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Abstract—This paper presents a new image hashing that is designed with tensor decomposition (TD), referred to as TD hashing,

where image hash generation is viewed as deriving a compact representation from a tensor. Specifically, a stable three-order tensor is

first constructed from the normalized image, so as to enhance the robustness of our TD hashing. A popular TD algorithm, called Tucker

decomposition, is then exploited to decompose the three-order tensor into a core tensor and three orthogonal factor matrices. As the

factor matrices can reflect intrinsic structure of original tensor, hash construction with the factor matrices makes a desirable

discrimination of the TD hashing. To examine these claims, there are 14,551 images selected for our experiments. A receiver operating

characteristics (ROC) graph is used to conduct theoretical analysis and the ROC comparisons illustrate that the TD hashing

outperforms some state-of-the-art algorithms in classification performance between the robustness and discrimination.

Index Terms—Image hashing, tensor construction, tensor decomposition, Tucker decomposition

Ç

1 INTRODUCTION

MANY image hashing algorithms have been proposed
for retrieving similar images from large-scale image

database. However, most of these algorithms do not reach
satisfied performance due to their limitation in classification
between robustness and discrimination. Therefore, this
paper studies a new image hashing that is designed with
tensor decomposition (TD), referred to TD hashing, where
image hash generation is viewed as deriving a compact
representation from a tensor. Tensor is a higher-order gen-
eralization of matrix, and has been widely used in multime-
dia. For example, [1] and [2] factorize a relational tensor
between images and their meta-data to learn a new repre-
sentation of images, and [3] decomposes context tensors to
make image recommendation. Tensor methods are efficient
tools for data analysis [4] and TD has been successfully
applied in many applications, such as data mining, graph
analysis, signal processing and computer vision, but its use
in image hashing is rarely discussed. In this paper, we
exploit TD to design a novel image hashing, referred to TD
hashing, so as to reach a good classification performance
between robustness and discrimination. Our main contribu-
tions are summarized as follows.

(1) Hash generation is viewed as deriving a compact
representation from a tensor, and a stable three-
order tensor is constructed for representing input

image. Since influences of digital operation on the
normalized image are mitigated, the three-order
tensor constructed from the normalized image is
stable and thus provides good robustness of our
TD hashing.

(2) A popular TD algorithm called Tucker decomposi-
tion is exploited to decompose the three-order tensor
into a core tensor and three orthogonal factor matri-
ces, and the factor matrices are used to construct
image hash. As factor matrices can reflect intrinsic
structure of original tensor, desirable discrimination
of our TD hashing is thus achieved.

Experiments with 14551 images (i.e., 13213 images for
robustness validation and 1338 images for discrimination
test) are conducted to validate performance of our TD image
hashing. Receiver operating characteristics (ROC) curve
comparisons illustrate that the TD image hashing is supe-
rior to some state-of-the-art algorithms in classification per-
formance between robustness and discrimination.

The remainder of this paper is organized as follows.
Section 2 reviews the related work and Section 3 describes
the TD image hashing. Section 4 discusses experimental
results of our TD image hashing and Section 5 presents per-
formance comparisons with some state-of-the-art algo-
rithms. Conclusions are finally given in Section 6.

2 RELATED WORK

Image hashing [5], [6] is a technique for deriving a content-
based compact representation called hash from input image.
Generally, it should satisfy two basic properties [7], [8]:
robustness and discrimination. Robustness means that visu-
ally identical images should have the same or very similar
hashes no matter their digital representations are the same or
not. In other words, image hashing should be robust against
content-preserving operations, such as image compression
and geometric transforms. Discrimination requires that
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different images should have different hashes. This means
that the distance between hashes of different images should
be large enough. Certainly, image hashing could have other
properties for specific applications. For example, it must be
key-dependent and sensitive to visual content changes when
it is applied to image authentication [9], [10].

An early work of image hashing is proposed by Schneider
and Chang [11]. As image hashing plays an important role in
many applications [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], such as image retrieval, image
authentication, approximate nearest neighbor search, digital
watermarking, image indexing, image quality assessment
and multimedia forensics, it attracts much attention from
multimedia community in the past several years. In terms of
the used techniques, the existing image hashing algorithms
can be roughly divided into four research directions as
follows.

(1) Image hashing based on histogram. For example,
Schneider andChang [11] extracted histogramof block
pixels to construct image hash. This method can resist
JPEG compression, but is fragile to large-angle rota-
tion. Xiang et al. [25] used invariance of histogram to
form image hash. This scheme is robust to geometrical
transforms including large-angle rotation. In another
study, Choi and Park [26] presented a hierarchical
strategy for improving robustness of the histogram-
based hashing [25]. Tang et al. [27] proposed to extract
multiple histograms from different rings of input
image. In another work, Tang et al. [28] used histo-
gram of color vector angles to generate image hash.
Both hashing algorithms [25], [26] can resist image
rotation with large angles, but their discriminations
are not good enough. Recently, Vadlamudi et al. [29]
divided input image into non-overlapping blocks, dis-
tributed block-based histogram bins into large con-
tainers, and calculated the ratio of pixel count between
two neighboring containers. The local histogram
based hashing is resilient to content-preserving opera-
tions, but its discrimination should be improved.

