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ABSTRACT

Content-based image retrieval using a Scalable Vocabulary Tree (SVT) built from local scale-invariant features
is an effective method of fast search through a database. An SVT built from fronto-parallel database images,
however, is ineffective at classifying query images that suffer from perspective distortion. In this paper, we
propose an efficient server-side extension of the single-view SVT to a set of multiview SVTs that may be simulta-
neously employed for image classification. Our solution results in significantly better retrieval performance when
perspective distortion is present. We also develop an analysis of how perspective increases the distance between
matching query-database feature descriptors.
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1. INTRODUCTION

One successful approach to content-based image retrieval in recent years relies on robust local features. The Scale-
Invariant Feature Transform (SIFT) extracts features from an image that can survive moderate geometric and
illumination distortions.! An alternative to SIFT, called Speeded-Up Robust Features (SURF), offers similar
image retrieval performance.? To avoid an expensive linear search through the database, local features are
typically organized into a Scalable Vocabulary Tree (SVT).? An SVT enables a fast preliminary search for a
small subset of the closest matching database images. Then, pairwise comparison of the query image with
database images in this subset is computationally practical.

Unfortunately, SVT-based retrieval performs poorly if objects of interest are imaged under severe perspec-
tive. First, many keypoints identified by a local feature detector in a fronto-parallel view cannot be repeatably
identified in a perspective view. Second, circular regions around keypoints in a fronto-parallel view deform into
elliptical regions in a perspective view, causing the feature descriptors to change significantly.

Many previous solutions focus on perspective rectification on the query side. Douxchamps and Macq search for
projective parameters that minimize sum-of-absolute differences between two stereo images.* Their exhaustive
search is not designed for real-time image retrieval. Koser and Koch segment out planar patches in the query
image, re-project the patches, and extract SIFT features.> Their approach requires accurate depth estimation,
which is a nontrivial task. If object surfaces in the image can be approximated by planar patches, the affine-
invariant feature detector proposed by Mikolajczyk and Schmid can perform well in spite of large viewpoint
changes, albeit at much higher computational cost than the SIFT or SURF detector.®

The complexity of perspective rectification is relatively high for the query side, especially for our application,
where the same mobile camera that captures the query photo might also perform feature extraction. Thus, a
better solution is to perform perspective matching on the server, as effectively demonstrated by Lepetit et al.”>®
Database images in fronto-parallel view are projectively transformed to mimic different types of perspective
expected in the query images.

Lepetit’s perspective matching system uses randomized decision trees and keypoint localization which is not
scale-invariant. In this paper, we propose perspective matching using SVTs, which are more commonly used
than randomized decision trees. The SVTs are built from SIFT or SURF features, which are scale-invariant.
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Several canonical views are chosen: one represents the original fronto-parallel view, while the others represent
different perspective views. A set of multiview SVTs is constructed, where a different SVT is built for each
canonical view. This multiview SVT database structure is well suited for a multi-processor server. In Sec. 2, the
effect of perspective distortion on local features is discussed, providing an analysis and explanation not found in
prior work on why a single-view tree fails. Multiview SVTs are presented in Sec. 3 to remedy the shortcomings
of a single-view SVT. Experimental results presented in Sec. 4 show significant gains in matching accuracy are
obtained with multiview SVTs.

2. EFFECT OF PERSPECTIVE DISTORTION ON IMAGE RETRIEVAL

The nodes of an SVT are the centroids determined by hierarchical k-means clustering of database feature de-
scriptors. Suppose an SVT has N nodes. During the training phase, all feature descriptors extracted from the
i*" database image are classified through the SVT, using a greedy nearest-neighbor search.® After classification,
it is known how many times n;(j) the j'" node in the SVT is visited by the i database feature set, resulting

in a vector of node visit counts d; = [n;(1), n;(2), ... , n;(N)]. Similarly, when a query feature set is received
on the server, its descriptors are classified through the SVT, generating a vector q = [n4(1), 14(2), ..., ng(NV)].
The dissimilarity between the i*" database feature set and the query feature set is given by
Wwd; Wq
D; (d;,q) = H LN 1
o= wa  wal | .
where W = diag (wy, ..., wy) is a matrix used to assign different entropy-related weights to different nodes and

the norm could be Ly or Ly.® The database feature sets with the smallest D; values are further considered for
a more elaborate comparison.

Using the SVT, information about a feature set is condensed to node visit counts. A perspectively degraded
query feature set and the matching fronto-parallel database feature set will have different numbers of features
and different descriptors, as discussed in Sec. 2.1 and 2.2. Consequently, their node visit counts can be very
dissimilar, preventing the correctly matching database feature set from being included in the set of minimum-D;
candidates.

