matrix/vector form as:

E(u) = (u� f)
T C (u� f) +

λ

ν
1
T (Wg �W)1, (3)

where W = Wg �Wu, and � denotes the Hadamard prod-

uct of the matrices. 1 is a N ⇥ 1 vector, where all the



entries are 1. The diagonal entries ci of C are confidence

values for the pixels i of the input image. Minimizing E is

a nonconvex optimization problem, which can be solved by

the majorization-minimization algorithm (Fig. 3) as follows

[16, 22, 36]:

1. Majorization Step: Construct a surrogate function

Qk(u) of E(u) such that

⇢
E(u)  Qk(u), for all u,uk 2 Θ

E(uk) = Qk(uk), for all uk 2 Θ
, (4)

where Θ ⇢ [0, 1]N 3. The nonconvexity in our objective

function comes from the regularizer ψ⌫(x) in (2), which

has a convex surrogate function Ψy
⌫
(x) defined by (see the

supplementary material):

Ψ
y
⌫
(x) = ψ⌫(y) + (x2 � y2)(1� νψ⌫(y)), (5)

that is, the curve x 7! Ψy
⌫
(x) lies above the curve ψ⌫(x)

and is tangent to it at the point x = y [12], as shown in

Fig. 2. The surrogate objective function Qk(u) can then be

found using (5) as follows:

Qk(u) = uT
⇥
C + λLk

⇤
u� 2fT Cu+ fT Cf (6)

� λukTLkuk +
λ

ν
1
T
�
Wg �Wk

�
1.

Lk = Dk � Wk is a dynamic Laplacian matrix at step k,

where Wk = Wg � Wuk and Dk = diag
�⇥
dk1 , . . . , d

k
N

⇤�

where dki =
PN

j=1
φµ(gi � gj)φ⌫(u

k
i � uk

j ). Note that the

affinity matrix of static guidance is fixed regardless of steps,

and that of dynamic guidance is iteratively updated.

2. Minimization Step: Obtain the next estimate uk+1 by

minimizing the surrogate function Qk(u) w.r.t. u as fol-

lows4:

uk+1 = argmin
u2Θ

Qk(u) = (C + λLk)�1Cf . (7)

The above iterative scheme decreases the value of E(u)
monotonically in each step, i.e.,

E(uk+1)  Qk(uk+1)  Qk(uk) = E(uk), (8)

where the first and the second inequalities follow from (4)

and (7), respectively, and it can be shown to converge to a

local minimum of E [31].

Initialization. Our solver finds a local minimum, and thus

different initializations for u0 (dynamic guidance at k = 0)

may give different solutions. In our work, two initializations

are used: The initial solution u0 can be set to a constant

vector, e.g., u0 = 1. Note that the constant initialization,

3A range of intensity values is normalized such that they exist between

0 and 1.
4In case of a color image, the linear system is solved in each channel.
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Figure 3. Sketch of the majorization-minimization algorithm.

Given some estimate uk of the minimum of E , a surrogate function

Qk(u) is constructed. The next estimate u
k+1 is then computed

by minimizing Qk

regardless of its value, makes W0 = Wg . This initializa-

tion is simple, but shows a slow convergence rate as shown

in Fig. 4 (a). A good initial solution accelerates the con-

vergence of our solver. We propose to use the following

regularizer to compute the initial solution u0:

Ωl1(u) =
X

i,j2N

φµ(gi � gj)α|ui � uj |, (9)

where α is set to a positive constant, chosen so α|x| is a

tight upper bound of ψ⌫(x) (Fig. 2). This regularizer is

convex, and the global minimum of (9) is guaranteed.