(2) Image hashing based on orthogonal transform. For exam-
ple, Venkatesan et al [7] introduced discrete wavelet
transform (DWT) to image hashing and used statistics
of DWT coefficients to make image hash. This hashing
is robust to JPEG compression and small-angle rota-
tion, but is fragile to gamma correction and contrast
adjustment. Monga and Evans [30] applied the end-
stoppedwavelet transform todetecting visually signif-
icant points for hash construction. This method has
good robustness against JPEG compression and mod-
erate rotation. Qin et al. [31] jointly used discrete Four-
ier transform (DFT) and non-uniform sampling to
construct hash. This scheme can resist JPEG compres-
sion and noise contamination, but is not robust enough
to large angle rotation. Fridrich and Goljan [32] found
that the magnitude of a low-frequent discrete cosine
transform (DCT) coefficient cannot be changed easily
without causing visible changes to the image. Based
on this observation, they proposed to calculate hash
by projecting input image on some DC-free random
smooth patterns. This method can withstand some

commonly-used operations, except image rotation. In
another work, Tang et al. [33] used dominant DCT
coefficients to generate image hash. The method is
robust against many digital operations, and shows
good performance in image copy detection.

(3) Image hashing based on projection transform. The
commonly-used techniques are radon transform (RT)
and fan-beam transform. The early use of RT in image
hashing is given by Lefebvre et al. [34]. They exploited
medium points of RT projections to form image hash.
This method has good performance against geometric
transform, but its discrimination should be improved.
Wu et al. [35] extracted the mean matrix of RT
coefficients, and compressed it byDWT andDFT. This
hashing can resist many robustness attacks, includ-
ing print-scan attack. In another study, Lei et al. [36]
extracted moment features in RT domain and explo-
ited significant DFT coefficients of the moments
to calculate hash. The scheme has good rotation
robustness. To reduce computational cost, Tang et al.
[37] exploited a variation of RT called fan-beam trans-
form to generate hash. The fan-beam transform based
hashing has better performances than the conven-
tional RT based hashing [35] in classification and run-
ning speed.

(4) Image hashing based on dimensionality reduction. For
example, Kozat et al. [38] exploited singular value
decomposition (SVD) twice to calculate hash. The
SVD-based hashing reaches good rotation robustness,
but its discrimination is hurt. Motivated by [38],
Monga and Mihcak [39] presented a similar image
hashing by replacing SVD with non-negative matrix
factorization (NMF). The NMF-based hashing shows
better classification performance than the SVD-based
hashing, but its secret key is not enough secure [40].
Tang et al. [41] proposed a lexicographical framework
for hash generation and gave an implementation with
DCT and NMF. Hash generation of the DCT-NMF
hashing is dependent on dictionary and secret keys.
Since the useddictionary cannot be exactly duplicated,
hash security is thus achieved. Ghouti [42] calculated
image hash by exploiting quaternion SVD (QSVD).
The QSVD hashing has better classification perfor-
mance than the SVD-based hashing, but its perfor-
mance should be improved. Recently, Davarzani et al.
[43] presented a robust image hashing based on SVD
and center-symmetric local binary patterns (CSLBP).
The SVD-CSLBP hashing can resist JPEG compression,
blurring and brightness change, but its discrimination
is not good enough. Tang et al. [44] proposed to calcu-
late image hashwithmultidimensional scaling (MDS).
The MDS hashing outperforms some popular hashing
algorithms [27], [39] in classification performance.

Besides the above algorithms, other hashing techniques
are also reported in recent years. For example, Li et al. [45]
exploited random Gabor filtering (GF) and dithered lattice
vector quantization (LVQ) to calculate hash. The GF-LVQ
hashing is resilient to image rotation, but its discrimination
is not desirable enough. Lv andWang [46] presented a hash-
ing algorithm based on scale invariant feature transform
(SIFT) and Harris detector. Zhao et al. [47] used Zernike
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moments to calculate image hash. Tang et al. [48] designed a
novel hashing by ring partition and invariant vector dis-
tance. Yan et al. [49] exploited adaptive and local feature
extraction techniques to develop a multi-scale image hash-
ing for tampering detection. Qin et al. [50] used block trun-
cation coding to generate image hash. Huang et al. [51]
presented a novel hashing method by random walk on zig-
zag blocking. The random walk based hashing has good
security, but its classification performance should be
improved. In [52], Qin et al. proposed to extract image hash
by using dual-cross pattern encoding and salient structure
detection. This hashing is secure, but its classification is also
not desirable yet.

From the above review, it is found that most image hash-
ing algorithms do not reach good classification performance
with respect to robustness and discrimination. Therefore,
more efforts are needed to design efficient hashing algo-
rithms. Aiming at this issue, we exploit TD to develop a
new image hashing, so as to reach good classification
between robustness and discrimination.

