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Robust Independent Component Analysis by
Iterative Maximization of the Kurtosis Contrast With
Algebraic Optimal Step Size
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Abstract—Independent component analysis (ICA) aims at
decomposing an observed random vector into statistically inde-
pendent variables. Deflation-based implementations, such as the
popular one-unit FastICA algorithm and its variants, extract the
independent components one after another. A novel method for
deflationary ICA, referred to as RobustICA, is put forward in this
paper. This simple technique consists of performing exact line
search optimization of the kurtosis contrast function. The step size
leading to the global maximum of the contrast along the search
direction is found among the roots of a fourth-degree polynomial.
This polynomial rooting can be performed algebraically, and thus
at low cost, at each iteration. Among other practical benefits,
RobustICA can avoid prewhitening and deals with real- and
complex-valued mixtures of possibly noncircular sources alike.
The absence of prewhitening improves asymptotic performance.
The algorithm is robust to local extrema and shows a very high
convergence speed in terms of the computational cost required
to reach a given source extraction quality, particularly for short
data records. These features are demonstrated by a comparative
numerical analysis on synthetic data. RobustICA’s capabilities
in processing real-world data involving noncircular complex
strongly super-Gaussian sources are illustrated by the biomedical
problem of atrial activity (AA) extraction in atrial fibrillation (AF)
electrocardiograms (ECGs), where it outperforms an alternative
ICA-based technique.

Index Terms—Atrial fibrillation (AF), blind source separation
(BSS), independent component analysis (ICA), iterative optimiza-
tion, kurtosis, optimal step size, performance analysis.

1. INTRODUCTION

A. Blind Source Separation and Independent
Component Analysis

NTRODUCED over two decades ago [1], the problem of

blind source separation (BSS) consists of recovering a set
of unobservable source signals from observed mixtures of the
sources. Independent component analysis (ICA) aims at decom-
posing an observed random vector into statistically indepen-
dent variables [2]. Among its numerous applications, ICA is
the most natural tool for BSS in instantaneous linear mixtures
when the source signals are assumed to be independent. As
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opposed to classical decomposition techniques such as prin-
cipal component analysis (PCA), ICA can deal with a general
mixing structure, even if not made up of orthogonal columns.
The plausibility of the statistical independence assumption in a
wide variety of fields, including telecommunications, finance,
and biomedical engineering, helps explain the arousing interest
in this research area witnessed over the last two decades.

Mathematically, the observed random vector x € Cr is as-
sumed to be generated according to the instantaneous linear
mixing model

x=Hs+n )

where the source vector s = [s1,52,...,5x]T € CK is made
of K < L unknown mutually independent components. The el-
ements of mixing matrix H € CI*K are also unknown, and so
are the noise vector n and its probability distribution; the noise
is only assumed to be independent of the sources. Our focus is
on batch or block implementations, which, contrary to common
belief, are not necessarily more costly than adaptive (recursive,
online, sample-by-sample, or neural) algorithms, and are able
to use more effectively the information contained in the ob-
served signal block [3]. Given a sensor-output signal block com-
posed of T" samples, ICA aims at estimating the corresponding
T-sample realization of the source vector.

B. Kurtosis as a Contrast Function

Since Comon’s seminal work [2], many contrast functions for
ICA have been proposed in the literature, mainly based on infor-
mation theoretical principles such as maximum likelihood, mu-
tual information, marginal entropy and negentropy, as well as re-
lated non-Gaussianity measures [4]-[6]. Among them, the kur-
tosis (normalized fourth-order marginal cumulant) is arguably
the most common statistics used in ICA, even if skewness has
also been proposed [7]. The use of kurtosis dates back to the
work of Wiggins [8], Donoho [9], and Shalvi-Weinstein [10]
on blind deconvolution of seismic signals and blind equaliza-
tion of single-input—single-output (SISO) digital communica-
tion channels, two problems that can be related to BSS/ICA.
One of the main benefits of kurtosis lies in the absence of spu-
rious local extrema for infinite sample size when the noiseless
observation model is fulfilled. This attractive feature leads to
globally convergent source extraction algorithms, from which
full source separation can be performed by using some form of
deflation procedure [11]-[14], even in the convolutive multiple-
input-multiple-output (MIMO) case [15]. Although the ade-
quacy of kurtosis as a contrast may be objected on the basis
of statistical efficiency and robustness against outliers [16], its