3.4. Properties
Convergence. We show the convergence rate of (7) as k
increases, and observe its behavior with different initializa-

tions (u0 = 1 and u0 = ul1 , a global minimum of (1)

using Ω = Ωl1 ). Figure 4 shows how (a) the energy and (b)

the intensity differences (i.e., kuk�uk+1k1) evolve at each

step given the input image in (c). Our solver converges in

fewer steps with the l1 initialization (u0 = ul1 ) than with

the constant one (u0 = 1), with faster overall speed, de-

spite the overhead of the l1 minimization. On this example,

our solver with the constant and l1 initializations converges

in 30 and 7 steps (Fig. 4 (d) and (e)), each of which takes

45 and 20 seconds, respectively. Although our solver with

u0 = 1 converges more slowly, the per-pixel intensity dif-

ference decreases monotonically, and 5 steps are typically

enough to get satisfactory results in both cases5. It should be

noted that most filtering methods, except the recently pro-

posed RGF [35], if they are applied repeatedly, eventually

converges to a trivial solution, i.e., a constant signal [35],

regardless of whether they have implicit or explicit forms

(e.g., BF [30] and AD [26]). In contrast, repeatedly solving

the linear system of (7) still gives a meaningful solution in

the steady-state.

Scale Adjustment. There are two approaches to incorpo-

rating scale information in image regularization [7, 26, 35].

5After 5 steps, an average (maximum) value of the per-pixel intensity

difference is 9.4×10
−5 (1.7×10

−3) with u
0
= 1 and 4.3×10

−5 (8.7×

10
−4) with u

0
= ul1 . Current un-optimized MATLAB implementation

on 2.5 GHz CPU takes about 9 seconds (u0
= 1) and 16 seconds (u0

=

ul1 ) to filter an image of size 500 × 400 with a 8-neighborhood system

and k = 5.
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Figure 4. An example of (a) energy evolution and (b) a sum of in-

tensity difference between successive steps, i.e., kuk � u
k+1k1,

given (c) the input image. Our model monotonically converges,

and guarantees a meaningful solution in the steady-state: (d)

u
0 = 1, k = 30, and (e) u0 = ul1 , k = 7. In this example, for

removing textures, g is set to the Gaussian filtered version (stan-

dard deviation, 1) of the input image [λ = 50, µ = 5, ν = 40].

See Sec. 4.2 for details.

In filtering methods, an intuitive way to adjust a degree of

smoothing is to explicitly use an isotropic Gaussian ker-

nel. Due to the space-invariant property of the kernel, it

regularizes both noise and features evenly regardless of the

local structure [26]. The RGF addresses this problem in

two phases: Small structures are removed by the Gaussian

kernel, and large structures are then recovered [35]. Since

RGF is based on the Gaussian kernel, it inherits its limita-

tions; This leads to poor localization at coarse scales, which

causes corners to be rounded and boundaries to be shifted.

The regularization parameter is empirically used to adjust

scales in explicit regularization methods [7]. It balances the

degree of influence of fidelity and regularization terms in

such a way that a large value leads to more regularized re-

sults than a small one. Now, we will show how the regu-

larization parameter controls scales in our case, and how it

relates to the standard deviation of the Gaussian kernel. Let

uk+1 ! u?, Dk ! D? and Wk ! W? as k ! 1. Then,

it follow from (7) that

(C + λD?)u? � λW?u? = Cf . (10)

Let us define diagonal matrices A and A0 as

A = λ(C + λD?)�1D?, (11)

and

A0 = (C + λD?)�1C, (12)

such that A + A0 = I. By multiplying the left- and right-

hand sides of (10) by (C + λD?)�1, we obtain

u? = (I� λ(C + λD?)
�1D?

| {z }

A

P)�1 (C + λD?)
�1C

| {z }

A0=I�A

f

(13)

= (I�A)(I�AP)�1f = Sf ,

where P = D?�1W? and

S = (I�A)(I�AP)�1 = (I�A)
X1

n=0
AnPn. (14)

That is, S is defined as a weighted average of all matrices

Pn, n = 0, ...,1. Note that Pn is the nth order transition

probability of the random walker, and its element pnij rep-

resents the probability that the random walker at the vertex

j arrives at the vertex i after n time transitions [24]. As n
increases, the random walker can travel far away, and we ex-

pect to see coarser structures. Thus,
P

1

n=0
AnPn considers

all paths between two vertices at all scales (n = 0, ...,1),

and each Pn is modulated by the weight An that is con-

trolled by the regularization parameter λ as in (11). By in-

creasing λ, the random walker can travel to a distant vertex

more easily. This indicates that the regularization parameter

has a similar role to the standard deviation in the Gaussian

kernel.