3 OUR TD IMAGE HASHING

In this study, we view hash generation as deriving a com-
pact representation from a tensor and develop a robust
image hashing with three steps, i.e., preprocessing, tensor
construction and tensor decomposition, as illustrated in
Fig. 1. In the first step, input image is converted to a normal-
ized image by a set of operations. And then, a three-order
tensor is constructed from the normalized image. Finally,
tensor decomposition is applied to the three-order tensor
for generating a compact hash. These steps are detailed as
follows.

3.1 Preprocessing

To mitigate the influences of content-preserving operations
on the input image, a set of digital operations are applied,
including interpolation, color space conversion and low-
pass filtering. Firstly, bi-linear interpolation is used to resize
the input image to a standard size M �M, which makes
our hashing robust against image rescaling. For RGB color
image, the resized image is then converted into CIE L�a�b�

color space and the L� component is used to represent the
resized image. The reason why we select the L� component
is that CIE L�a�b� color space is perceptually uniform and
its L� component closely matches human perception of
lightness. Let L� be lightness of a color pixel, a� and b� be its

chromaticity coordinates, respectively. Thus, they can be
determined by the following Eqs. (1), (2), (3) [53].

L� ¼ 116 f Y =Ywð Þ � 16 (1)

a� ¼ 500½f X=Xwð Þ � f Y =Ywð Þ� (2)

b� ¼ 200½f Y =Ywð Þ � f Z=Zwð Þ�; (3)

where X; Y andZ are the CIE XYZ tristimulus values,
XW ¼ 0:950456, YW ¼ 1:0 and ZW ¼ 1:088754 are the CIE
XYZ tristimulus values of the reference white point, and
fðtÞ is determined by Eq. (4) as follows.

fðtÞ ¼ t1=3; If t > 0:008856

7:787tþ 16=116; Otherwise

�
(4)

Moreover, the CIE XYZ tristimulus values X;Y andZ are
calculated by Eq. (5) as follows [54].

X

Y

Z

2
4

3
5 ¼

0:4125 0:3576 0:1804

0:2127 0:7152 0:0722

0:0193 0:1192 0:9502

2
4

3
5 R1

G1

B1

2
4

3
5; (5)

in which R1; G1 andB1 are the red, green and blue com-
ponents of the color pixel. Finally, a Gaussian low-pass
filtering is exploited to blur the L� component. This is to
alleviate influences of minor change on input image, such
as noise and filtering. Generally, the low-pass filtering can
be achieved by a convolution mask, whose element can be
determined by

F ði; jÞ ¼ F ð1Þði; jÞP
i

P
j F

ð1Þði; jÞ ; (6)

where F ð1Þði; jÞ is defined as follows.

F ð1Þði; jÞ ¼ e
�ði2þj2Þ

2s2 ; (7)

where s is the standard deviation of all elements in the
mask. Fig. 2 illustrates an example of our preprocessing.
Fig. 2a is the input image, Fig. 2b is the resized image,
Fig. 2c is the L� component and Fig. 2d is the blurred result.

3.2 Tensor Construction

In general, tensor is a multi-dimensional array. To derive a
compact hash with tensor decomposition, we construct a
three-order tensor from the normalized image. To do so, the
L� component is divided into non-overlapping blocks with
a small size S � S. For simplicity, let M be the integral
multiple of S. Thus, there are both D ¼ M=S blocks along
the x-axis and the y-axis directions, respectively. To make
an initial compression, mean value of each block is calcu-
lated and then a feature matrix U is obtained as follows.

Fig. 1. Block diagram of our TD image hashing.

Fig. 2. An example of our preprocessing.
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U ¼
u1;1 u1;2 . . . u1;D

u2;1 u2;2 . . . u2;D

. . .
uD;1

. . .
uD;2

. . . . . .
. . . uD;D

2
664

3
775; (8)

where ui;j is the mean value of the block in the ith position
and the jth position along the y-axis and the x-axis direc-
tions ð1 �i � D; 1 �j � DÞ, respectively. Besides initial
compression, this operation also makes our algorithm
robust against rotation with small angle, which can be
understood as follows. Rotation with small angle will
change pixel positions, but the block mean will not be sig-
nificantly altered since pixels in a local small region have
similar values. Clearly, a big block size is helpful to robust-
ness against large-angle rotation. However, a bigger block
size means fewer features in U, which will inevitably hurt
discrimination. In experiments, we select 2� 2 as block size,
which can reach a good balance between robustness and
discrimination.

Next, the feature matrix U is further divided into non-
overlapped blocks sized Q�Q. For simplicity, let D be the
integral multiple of Q. Thus, there are n ¼ ðD=QÞ2 blocks in
total. To make a secure hash, we randomly select another n
blocks sized Q�Q under the control of a secret key k1. Dur-
ing selection, overlapping region between random blocks
can exist. But the same block is not selected again. As a
result, there are L ¼ 2n different blocks selected. To enha-
nce security of our algorithm, we use another secret key k2
to randomly stack these L blocks. Finally, a three-order
tensor X sized Q�Q� L is obtained.