1045-9227/$26.00 © 2009 IEEE
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widespread use is justified by mathematical tractability, com-
putational convenience, and robustness to finite sample effects.
Theoretical evidence for its finite-sample robustness has been
gathered by previous works. In [17], the sample kurtosis yields
an estimate with less variance than the fourth-order moment and
the fourth-order cumulant for all distributions tested, including
sub-Gaussian and super-Gaussian densities. As an extension of
these results, using the full expression of the fourth-order cu-
mulant instead of the simplified form employed, e.g., in the
FastICA algorithm [12], [18], is shown to improve extraction
performance [19]. The computational convenience and finite
sample robustness of kurtosis can be further improved by the
optimal step-size iterative search proposed in this paper. In the
presence of outliers, the performance of the conventional kur-
tosis estimate based on sample moments can be enhanced by
means of more robust alternative estimates available in the lit-
erature (see, e.g., [20, Ch. 5]).

C. The FastICA Algorithm

The FastICA algorithm [12], [16], [18], [21] is perhaps the
most popular method for ICA, due to its simplicity, convergence
speed, and satisfactory results in numerous applications. Indeed,
the one-unit algorithm with cubic nonlinearity, related to the
optimization of the kurtosis contrast under prewhitening, offers
cubic global convergence if the ICA model is fulfilled and the
sample size tends to infinity [12], [22]. In addition, the algo-
rithm is asymptotically efficient if the nonlinearity is matched
to the source probability density function [23]. The cubic non-
linearity associated with kurtosis is particularly well adapted to
sub-Gaussian distributions [16], [23]. Some of these desirable
properties are also shared by the symmetric version of the algo-
rithm [24]. Originally put forward in deflation mode, FastICA
appeared after other kurtosis-based ICA methods such as CoM2
[2], JADE [25], CoM1 [26], or the deflation methods by Tugnait
[15] or Delfosse-Loubaton [11]. A first comparison with earlier
methods can be found in [27]. In the comparative study of [28],
FastICA is shown to fail for weak or highly spatially correlated
sources. Its convergence slows down or even fails in the pres-
ence of saddle points, particularly for short block sizes [23]. To
surmount this difficulty, a simple saddle-point check method is
proposed in that reference. Such a method is based on estimated
component pairs and, as a result, is not applicable if only one
independent component is required. Further improvements of
the symmetric implementation of the algorithm are developed
in [29]. All these results rely heavily on the assumption that the
observed signals have been perfectly whitened or sphered be-
fore further higher order processing. As pointed out in [30], the
use of prewhitening imposes a bound on separation performance
and introduces an estimation bias due to residual source corre-
lations for short data sizes.

D. The Complex-Valued Scenario

The FastICA algorithm was originally developed for
real-valued signals only. A first extension to complex-valued
sources is proposed in [31], and later shown to keep the cubic
global convergence property of its real counterpart [32]. Such
an extension, however, is only valid for second-order circular
sources, a limitation that has motivated more recent efforts to
extend the usefulness of the algorithm to noncircular sources

[33]-[36]. Li and Adali [36] derive gradient, fixed-point, and
Newton-like algorithms based on the general definition of the
fourth-order marginal cumulant valid for noncircular sources.
In [34], the whitened observation pseudocovariance matrix
is incorporated into FastICA’s update rule to guarantee local
stability at the separating solutions even in the presence of
noncircular sources. For the kurtosis-based nonlinearity, the re-
sulting algorithm bears close resemblance to that derived in [33]
through an ingenious approach sparing differentiation. Similar
algorithms are proposed in [35] through a negentropy-based
family of cost functions preserving phase information and
thus adapted to noncircular sources. Such functions must be
chosen in accordance with the source distributions to assure
stability. Again, all the above methods rely on prewhitening.
Interestingly, early methods for BSS in the complex case did not
require prewhitening and were also applicable to noncircular
sources [37], [38].