(b) () (d) (e)
Figure 1. (a) Fronto-parallel CD cover image of resolution 500x500 pixels (a, = 1.0). CD cover images obtained from (a)
by applying increasingly more perspective foreshortening (b) ap = 1.2, (¢) ap = 1.3, (d) ap = 1.4, and (e) a, = 1.5.

2.1 Change in Number of Query Features

Perspective foreshortening eliminates many keypoints that are detected in a fronto-parallel query image. A
circular blob in the fronto-parallel view deforms into an elongated ellipse after perspective foreshortening, and
the ellipse may no longer qualify as a feature. Fig. 1(a) shows an undistorted, fronto-parallel CD cover image. By
applying increasingly more severe perspective foreshortening vertically, the CD cover image becomes progressively
more distorted as shown in Fig. 1(b)-(e). Suppose the fronto-parallel CD cover has vertices with normalized
coordinates {(0,0),(1,0),(1,1),(0,1)}. The projective transformation for parameter a, maps these vertices to
the coordinates {(0,0), (1,0), (ap,1/ap), (1 —ap,1/a,)}.

Fig. 2 plots the percentage of SIFT and SURF features lost, relative to an undistorted CD cover image, as
a function of the severity of perspective foreshortening. The statistics are averaged across 50 different CD cover
images of resolution 500x500 pixels. As perspective distortion worsens, the percentage of features lost becomes
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Figure 2. Average percentage of features lost for (a) SIFT and (b) SURF, for 50 CD cover images.

significant. Suppose an SVT is built from database images in fronto-parallel view. Fig. 2 demonstrates that
the query and database images can disagree significantly in the number of features for a CD cover. Thus, the
scoring metric in (1), which requires that the number of features for an object of interest is similar in the query
and database images, will become inaccurate.

2.2 Change in Query Feature Descriptors

Even if a keypoint is repeatably detected in the perspective view, the feature descriptor can still be severely
distorted. After perspective foreshortening, different gradient responses will be measured in the image patch
around a keypoint. Both SIFT and SURF calculate descriptors based on local gradients, so the deformation
directly translates into distortion in the feature descriptor.

We analyze in Appendix A how the Ls-norm distortion in the descriptor increases with the severity of
perspective. A Gaussian blob is chosen as our example of an image patch. Then, we can accurately model the
change in the gradient field of the Gaussian blob as perspective increases. Distortions in the SIFT and SURF
descriptors are natural consequences of the gradient field’s distortion.

Fig. 3 shows the Lo-norm distortion in the SIFT and SURF descriptors of the Gaussian blob as perspective
increases. The empirical curves are found by calculating SIFT or SURF descriptors on synthetic images con-
taining only Gaussian blobs, while the model curves are found by computing gradient vector fields as derived
in Appendix A. Distortion curves for real image patches will deviate from these curves because Gaussian blobs
are too simple to account for complex patterns in real image patches. Nevertheless, our model clearly identifies
distortion of the gradient field as the key reason for increased distortion in feature descriptors.

Also confirmed experimentally in Fig. 3, the average Lo-norm distortion in SIFT or SURF descriptors for
real image patches increases with the severity of perspective. The distortion is considerable for even moderate
amounts of perspective and rises above half of the inter-centroid distances at different levels of the SVT. Many
of these distorted descriptors will be incorrectly classified in the fronto-parallel SVT, and the resulting node visit
counts will be increasingly inaccurate.

3. MULTIVIEW SCALABLE VOCABULARY TREES

To accurately classify perspectively distorted query images, we propose the creation of multiview SVTs. Our test
material is a large collection of CD covers. Each CD cover has four sides and a front face, so five multiview SVTs
is a reasonable design choice, where each SVT corresponds to one canonical view. The original fronto-parallel
database images belong to the front view, as in Fig. 1(a). Then, to generate images for a different view, a
projective transformation is applied to the fronto-parallel images, as depicted in Fig. 4. For example, in the
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Figure 3. Average Lo distortion in feature descriptors of synthetic images containing only Gaussian blobs, for (a) SIFT
and (b) SURF. Models are derived from Appendix A. Average Lo distortion in feature descriptors of 50 CD cover images,

for (c) SIFT and (d) SURF.

bottom view, perspective foreshortening occurs in a bottom-to-top direction. The front view database images are
projectively transformed into bottom view images, as depicted in Fig. 4. By varying the direction of perspective
foreshortening, the top, left, and right views can also be generated. Local features are extracted from the images
in each view and contribute to the construction of that view’s SVT.

On a multi-processor server, several SVTs can simultaneously serve an incoming query. The top database
candidates to emerge from each SVT are further subjected to pairwise comparison using a ratio test and geometric
consistency checking (GCC).! Across all views, the database image associated with the maximum number of
post-ratio-test, post-GCC feature matches is selected to be the best match. Our solution is attractive because it
utilizes the ample computational capabilities of a server to handle the problem of perspective distortion.