Note that our security is ensured by random block selec-
tion and random block stack. Clearly, there are many possi-
bilities of selecting n blocks. Without knowledge of the
secret key, it is difficult to correctly guess the random block
pattern. In addition, there are L! permutations of random
block stack. For example, if L ¼ 32, there are 2:63� 1035

possible permutations. As L increases to 64, the number of
permutations of random block stack will reach about
1:27� 1089. A huge number of block permutations means a
secure tensor. In practice, it is almost impossible to simulta-
neously and correctly guess random block pattern and ran-
dom block stack. Therefore, our image hash derived from
the tensor is secure. Key dependence of our TD hashing will
be verified in Section 4.3.

3.3 Tensor Decomposition

Tensor decomposition (TD) [55], [56] is an efficient tech-
nique for data mining, graph analysis, signal processing,
computer vision, and so on. In this study, we exploit TD to
derive image hash. Here, the well-known algorithm called
Tucker decomposition is selected to achieve TD. The classi-
cal Tucker decomposition is introduced by Tucker [57], and
has been successfully applied in many real applications,
such as face image recognition [58], image quality assess-
ment [59], noise reduction [60] and data analysis [61].

For a three-order tensor X 2 RQ�Q�L, Tucker decomposi-

tion will decompose it into a core tensor G 2 RI�J�K and
three orthogonal factor matrices, i.e., A 2 RQ�I , B 2 RQ�J

and C 2 RL�K . Mathematically, Tucker decomposition can
be formulated as follows.

X � G;A;B;C½ �½ � ¼
XI
i¼1

XJ
j¼1

XK
k¼1

gi;j;k ai 	 bj 	 ck
� �

(9)

where ai;bj and ck are the column vectors of A;B andC, gi;j;k
is the element of G, the symbol ‘	’ represents outer product
between two vectors, and the symbol ‘½½ ��’ is a concise repre-
sentation of Tucker decomposition given in [55]. Element-
wise, the Eq. (9) can be rewritten as:

xw;h;r �
XI
i¼1

XJ
j¼1

XK
k¼1

gi;j;kaw;ibh;jcr;k; (10)

in which xw;h;r; aw;i; bh;j and cr;k are the elements of X;A;
B andC, respectively. Calculation of Tucker decomposition
is equivalent to solving an optimization problem [62] as
follows.

G;A;B;C½ �½ � ¼ arg min
gi;j;k;aibjck

X�
XI
i¼1

XJ
j¼1

XK
k¼1

gi;j;k ai 	 bj 	 ck
� ������

�����
2

(11)

where jj jj2 is the Frobenius norm. In general, this optimiza-
tion problem can be solved by the well-knownmethod called
alternating least squares (ALS) algorithm [61], [62]. Details of
ALS algorithm can be referred to [55], [61], [62]. Fig. 3 presents
a schematic diagram of Tucker decomposition.

Since the orthogonal factor matrices of Tucker decompo-
sition can reflect intrinsic structure of the original tensor, we
exploit them to construct image hash. For the factor matrix
A, we calculate the mean of each row and then obtain a fea-
ture vector as follows.

p Að Þ ¼ p
Að Þ
1 ; p

Að Þ
2 ; . . . ; p

Að Þ
Q

h iT
; (12)

in which p
ðAÞ
i is the mean of the ith row of A ð1 �i � QÞ.

Next, pðAÞ is converted to a binary sequence as below.

h
Að Þ
i ¼ 0; if p

Að Þ
i < m Að Þ

1; Otherwise;

(
(13)

where mðAÞ is the mean of all elements of pðAÞ. Similarly, the
feature vector of B is extracted as follows.

p Bð Þ ¼ p
Bð Þ
1 ; p

Bð Þ
2 ; . . . ; p

Bð Þ
Q

h iT
; (14)

in which p
ðBÞ
i is the mean of the ith row of B ð1 �i � QÞ.

Furthermore, pðBÞ is quantized by the below rule.

h
Bð Þ
i ¼ 0; if p

Bð Þ
i < m Bð Þ

1; Otherwise;

�
(15)

where mðBÞ is the mean of all elements of pðBÞ. Likewise, the
feature vector of C is computed by the following equation.

Fig. 3. Schematic diagram of Tucker decomposition.
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p Cð Þ ¼ p
Cð Þ
1 ; p

Cð Þ
2 ; . . . ; p

Cð Þ
L

h iT
; (16)

in which p
ðCÞ
i is the mean of the ith row of C ð1 �i � LÞ.