4. Applications
Our model is applied to depth super-resolution, scale-

space filtering, texture removal, flash/non-flash denoising,

and RGB/NIR denoising. Additional results are available in

the supplementary material.

4.1. Depth Super-Resolution

Parameter Settings. In our model, input and guidance

images, f and g, are set to sparse depth and HR images,

respectively, where ci = 1 if the pixel i of the sparse depth

map f has valid data, and otherwise, 0. The constant ini-

tialization is used, and the bandwidths and the step index

are fixed to all experiments (u0 = 1, µ = 60, ν = 30,

and k = 10). The regularization parameter λ is set to 0.1

for synthetic examples, and set to 5 for real-world exam-

ples due to huge amounts of noise. Other results for the

comparison have been obtained from source codes provided

by the authors, and all the parameters have been carefully

set through intensive experiments for the best performance.

For the quantitative comparison, the bad matching errors

(BMEs) for all regions and regions near depth discontinu-

ities are measured as Oall =
P��

�u?

i � ugt
i

�
� > δ

��
N and

Odisc =
P�

mi

�
�u?

i � ugt
i

�
� > δ

��
M , respectively, where δ

is a depth error tolerance [29]. u?

i 2 u? and ugt
i 2 ugt rep-

resent estimated and ground truth depth maps, respectively.

m is a binary mask where mi = 1 if the pixel i belongs to

the regions near depth discontinuities, and otherwise, 0, and

M = kmk1.



(a) HR image (b) Ground truth (c) Bilinear Int. (d) GF [10] (e) WMF [20] (f) TGV [8] (g) Ours

Figure 5. Visual comparison of upsampled depth maps on a snippet of the books sequence in the Middlebury test bed [29]. In contrast to

static guidance regularization such as (d) GF [10] and (e) WMF [20], (g) joint static and dynamic guidance model interpolates LR depth

maps by considering structures of color and depth images both, preserving sharp depth transitions.
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Figure 6. Log 10 of the normalized histograms of relative depth

and intensity values (gradients along x- and y-axis) from the Mid-

dlebury test bed [29]. (Best viewed in color.)

Synthetic Examples. We have synthesized the LR depth

map by (⇥8) downsampling a ground truth image from

the Middlebury benchmark data set [29]: Tsukuba, Venus,

Teddy, Cones, Art, Books, Dolls, Laundry, Moebius, and

Reindeer, and used the corresponding color image as the

HR intensity image. Table 1 summarizes average BMEs

with the tolerance δ = 1. Oall has been measured only,

except when the ground truth index map of discontinuous

regions m is available. Our model outperforms other regu-

larization methods, especially around depth discontinuities.

Figure 5 gives quantitative results, and clearly shows the

different behavior between static guidance and joint static

and dynamic guidance models. For example, the gradient

of the depth map becomes similar to that of the color im-

age in static guidance methods [8, 10, 20], which tends to

eliminate or smooth depth boundaries, and causes jagged

artifacts. This can be further verified by observing statisti-

cal distributions of upsampled depth maps as shown in Fig.

6. Table. 2 compares average BMEs and processing time

of the constant and l1 initializations6 by varying the num-

ber of steps. This table shows that 1) our solver with the

l1 initialization convergences faster than that with the con-

stant one. For example, the l1 and constant initializations

converge with 5 and 30 steps, respectively, 2) both initial-

6An average BME of ul1 itself is 12.43.

Table 1. Average BMEs of Upsampled Depth Maps on the Mid-

dlebury Test Bed [29]

u
0
= 1 Oall ± std. Odisc ± std.

Bilinear Int. 15.98±8.29 38.63±5.17
GF [10] 19.85±11.2 35.40±6.96
Park et al. [25] 14.81±5.97 22.65±3.89
TGV [8] 12.34±6.40 22.73±6.08
WMF [20] 9.84±5.48 19.88±7.47

Ours 7.08±3.42 12.05±6.30

Table 2. Quantitative Comparison of Upsampled Depth Maps from

Constant and l1 Initializations on the Middlebury Test Bed [29]

u
0
= 1 u

0
= ul1

k Oall ± std. time (s) Oall ± std. time (s)

1 10.05±4.76 0.60 7.55±3.54 4.78
3 7.60±3.64 1.44 7.14±3.37 5.70
5 7.23±3.52 2.33 7.07±3.36 6.61
10 7.08±3.42 4.39 7.07±3.37 8.68
20 6.68±3.86 8.48 7.07±3.38 12.71
30 7.05±3.41 12.47 7.08±3.38 16.67
40 7.05±3.41 16.88 7.07±3.38 20.93
50 7.05±3.41 21.06 7.07±3.38 25.39

Table 3. BMEs of Upsampled Depth Maps on the Graz Data Set

[8]

u
0
= 1 Books Devil Shark Oall ± std.