E. Summary and Contributions of the Paper

This contribution presents a novel method for deflationary
ICA named RobustICA [39]-[41]. The method is based on a
general contrast function, the kurtosis, which is optimized by
a computationally efficient technique based on an optimal step
size (adaption coefficient). Any independent component with
nonzero kurtosis can be extracted in this manner. No simplifying
assumptions concerning specific type of sources (real or com-
plex, circular or noncircular, sub-Gaussian or super-Gaussian)
are involved in the derivation of the algorithm. The method-
ology behind RobustICA is exact line search, well known in
the field of numerical optimization (see, e.g., [42]). However,
classical line search techniques can only perform iterative local
optimization along the search direction. By contrast, the optimal
step-size technique used in RobustICA computes algebraically
(i.e., without iterations) the step size globally optimizing the
kurtosis in the search direction at each extracting vector update.
When compared to other kurtosis-based algorithms such as the
original FastICA and its variants, the method presents a number
of advantages with significant practical impact.

* Asopposed to [18], [31], [32], and related works, the gen-
erality of the kurtosis contrast guarantees that real- and
complex-valued signals can be treated by exactly the same
algorithm without any modification. Both types of source
signals can be present simultaneously in a given mixture,
and complex sources need not be circular. The mixing ma-
trix coefficients may be real or complex, regardless of the
source type.

* Contrary to most ICA methods, prewhitening is not re-
quired, so that the performance limitations it imposes [30]
can be avoided. Sequential extraction (deflation) can be
carried out, e.g., via linear regression. This feature may
prove especially beneficial in ill-conditioned scenarios, the
convolutive case and underdetermined mixtures.!

» The algorithm can target sub-Gaussian or super-Gaussian
sources in the order specified by the user. This feature en-
ables the extraction of sources of interest when their Gaus-
sianity character is known in advance, thus sparing a full

10ther BSS methods avoiding prewhitening or dealing with noncircular com-
plex sources have been proposed elsewhere in the literature.
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separation of the observed mixture as well as the conse-
quent increased complexity and estimation error.

* The optimal step-size technique provides some robustness
to the presence of saddle points and spurious local extrema
in the contrast function.

e The method shows a very high convergence speed mea-
sured in terms of source extraction quality versus number
of operations. In the real-valued two-signal case, the
algorithm converges in a single iteration, even without
prewhitening.

RobustICA’s cost efficiency and robustness are particu-
larly remarkable for short sample length in the absence of
prewhitening. In addition to presenting the method and as-
sessing its comparative performance on synthetic data, the
practical usefulness of RobustICA is illustrated in a real-world
problem: the extraction of the atrial activity (AA) signal from
surface electrocardiogram (ECG) recordings of atrial fibrilla-
tion (AF). This biomedical application demonstrates that the
kurtosis contrast can also be used with success in the extraction
of strongly super-Gaussian sources, which, in addition, present
noncircular complex distributions in this particular context.

F. Related Work on Optimal Step-Size Iterative Methods

The convergence properties of iterative techniques are to
a large extent determined by the step size, learning rate, or
adaption coefficient employed in their update equations. It is
well known that the step-size choice sets a difficult balance
between convergence speed and final accuracy (misadjust-
ment). This tradeoff has spurred the development of iterative
techniques based on some form of step-size optimization. To
our knowledge, research into adaptive step-size optimization
can be traced back to the work of Kuzminskiy on the least
mean squares (LMS) algorithm in nonstationary environments,
where recursive expressions for the step size are derived [43],
[44]. More recent works on the LMS algorithm such as [45]
and [46] seem closer to our approach, except that they aim at
channel identification and the optimal step size is computed
using a quadratic cost function different from that minimized
via the stochastic LMS. Our rationale is essentially different, as
we aim at direct source estimation and globally optimize a non-
quadratic contrast by iterating on the same signal block under
the assumption of stationarity over the observation window
(block or batch processing).