And then, pðCÞ is mapped to a bit sequence.

h
Cð Þ
i ¼ 0; if p

Cð Þ
i < m Cð Þ

1; Otherwise;

(
(17)

where mðCÞ is the mean of all elements of pðCÞ. Finally, our
image hash h is available by concatenating these binary ele-
ments as follows.

h ¼ h
Að Þ
1 ; h

Að Þ
2 ; . . . ; h

Að Þ
Q ; h

Bð Þ
1 ; h

Bð Þ
2 ; . . . ; h

Bð Þ
Q ; h

Cð Þ
1 ; h

Cð Þ
2 ; . . . ; h

Cð Þ
L

h i
:

(18)

Therefore, our hash length isN ¼ 2Qþ L bits.

3.4 Hash Similarity Evaluation

As our image hash is a binary representation, we select the
well-knowndistancemetric calledHamming distance tomea-
sure similarity of two image hashes. Let h1 and h2 be two
image hashes. Thus, their Hamming distance is defined as:

dH h1;h2ð Þ ¼
XN
i¼1

h1 ið Þ � h2 ið Þj j; (19)

where h1ðiÞ and h2ðiÞ are the ith elements of h1 and h2,
respectively. In general, a smaller Hamming distance means
more similar images of the corresponding hashes. If the

Hamming distance is not bigger than a given threshold, the
images of the input hashes are judged as visually identical
images. Otherwise, they are classified as distinct images.

4 EXPERIMENTAL RESULTS

In the experiments, the selected parameter values of our TD
hashing are as follows. The input image is resized to a stan-
dard size 256� 256; a 3� 3 Gaussian low-pass filter with
zero mean and a unit standard deviation is taken; the L�

component is divided into 2� 2 non-overlapping blocks
and thus the size of the matrix U is 128� 128; the matrix U
is further divided into non-overlapped blocks of size
32� 32 and the number of random blocks is 16. The selected
values of the parameters I; J andK of Tucker decomposi-
tion are all 1. In other words, our used parameters are:
M ¼ 256, D ¼ 128, S ¼ 2, Q ¼ 32, n ¼ 16, I ¼ 1, J ¼ 1 and
K ¼ 1. Consequently, the number of blocks used for tensor
construct is L ¼ 2n ¼ 32. Therefore, the length of our hash
is N ¼ 2Qþ L ¼ 96 bits. In the following sections, the
experiments of robustness, discrimination, key dependence
and effect of the parameters of Tucker decomposition on
hash performances are discussed.

4.1 Robustness

A database with 13213 images is constructed to evaluate
robustness of our image hashing. To do so, two popular open
image datasets called Kodak lossless true color image suite
[63] and INRIA Copydays dataset [64] are both selected. The
Kodak image dataset is distributed by the Eastman Kodak
company for free use. It consists of 24 true color imageswhose
sizes are either 768 � 512 or 512 � 768. The INRIA Copydays
dataset includes 157 color images, whose sizes range
from 1200� 1600 to 3008� 2000. Consequently, there are
24þ 157 ¼ 181 original color images. These color images con-
tain various contents, such as buildings, sports, human
beings, animal and landscape. Fig. 4 illustrates some typical
images of the used image datasets. To generate visually
similar images of these color images, ten commonly-used
content-preserving operations provided by StirMark [65]
and Photoshop, MATLAB are exploited to conduct robust-
ness attacks. For each content-preserving operation, different
parameter values are selected. Table 1 presents the used

Fig. 4. Typical images of the used image datasets.

TABLE 1
Digital Operations and Their Parameter Settings

Operation Parameter Parameter value Number

Brightness

adjustment

Photoshop’s

scale


10;
20 4

Contrast

adjustment

Photoshop’s

scale


10;
20 4

Gamma correction g 0:7; 0:9; 1:1; 1:2 4

3� 3 Gaussian

low-pass filtering

Standard

deviation

0:3; 0:4; . . . ; 1:0 8

Speckle noise Variance 0:001; 0:002; . . . ; 0:01 10

Salt and pepper noise Density 0:001; 0:002; . . . ; 0:01 10

JPEG compression Quality factor 30; 40; . . . ; 100 8

Watermark embedding Strength 10; 20; . . . ; 100 10

Image scaling Ratio 0:5; 0:75; 0:9; 1:1; 1:5; 2:0 6

Rotation, cropping

and rescaling

Agree in

degree

0:25; 0:5; 0:75; 1;1:25; 1:5; 1:75; 2 8

Total 72
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content-preserving operations and their detailed parameter
settings. Clearly, there are 72 manipulations in total. This
means that every original image has 72 visually similar ver-
sions and the total pairs of visually similar images is
181� 72 ¼ 13032. Therefore, the number of the used images
in the robustness test is 181þ 13032 ¼ 13213.

Image hashes of each pair of visually similar images are
extracted and their similarity is evaluatedwithHamming dis-
tance. Fig. 5 presents the mean Hamming distances of image
hashes under each parameter of different content-preserving
operations, where the y-axis is the Hamming distance and the
x-axis is the parameter value of digital operation. It is

observed that the mean Hamming distances are all smaller
than 5, except some distances of rotation, cropping and rescal-
ing. The mean distances of rotation, cropping and rescaling
are bigger than those of other operations. This is because the
operations of rotation, cropping and rescaling is a combina-
tional attack, whichwill introducemore distortions on images
than a single operation. Nevertheless, the mean distances of
the combinational attack under different parameter settings
aremuch smaller than 10.