Multiview SVTs offer substantial improvements over a single SVT. Unlike a fronto-parallel database image, a
correctly pre-distorted database image can closely match a perspectively degraded query image in the number of
features and in the characteristics of feature descriptors. Multiview SVTs preemptively prepare for perspective
distortion and mimic the degradations. The statistical mismatches between a query feature set and the matching
database feature set described in Sec. 2 can be greatly reduced with this pre-distortion approach.
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Figure 4. Construction of the front and bottom SVTs in a multiview set.

4. EXPERIMENTAL RESULTS

The performance of multiview SVTs is evaluated using a database of 10,000 CD cover images, each of resolution
500x500 pixels. Fifty of these covers are randomly chosen and photographed from different views, as shown in
Fig. 5. Each SVT in the multiview set has a depth of 6 and a branch factor of 10, meaning the tree contains 1
million leaf nodes.

For each SVT, the 25 database images attaining the smallest values of D, in (1) are checked for geometric
consistency against the query image. Among all SVTs, the database image with the largest number of geomet-
rically consistent feature matches is reported. If no database image contains at least 10 geometrically consistent
feature matches, a No Match result is reported. The matching rate is the fraction of query images correctly
identified. A No Match result is considered an incorrect identification.

Figure 5. Query images in (a)-(b) front, (c)-(d) top, (e)-(f) right, (g)-(h) bottom, and (i)-(j) left views. The resolution is
640x480 pixels.



Table 1. Matching rates for different combinations of query image sets and database SVTs.

SIFT Front SVT | Top SVT | Right SVT | Bottom SVT | Left SVT
Front Query 0.92 0.06 0.00 0.08 0.00
Top Query 0.00 0.74 0.00 0.34 0.00
Right Query 0.00 0.00 0.60 0.00 0.24
Bottom Query 0.00 0.28 0.00 0.80 0.00
Left Query 0.00 0.00 0.18 0.00 0.76

SURF Front SVT | Top SVT | Right SVT | Bottom SVT | Left SVT
Front Query 0.96 0.00 0.00 0.12 0.02
Top Query 0.00 0.72 0.00 0.26 0.00
Right Query 0.00 0.00 0.72 0.00 0.20
Bottom Query 0.02 0.16 0.00 0.76 0.00
Left Query 0.00 0.00 0.24 0.00 0.84

Table 1 shows the matching rates for SIFT and SURF. For example, the entry in the Left Query row and
Front SVT column is the matching rate for query images in the left view and an SVT for the front view. Only
rates along the main diagonal are satisfactorily high, and they correspond to the situations where query and
database images belong to the same view. The Front Query-Front SVT entry shows the highest matching rate
because the front view does not suffer from severe perspective distortion. Additionally, the top and bottom
views share similar features in the middle of the CD cover, as do the left and right views, resulting in small
matching rates for the Top Query-Bottom SVT, Bottom Query-Top SVT, Left Query-Right SVT, and Right
Query-Left SVT combinations. Looking across the Front Query row, we can observe the performance of a single
fronto-parallel SVT. This SVT only works well for fronto-parallel query images and fails for query images in
perspectively distorted views. A set of multiview SVT's enables significant increases in matching rates compared
to any single-view SVT.

5. CONCLUSION

In this paper, we have presented multiview SVTs as an efficient server-side solution for handling perspective
distortion in query images. We have shown both analytically and experimentally how statistical mismatches
between query and database feature sets render a single-view SVT ineffective. Multiview SVTs can significantly
reduce this statistical mismatch by preemptively mimicking the anticipated projective transformation. This
solution utilizes the ample computational power of a server and shifts the complexity away from resource-limited
mobile cameras. By using multiview SVTs, the image retrieval performance is much improved in the presence
of perspective degradations.

APPENDIX A. DISTORTION OF FEATURE DESCRIPTORS

In this section, we analyze the effect of perspective foreshortening on a local feature descriptor, assuming that
the keypoint can be repeatably identified after a projective transformation. To simplify analysis, image space
is assumed to be continuous. Suppose a blob i(x,y), which is a 2D-differentiable function, is centered on a
keypoint identified by the SIFT or SURF detector. Without loss of generality, assume the keypoint is located
at the origin. For the blob i(z,y), the effect of perspective foreshortening can be approximated as geometric
compression in one direction. Assume the blob is vertically compressed by factor a > 1, where a increases
as perspective foreshortening worsens. The parameter a is not the same as the parameter a, used in Sec.
2, although the two parameters are monotonically related, as long as compression is a good approximation
for perspective foreshortening. The distorted blob is i*(z,y) = i(z,ay). Let a 1D normalized Gaussian be
g(z,0) = 1/V27m0? - exp(—2%/(20?)), and a 2D normalized Gaussian be g(x,y,0) = g(z,0) - g(y,0). The