Amari [3], [47] puts forward adaptive rules for learning the
step size in neural algorithms for BSS/ICA, more pertinent in
the context of the present work. The idea is to make the step
size depend on the gradient norm, in order to obtain a fast evo-
lution at the beginning of the iterations and then a decreasing
misadjustment as a stationary point is reached. These step-size
learning rules, in turn, include other learning coefficients which
must be set appropriately. Although the resulting algorithms are
said to be robust to the choice of these coefficients, their optimal
selection remains application dependent. Other guidelines for
choosing the step size in natural gradient algorithms are given
in [48], but are merely based on local stability conditions. In a
nonlinear mixing setup, Khor et al. put forward a fuzzy logic
approach to control the learning rate of a separation algorithm
based on the natural gradient [49].
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In the context of batch algorithms, Regalia [50] finds bounds
for the step size guaranteeing monotonic convergence of
the normalized fourth-order moment of the extractor output.
Such a functional is only a contrast for real-valued sources
under prewhitening, a similar limitation shared by the more
general class of functions considered in [51]. Determining
these step-size bounds is a computational intensive task, as it
involves the eigenspectrum of a Hessian matrix on a convex
subset containing the unit sphere in the K-dimensional space.
While still ensuring monotonic convergence, the optimal
step-size approach that we develop herein is valid for real-
and complex-valued sources, does not require prewhitening,
and is computationally very simple. This type of technique
has already been successfully applied by the authors to other
higher order contrasts such as the constant modulus or the
constant power criteria in the problems of blind and semiblind
equalization of digital communication channels [52]-[55].

G. Organization of the Paper

The paper begins by critically reviewing the deflationary kur-
tosis-based FastICA algorithm and its variants in Section II.
Then, Section III presents the RobustICA technique. Its exper-
imental comparative assessment is carried out in Section IV.
In particular, we aim at evaluating objectively the algorithms’
speed and efficiency by taking into account the cost per iteration
in number of operations. A biomedical application, the extrac-
tion of AA from ECG recordings of AF, illustrates the method’s
ability to deal with noncircular complex-valued super-Gaussian
sources, as reported in Section V. The concluding remarks of
Section VI bring the paper to an end.

II. FASTICA REVISITED

A. Kurtosis-Based Optimality Criteria

In the deflation approach to ICA, an extracting vector w is
sought so that the estimate

y < whx @)

where (-)f denotes the conjugate-transpose operator, maxi-
mizes some optimality criterion or contrast function, and is
hence expected to be a component independent from the others.
A widely used contrast is the kurtosis, which is defined as the
normalized fourth-order marginal cumulant

_ By} = 2B {Jy*} - [E{y*}
E{|y[*}

where E{-} denotes the mathematical expectation. This crite-
rion is easily seen to be insensitive to scale, i.e., K(Aw) =
K(w),VA # 0. Since this scale indeterminacy is typically unim-
portant, we can impose, without loss of generality, the normal-
ization ||w|| = 1 for numerical convenience. The kurtosis maxi-
mization (KM) criterion based on contrast (3) is quite general in
that it does not require the observations to be prewhitened and
can be applied to real- or complex-valued sources without any
modification.

The KM criterion started to receive attention with the pio-
neering work of Wiggins [8], Donoho [9], and Shalvi and We-
instein [10] on blind deconvolution, and was later employed for

K(w)

(€)
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source separation [11], including the convolutive mixture sce-
nario [15]. In the real-valued case, it was proved in [11] that
the maximization of criterion [KC(w)| is a valid contrast for the
extraction of any source with nonzero kurtosis from model (1)
after prewhitening. To avoid extracting the same source twice,
the remaining unitary mixing matrix is suitably parameterized
as a function of angular parameters, and function (3) iteratively
maximized with respect to these angles. In the convolutive mix-
ture scenario of [15], the contrast is maximized without param-
eterization. Regression is used as an alternative method to avoid
extracting the same source more than once.