To view the detailed robustness performance of different
operations, Table 2 illustrates their statistics of Hamming dis-
tances. It can be seen that all means are smaller than 6 and
their standard deviations are small. Moreover, the minimum
values of all digital operations are 0, and themaximumvalues
of all operations are smaller than 15, except the combinational
attack of rotation, cropping and rescaling. For the combina-
tional attack, its maximumHamming distance is 26. Since the
mean distances of all operations are small, we can select 10 as
the threshold to resist most digital operations. In this case,
98.64 percent similar images are correctly classified as visually
identical images. If no rotated images are included in the
application, the percentage of correct detection will reach
99.92 percent.

4.2 Discrimination

To test discriminative capability, another open image data-
base calledUCID [66] is taken. TheUCID contains 1338 differ-
ent true color images and the image sizes are either 512� 384
or 384� 512. Fig. 6 shows some typical images of UCID. In

Fig. 5. Robustness test based on the Kodak image dataset and INRIA
Copydays dataset.

TABLE 2
Statistics of Hamming Distances Based on Kodak

Image Dataset and INRIA Copydays Dataset

Operation Max Min Mean Standard
deviation

Brightness adjustment 8 0 1.00 0.55
Contrast adjustment 7 0 0.64 0.18
Gamma correction 14 0 1.45 0.52
3� 3 Gaussian low-pass filtering 4 0 0.29 0.01
Speckle noise 8 0 0.56 0.13
Salt and pepper noise 4 0 0.34 0.03
JPEG compression 8 0 0.95 0.02
Watermark embedding 13 0 0.98 0.40
Image scaling 8 0 0.99 0.01
Rotation, cropping and rescaling 26 0 5.15 1.03

Fig. 6. Some typical images of UCID.
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the experiment, image hashes of these 1338 color images are
firstly extracted. For each image, the Hamming distances
between its hash and the hashes of other 1337 images are then
calculated. Consequently, C2

1338 ¼ 1338� 1337=2 ¼ 894453
Hamming distances are generated. It is observed that themin-
imum and the maximum distances are 1 and 94, respectively.
Moreover, themean and standard deviation of these distances
are 42.84 and 14.88, respectively.

To make theoretical analysis of our discrimination, the
well-known hypothesis testing method called chi-square
test [67] is exploited. To do so, the maximum likelihood
estimation is firstly taken to estimate parameters of the
evaluated distributions, i.e., normal distribution, lognormal
distribution, Rayleigh distribution, Poisson distribution,
Weibull distribution, and Gamma distribution. The statistics
x2 is then calculated by Eq. (20) as follows.

x2 ¼
XN
i¼0

ni � ntotalPið Þ2
ntotalPi

; (20)

where ni is the frequency of Hamming distance equaling
i; ntotal is the number of trials, N is the hash length, and Pi is
the probability at i determined by the probability density
function of the evaluated distribution. Table 3 presents the
estimated parameters and x2 results of the test distributions.
Clearly, the x2 value of Weibull distribution is the smallest
one. Consequently, it can be considered that our Hamming
distances follow a Weibull distribution with a ¼ 47:89 and
b ¼ 3:17. Fig. 7 is the comparison between the empirical dis-
tribution and the theoretical Weibull distribution. When the

threshold T is given, the corresponding collision probability
of our hashing can be calculated by Eq. (21) as follows.

Pr dH � Tð Þ ¼
Z T

0

ba�btb�1e�
t
að Þbdt: (21)

Table 4 presents our collision probabilities under differ-
ent thresholds. Obviously, a small T leads to a low collision
probability (a good discrimination). At the meanwhile, a
small T will also inevitably reduce robustness performance.
In practice, we can select a proper threshold in terms of the
specific application to keep a tradeoff between robustness
and discrimination.

4.3 Key Dependence

To validate our key dependence, color images in the Kodak
image dataset are also taken as test images. For each image,
different secret keys are used to generate hashes and then
Hamming distances of these different hashes are calculated.
The results show that all Hamming distances are big
enough. For space limitation, a typical example is presented
here, where the last image in the third row of Fig. 4a is the
test image. Firstly, a group of keys ðk1; k2Þ is used to extract
image hash of the test image. Secondly, another 100 differ-
ent groups of keys are exploited to generate hashes of the
same image. In the experiment, only the secret keys are
changed and other parameters are kept unchanged. Fig. 8
presents the Hamming distances between the hashes

TABLE 3
The Estimated Parameters and x2 Results

of the Test Distributions

Distribution Estimated parameter x2

Normal m ¼ 42:85; s ¼ 14:87 9890:92
Lognormal m ¼ 3:69; s ¼ 0:40 1:86� 1014

Rayleigh b ¼ 32:07 1:83� 105

Poisson � ¼ 42:85 7:88� 1012

Weibull a ¼ 47:89; b ¼ 3:17 1928:10
Gamma a ¼ 7:24; b ¼ 5:92 81792:22

Fig. 7. Comparison between empirical distribution and theoretical Wei-
bull distribution.