Bilinear Int. 16.21 13.68 17.60 15.83±1.99
GF [10] 19.65 13.12 20.68 17.82±4.10
TGV [8] 11.83 9.70 13.98 11.84±2.14
WMF [20] 13.33 9.81 15.77 12.97±3.00

Ours 9.91 8.09 12.71 10.24±2.33

izations give almost the same error at the convergence, and

3) the l1 initialization takes less time than the constant ini-

tialization for the convergence.

Real-World Examples. Recently, Ferstl et al. [8] have

introduced a benchmark data set where they provide both

LR depth maps captured by ToF sensor and highly accu-

rate ground truth depth maps acquired from using structured

light. We have performed a quantitative evaluation using

this data set [8] in Table 3. The BMEs are computed by set-

ting the error tolerance to 5 % of a pre-defined depth range

(0⇠255). This experiment demonstrates that the proposed

method outperforms the state of the art.

4.2. Scale-Space Filtering and Texture Removal

Parameter Settings. For scale-space filtering, the input

image f is guided by itself (g = f ). In texture removal, the



(a)

(b)

(c)

(d)

Figure 7. Examples of the scale-space representation obtained by

(a) WLS [7] [(from left to right) λ = 5 ⇥ 103, 3 ⇥ 104, 2 ⇥ 105,

µ = 40], (b) WLS [7] [(from left to right) λ = 50, 300, 2000,

µ = 5], (c) RGF [35] [(from left to right) σs = 4, 10, 50, σr =
0.05, k = 5], (d) our model [u0 = ul1 , (from left to right) λ =
200, 1200, 3000].

static guidance image is set to a Gaussian-filtered version of

the input image, g = G�f where G� is the Gaussian kernel

with standard deviation σ. The regularization parameter λ

and σ vary according to the scale. The bandwidths and the

step index are fixed to all experiments (µ = 5, ν = 40, and

k = 5) in both applications.

Scale-Space Filtering. A scale-space representation can

be obtained by repeatedly applying the regularization

method while varying the regularization parameter λ. Fig-

ure 7 shows examples of the scale-space constructed by (a)

and (b) WLS [7], (c) RGF [35], and (d) our model. The

WLS [7], a representative of static guidance regularization,

alters the scale of structures by varying the regularization

parameter. It suffers from global intensity shifting [10]

(Fig. 7(a)) or does not preserve structural information at

coarse scales (Fig. 7(b)). This could be alleviated by dy-

namic guidance regularization as in the RGF [35]. How-

ever, the RGF does not use the structure of the input image,

and the scale is controlled by isotropic Gaussian kernels,

which leads to poor boundary localization at coarse scales

(Fig. 7(c)). In contrast, our model uses the structures of in-

put and desired output images, and the scale depends on the

regularization parameter, providing well localized bound-

aries even at coarse scales. Moreover, it is robust to global

intensity shifting (Fig. 7(d)). The scale-space representa-

tion meets two criteria: causality and immediate localiza-

tion. Causality means that any feature at a coarse scale must

possess a cause at a finer scale [26]. Immediate localization

means that object boundaries should be sharp and coincide

well with the meaningful boundaries at each scale. We have

empirically found that our model meets the causality condi-

ODS OIS ODS* OIS*

0.65

0.620.63
0.61

0.63

0.60.6

0.55

0.520.510.520.51

WLS RGF Ours

(a) (b)

(c) (d)

Figure 8. Evaluation of edge localization on the BSDS300 [23]

(top), and examples of the gradient magnitude averaged over the

scale-space (bottom). Given (a) input image, the scale-space is

constructed by (b) WLS [7] [µ = 40], (c) RGF [35] [σr = 0.05,

k = 5], and (d) our model [u0 = 1], by varying scale parameters,

i.e., λ  2 ⇥ 105 in WLS [7], σs  50 in RGF [35], and λ 
2⇥ 103 in our model.

tion, min{u?

j,�}  u?

i,�+⌧
 max{u?

j,�} where τ > 0, and

u?

i,� 2 u?