Gaussian-filtered second derivatives for i*(z,y) are

a 0 .
Ly (x,y,0) = 92 g(z,y,0) ** i(x,ay) , (2)
32
Lgy(z7y7a) = ai:lﬂg(xay7a)**i(l‘vay) ) (3)
02 .
Ly, (2,y,0) 929y g(z,y,0) = xi(z,ay) , (4)

where *x denotes 2D convolution and o is the characteristic scale at which the keypoint is localized. Setting
a =1 yields the second derivatives of the original blob without any vertical compression.

To simplify analysis, further assume that the blob i(x,y) is a 2D normalized Gaussian of scale o: i(z,y) =
g(x,y,0). The vertically compressed blob becomes i*(z,y) = 1/a - g(x,0) - g(y,0/a). Then, using the fact that
convolution of two Gaussians of scales o1 and o3 yields another Gaussian of scale y/0% + o3, we find that

a 1 / " z? 1

wa(x7y70') = Eg(x70-)'g(y7o' ) ﬁ_ﬁ 5 (5)
o 1 y? 1

Lyy(ma?ﬁa) = 59(3«"70/) ' g(y70”) <U”4 - 0_//2> ) (6)
a 1 Ty

Ly, (x,y,0) = 59(@”,0’) -g(y, ") (0,20,,2) : (7)

where 0/ = 02 and 0” = 04/1 + 1/a?. Now, we separate the analysis between SIFT and SURF, because these
two descriptors are calculated differently, although both descriptors depend on the second derivatives in (5)-(7).
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Figure 6. Gradient vector fields for (a) a = 1.0, and (b) a = 2.0 .
A.1 SIFT Descriptor
The pair (Lg,, Ly,) from (2)-(3) can be regarded as a vector field. For the Gaussian blob, we can use (5)-(6) to

T

plot the vector field in Fig. 6, contrasting two cases where vertical compression is absent (a = 1.0) and present



(a = 2.0). Perspective foreshortening, modeled as geometric compression along the vertical direction, results in
the vectors pointing downwards more.

The vectors (Lg,, Ly, ) can also be represented in polar form as

m®*(z,y,0) = \/Lgm(m, y,0)% + L, (z,y, a)? (8)
Le (x,y,0)
a _ yy
0%(z,y,0) = arctan (Lgm . a)) (9)

For SIFT, a grid of 4-by-4 squares is laid on top of the image patch surrounding the keypoint, as shown in
Fig. 6. Within the i'" square S;, a histogram of the vector angles is calculated, and 8 bin centers {f,...,60s}
are uniformly chosen on [0, 27). A vector of local statistics is then formed as

Vi = |: ma(%ya(’) ) ma(may7a) PRI ma(x7yvo'):| (10)
B B> Bg
B; = (x,y)€S; : 0;= argmin |0y —6%x,y,0)| (11)
0rc{01,....08}
The entire 128-dimensional SIFT descriptor is v = [v1, Vg, ..., vig], and the normalized descriptor is v =

v/||v||2. Because the vector field is distorted by vertical compression, as shown in Fig. 6, the descriptor is also
distorted. For the Gaussian blob, we can numerically evaluate (10) for all 16 squares and calculate the descriptor
for different values of the compression parameter a. Fig. 7(a) plots the Lo error in the descriptor as function of
a, relative to the undistorted descriptor (a = 1.0). As expected, more severe vertical compression causes greater
distortion in the descriptor.
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Figure 7. Lo distortion in (a) SIFT and (b) SURF descriptor as a function of a, the severity of vertical compression.

A.2 SURF Descriptor

The region over which the SURF descriptor is calculated is also a grid of 4-by-4 squares. In the i*" square S;, a
vector of local statistics is computed as

[// e, [[ ey, [ nneeol. [[ e |- a2

Altogether, the unnormalized 64-dimensional SURF descriptor is the concatenation v = [vy, va, ..., vig], and
the normalized descriptor is v = v/||v]2.

Because the vector field in Fig. 6 becomes more distorted as vertical compression increases, the SURF
descriptor calculated from integrals over the vector field becomes progressively more distorted. For the Gaussian



blob, we can numerically evaluate (12) for all 16 squares and calculate the descriptor for different values of
the compression parameter a. Fig. 7(b) plots the Ly error in the descriptor as function of a, relative to the
undistorted descriptor (a = 1.0). Like for SIFT, more severe vertical compression causes greater distortion in
the SURF descriptor.
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