TABLE 4
Collision Probabilities under

Different Thresholds

Threshold Collision probability

1 4:72� 10�6

2 4:25� 10�5

3 1:53� 10�4

4 3:82� 10�4

6 1:40� 10�3

8 3:40� 10�3

10 7:00� 10�3

Fig. 8. Hamming distances between hashes of an image controlled with
different keys.
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controlled by different groups of keys, where the x-axis is
the index of wrong keys and the y-axis is the Hamming dis-
tance. It can be seen that all Hamming distances are much
bigger than 20. This illustrates that our hashing is key-
dependent.

4.4 Effect of Key Parameters on Hash
Performances

In this section, we discuss effect of the parameters of Tucker
decomposition, i.e., I; J andK, on hash performances. Gen-
erally, the parameter values of I; J andK should be smaller
than the tensor order in practice. Since a three-order tensor
is constructed in this study, the possible parameter values
of I; J andK are 1 or 2. Consequently, there are 8 combina-
tions of these parameters as follows: (1) I ¼ 1; J ¼
1 andK ¼ 1; (2) I ¼ 1; J ¼ 1 andK ¼ 2; (3) I ¼ 1; J ¼ 2
andK ¼ 1; (4) I ¼ 1; J ¼ 2 andK ¼ 2; (5) I ¼ 2; J ¼ 1 and
K ¼ 1; (6) I ¼ 2; J ¼ 1 andK ¼ 2; (7) I ¼ 2; J ¼ 2 andK ¼ 1;
(8) I ¼ 2; J ¼ 2 andK ¼ 2.

To validate our classification performance between
robustness and discrimination under these parameter set-
tings, the open image datasets used in Sections 4.1 and 4.2
are also taken. Here, the well-known tool called receiver
operating characteristics (ROC) graph [68] is used to theo-
retically analyze experimental results. Generally, the x-axis
of the ROC graph is false positive rate (FPR) and the y-axis
is the true positive rate (TPR). Let PFPR and PTPR be FPR
and TPR, respectively. Thus, their definitions are as follows.

PFPR dH � Tð Þ ¼ Nfalse

Ndifferent
(22)

PTPR dH � Tð Þ ¼ Ntrue

Nsame
; (23)

where Nfalse is the pairs of different images falsely classified
as similar images, Ndifferent is the total pairs of different
images, Ntrue is the pairs of visually similar images correctly
detected as the same images, and Nsame is the total number
of visually similar images. It is clear that PFPR and PTPR

represent discrimination and robustness, respectively. By
varying the threshold T , a set of points ðPFPR; PTPRÞ for
drawing ROC curve is then available. Note that, as a good
discrimination means a small PFPR and a good robustness
implies a big PTPR, the ROC curve near the top-left corner is
better than that far away from it.

Fig. 9 presents ROC curve comparisons among these
parameter settings. It is observed that the ROC curve of
I ¼ 1; J ¼ 1 andK ¼ 1 are closer to the top-left corner than
those of other combinations of parameter values. To con-
duct quantitative analysis, the area under the ROC curve
(AUC) [68] is taken as a measure for comparing classifica-
tion performance. Note that the range of AUC is [0, 1]. A
bigger AUC means a better classification performance.
Table 5 lists AUCs of different parameter combinations.
Obviously, the AUC of I ¼ 1; J ¼ 1 andK ¼ 1 is the biggest
one. This means that the classification performance of
I ¼ 1; J ¼ 1 andK ¼ 1 is better than those of other parame-
ter combinations. In addition, computational time compari-
sons of extracting a hash are also conducted. Our TD
hashing is implemented with MATLAB 2016a, running on a
personal computer with 3.40 GHz Intel Core i7-6700 CPU
and 8.0 GB RAM. The operating system installed in this
computer is Windows 7 professional (64-bit version). The
total consumed time of extracting hashes of 1338 different
images in discrimination test are calculated to find the aver-
age time of a hash. It is found that the average time of these
parameter combinations is about 0.17 seconds.

5 PERFORMANCE COMPARISONS

To show advantage of our TD hashing, we compared it with
some state-of-the-art algorithms, including GF-LVQ hash-
ing [45], SVD-CSLBP hashing [43], random walk based
hashing [51], local histogram based hashing [29] and MDS
hashing [44]. The reason why we select them as compared
algorithms is that they are recently reported in famous jour-
nals or conference. In the comparisons, those images used
in Sections 4.1 and 4.2 are also selected to evaluate robust-
ness and discrimination of the assessed algorithms. To
make fair comparisons, all images are resized to 256� 256
during hash generation, and the values of other parameters
of the compared algorithms are the same with those
reported in their original papers. Meanwhile, hash similar-
ity metrics presented in their original papers are also used,
i.e., correlation coefficient for SVD-CSLBP hashing and
MDS hashing, and normalized Hamming distance for GF-
LVQ hashing, random walk based hashing and local

Fig. 9. ROC curve comparisons among different parameters settings.