�
is the steady-state solution for λ. The accuracy

of boundary localization is evaluated on the BSDS300 [23].

For all images in the data set, average ODS and OIS [1]

are measured by using gradient magnitudes of regularized

images, as shown in Fig. 8. These images are obtained by

varying scale parameters, i.e., λ in WLS [7] and our model,

and σs in RGF [35]. ODS is the F-measure at a fixed con-

tour threshold across the entire data set, while OIS refers to

the per-image best F-measure. In the histograms of Fig. 8,

average ODS (OIS) is evaluated with gradient images, each

of which is averaged over the scale-space, e.g., Fig. 8 (d).

Average ODS⇤ (OIS⇤) is evaluated with gradient images at

the fixed scale that provides maximum ODS (OIS) for each

image. In both cases, our model outperforms other regu-

larization methods, showing sharper boundary transitions.

Texture Removal. For removing textures while maintain-

ing other high-frequency structures, we need a guidance im-

age that does not have textures, but contains large structures,

e.g., edges. Since it is hard to get such an image, we set the

static guidance image to a Gaussian-filtered version of the

original image f , g = G�f . This removes the textures of

scale σ, but it also smoothes structural edges, e.g., bound-

aries. Our dynamic guidance and fidelity term reconstruct

smoothed boundaries, similar to [35]. Figure 9 shows reg-

ularization examples of (top) regular and (bottom) irregular

textures. Our model completely removes textures without

artifacts, and maintains small, high-frequency, but impor-



(a) Input (b) Cov. M1 [14] (c) RTV [32] (d) RGF [35] (e) Ours

Figure 9. Examples of the texture removal for (top) regular and (bottom) irregular textures. (a) Input image, (b) Cov. M1 [14] [σ = 0.3,

r = 10], (c) RTV [32] [λ = 0.01, σ = 6], (d) RGF [35] [σs = 5, (from top to bottom) σr = 0.1, 0.05, k = 5], (e) ours [u0 = ul1 , (from

top to bottom) λ = 1000, 100, σ = 2].

tant structures to be preserved, e.g., corners.

4.3. Other Applications

Our model can be applied to joint image restoration

tasks. We have applied it to RGB/NIR and flash/non-flash

denoising problems as shown in Figs. 10 and 11. In

RGB/NIR denoising, color image f is regularized with the

flash NIR image g. Similarly, the non-flash image f is reg-

ularized with flash image g. Since there exist structural

dissimilarities between static guidance and input images (g

and f ), the results might have artifacts and unnatural ap-

pearance. For example, static guidance regularization such

as GF [10] cannot deal with a gradient reversal in flash NIR

images [33], resulting in smoothed edges. Our model han-

dles the structural differences between images, and shows

performance comparable to the state of the art [33].

5. Discussion

We have presented a joint filtering framework that is

widely applicable to computer vision and computational

photography. Contrary to static guidance methods, we

leverage dynamic guidance images as well, and they can

exploit the structural information of the input image. Al-

though our model does not have a closed-form solution, it

converges rapidly to a local minimum. The simple and flex-

ible formulation of our framework makes it applicable to a

great variety of applications.

(a) (b)

(c) (d)

Figure 10. RGB and flash NIR image restoration. (a) RGB images,

(b) NIR images, (c) GF [10] [r = 3, ε = 4−4], (d) ours [u0 = 1,

λ = 15, µ = 60, ν = 30, k = 5].

(a) (b) (c) (d) (e) (f)

Figure 11. Flash and non-flash image restoration. (a) Flash image,

(b) non-flash image, (c) GF [10] [r = 3, ε = 4−4], (d) result of

[27], (e) result of [33], (f) ours [u0 = 1, λ = 15, µ = 60, ν = 30,

k = 5]. The results of (d) and (e) are from their project webpages.
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