To simplify the source extraction, the kurtosis-based FastICA
algorithm [12], [18], [21] first applies a prewhitening operation,

as in [11], resulting in transformed observations with an identity

. . lef
covariance matrix R, = E{xxf} = I.In the real-valued

case, contrast (3) then becomes equivalent to the fourth-order
moment criterion

M(w) = E{Jy|*} 4

which must be optimized under a constraint, e.g., |w| = 1,
to avoid arbitrarily large values of y. Under the same con-
straint, criteria (3) and (4) are also equivalent if the sources are

complex-valued but second-order circular, i.e., the noncircular

. . def
second-moment (or pseudocovariance) matrix C, = E{ssT}

is null, where ()T is the transpose operator without conjuga-
tion. Consequently, contrast (4) is less general than criterion
(3) in that it requires the observations to be prewhitened and
the sources to be real-valued, or complex-valued but circular.

B. Contrast Optimization

Under the constraint ||w| = 1, the stationary points of
M (w) are obtained as a collinearity condition on E{|y|?y*x},
where (-)* denotes complex conjugate

E{|WHX|2XXH}W: AW )

where )\ is a Lagrangian multiplier. As opposed to the claims
of [12], (5) is a fixed-point equation only if A is known, which
is not the case here; A must be determined so as to satisfy the
constraint, and thus it depends on w, ¢, the optimal value of w:
X = M(jwihx]*).

For the sake of simplicity, A is arbitrarily set to a deterministic
fixed value [12], [21], so that FastICA becomes an approximate
standard Newton algorithm, as eventually pointed out in [18].
In the real-valued case, the Hessian matrix of M (w) is approx-
imated as

E{(WTxxTW)XXT} ~ E{WTXXTW}E{XXT} =wlw=1
(6)

As a result, the kurtosis-based FastICA iteration reduces to
1
wh=w— 5E{X(WT )3}. @)

Since VM(w) = 4E{x(wTx)3}, (7) is essentially a gradient-
descent update rule of the form

wt =w — uVM(w)

with a fixed value for the step size p = 1/12. It follows
that the kurtosis-based FastICA is a particular instance, using
prewhitening and assuming sub-Gaussian sources, of the family
of gradient-based algorithms proposed in [15]. Though fixed
to a constant value, FastICA’s step-size choice is judicious in
that it leads to cubic convergence of the algorithm for infinite
sample size [18]. For short sample sizes, however, convergence
may slow down and even get trapped in saddle areas and
local extrema, as has been noticed in [23] and will be further
illustrated in Section IV.

To prevent locking onto a previously extracted source, the
so-called deflationary orthogonalization can be performed after
each FastICA update iteration. The extracting vector is con-
strained to lie within the orthogonal subspace of the extracting
vectors, stored in matrix Wy, = [wy, Wa, ..., W_1], found for
the previous (k — 1) sources

wt —wh - W, WHwT, ®)

This procedure is tantamount to the Gram—Schmidt orthogonal-
ization of w with respect to the columns of Wy. The iteration
concludes with a normalization step to guarantee the constraint
[whll =1

w

+
+. v
YT WA ®

The algorithm can be stopped when

11— |wHwh] <e (10)
for a statistically significant small constant ¢, e.g., ¢ = /T with
1 < 1. The use of the transpose—conjugate operator in (8) and
(10) makes them also valid in the complex case.

C. The Complex Case

In the extension of the kurtosis-based FastICA algorithm to
complex-valued scenarios [31], [32], the update rule can be ex-
pressed as