TABLE 5
AUCs of Different

Parameter Combinations

I, J, K AUC

1, 1, 1 0.9993
1, 1, 2 0.9655
1, 2, 1 0.9213
1, 2, 2 0.9767
2, 1, 1 0.9636
2, 1, 2 0.9907
2, 2, 1 0.9709
2, 2, 2 0.9693
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histogram based hashing. The results of our TD hashing
with I ¼ 1; J ¼ 1 andK ¼ 1 are taken for comparisons.
Therefore, hash lengths of SVD-CSLBP hashing and MDS
hashing are 64 floats and 180 integers (equaling 720 bits),
and those of GF-LVQ hashing, random walk based hashing
and local histogram based hashing are 120, 144 and 448 bits,
respectively.

Fig. 10 illustrates visual classifications of different hashing
algorithms, where the similarity results of visually identical
images and different images are both drawn in the same
figure for easy comparisons. The results of GF-LVQ hashing,
SVD-CSLBP hashing, randomwalk based hashing, local his-
togram based hashing, MDS hashing and our TD hashing
are shown in Figs. 10a, 10b, 10c, 10d, 10e and 10f, respec-
tively. It can be seen that the overlapping regions between
the distribution results of visually identical images and dif-
ferent images always exist for every hashing algorithm.
However, the number of identical images and different
images in the overlapping interval of our TD hashing is
smaller than those in the overlapping intervals of other
assessed hashing algorithms. Note that the results in the
overlapping interval will be inevitablymisclassified. A small
image number in the overlapping interval means a better
classification. Therefore, it can be intuitively concluded that

the classification performance of our TD hashing outper-
forms those of the compared algorithms.

Moreover, ROC graph is exploited again to make theoret-
ical analysis. Fig. 11 presents the ROC curve comparisons
among these assessed hashing algorithms. It is observed
that the ROC curve of our TD hashing is above those of
other compared algorithms, and is much closer to the top-
left corner than others. To make quantitative analysis,
AUCs of the assessed algorithms are also calculated. The
results of GF-LVQ hashing, SVD-CSLBP hashing, random
walk based hashing, local histogram based hashing, MDS
hashing and our TD hashing are 0.9929, 0.9601, 0.9417,
0.9572, 0.9909 and 0.9993, respectively. Clearly, AUC of our
TD hashing is bigger than the AUCs of other compared
algorithms. This means that our TD hashing is superior to
the compared algorithms in classification between robust-
ness and discrimination.

Computational time comparison for generating a hash is
also evaluated. To do so, the total consumed time of generat-
ing hashes in discrimination test is recorded to calculate the
average time of extracting a hash. All hashing algorithms
are coded with MATLAB 2016a, running on the personal
computer with the same configuration as the above men-
tioned. It is found that the average time of GF-LVQ hashing,

Fig. 10. Visual classification comparisons among different algorithms.
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SVD-CSLBP hashing, randomwalk based hashing, local his-
togram based hashing, MDS hashing and our TD hashing
are 0.32, 0.10, 0.03, 0.02, 0.22 and 0.17 seconds, respectively.
Our TD hashing is faster than GF-LVQ hashing and MDS
hashing, but slower than SVD-CSLBP hashing, randomwalk
based hashing and local histogram based hashing. Summary
of performance comparisons among different hashing algo-
rithms is presented in Table 6. It can be seen that our TD
hashing is better than the compared algorithms in classifica-
tion performance in terms of AUC. As to computational
time, our TD hashing has moderate performance. Our hash
length is 96 bits, which is much shorter than GF-LVQ hash-
ing, random walk based hashing, local histogram based
hashing and MDS hashing. For SVD-CSLBP hashing, its
hash length is 64 floats. According to the IEEE standard for
floating-point arithmetic [69], 32 bits at least are required for
storing a float. Therefore, in binary form, the hash length of
SVD-CSLBP hashing is 64� 32 ¼ 2048 bits, which is much
longer than our length.

6 CONCLUSIONS

We have proposed an efficient image hashing based on ten-
sor decomposition, so as to reach good robustness and desir-
able discrimination. The main contributions are the three-
order tensor construction and the novel use of Tucker
decomposition. Our robustness is contributed by the three-
order tensor constructed from the normalized image, and
the discrimination is ensured by Tucker decomposition since
the factor matrices can reflect intrinsic structure of original
tensor. Experiments with three open image datasets have
been conducted, and the results have shown that our TD
hashing is robust against many content-preserving opera-
tions, reaches good discrimination and is key-dependent.
Comparisons with some state-of-the-art algorithms have
been also carried out, and the results have illustrated that the
performances of our TD hashing are better than those of the
compared algorithms in classification and hash length. In
future work, we will apply TD to video hashing, investigate

the use of deep learning techniques in image hashing, and
develop image hashingwith visual attentionmodel.
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