Wt =w - o Bl (an
with y given in (2). Let us define the gradient operator as V, =
Vw, + 7Vw,, where w,. and w; represent the real and imagi-
nary parts, respectively, of vector w; this a scaled form of Brand-
wood’s conjugate gradient [56]. Then, (11) is easily shown to be
a gradient-descent algorithm on contrast (4) with fixed step size
u = 1/8. The algorithm is only valid for second-order circular
sources, satisfying C; = 0. Recent works aiming to avoid this
limitation are all based on the prewhitening assumption. Starting
from the nonnormalized fourth-order cumulant contrast, the KM
fixed-point (KM-F) algorithm of [36] assigns the current gra-
dient to the extracting vector

wh = B{|ylPy*x} — 2B{|y|*} E{y"x} — E{y**} E{yx}
(12)

before the orthogonalization and normalization steps described
by (8) and (9). A modification of [31] is proposed in [34] leading
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to the so-called noncircular FastICA (nc-FastICA) algorithm.
For contrast (4), the modified update rule reads

1 1
wh=w-— 3 E{ly|?y*x} + EE{XXT}E{y*Z}W*. (13)

By taking into account the whitened observation pseudocovari-
ance matrix in the last term, the nc-FastICA algorithm becomes
locally stable at the separation solutions even in the presence of
noncircular sources. The complex fixed-point algorithm (CFPA)
of [33] turns out to rely on a very similar update rule, obtained
through an alternative approach not based on differentiation.

III. ROBUSTICA

A. Exact Line Search on the Kurtosis Contrast

Without simplifying assumptions, a simple quite natural al-
ternative to FastICA consists of performing exact line search of
the absolute kurtosis contrast (3)

fopt = arg max [K(w + yg)|. (14)
The search direction g is typically (but not necessarily) the gra-
dient g = VK (w), which is given by (cf., [13] and [15])

Vwk(w) = m{]@{lylz’y*x} — E{yx}E{y**}
(E{ly*} — |E{y*}?) E{y*x}
E{ly|?} '

Exact line search is in general computationally intensive and
presents other limitations [42], which explains why, despite
being a well-known optimization method, it is very rarely used
in practice. Indeed, the 1-D optimization in (14) must typically
be performed by means of numerical algorithms that are not
guaranteed to find the global optimum along the search direc-
tion. However, for criteria that can be expressed as polynomials
or rational functions of y, such as the kurtosis, the constant
modulus [55], [57], and the constant power [54], [58] contrasts,
the globally optimal step size pop¢ can easily be determined
algebraically by finding the roots of a low-degree polynomial.
The RobustICA algorithm is derived from the application of
this idea to the kurtosis contrast, as detailed next. A freely
available Matlab implementation can be found in [59].

At each iteration, RobustICA performs an optimal step-size
(OS)-based optimization comprising the following steps.

S1) Compute the OS polynomial coefficients. For the kur-

tosis contrast, the OS polynomial is given by

4
p(w) =Y aru®.
k=0

The coefficients {ay };_, can easily can be obtained at
each iteration from the observed signal block and the
current values of w and g. Their expressions are found
in the Appendix. Numerical conditioning in the deter-
mination of fi,p¢ can be improved by normalizing the
gradient vector beforehand.

Extract OS polynomial roots { . }_;. The roots of the
fourth-degree polynomial (quartic) can be found at prac-

(15)

S2)
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tically no cost using standard algebraic procedures such
as Ferrari’s formula, known since the 16th Century [42].
Indeed, the complexity of this step is negligible com-
pared with the calculation of the statistics required in
the previous step. Details about computational cost are
given in Section III-E.

Select the root leading to the absolute maximum of the
contrast along the search direction

S3)

Hopt = arg max IK(w + urg)|- (16)
This can be done at a negligible cost from the coeffi-
cients computed in step S1), as detailed in the Appendix.

S4) Update w' = W + piopt8.

S5) Normalize as in (9).

As in [15], the extracting vector normalization in step S5)
is performed to fix the ambiguity introduced by the scale in-
variance of contrast (3), and does not stem from prewhitening.
The same stopping criterion as in FastICA [cf., (10)] can also
be employed to check the convergence of the above algorithm.
The generality of contrast (3) guarantees that RobustICA is able
to separate real and complex (possibly noncircular) sources
without any modification. These features will be illustrated in
the experiments of Sections IV and V.

B. Extraction of Sources With Known Kurtosis Sign

The method described above aims at maximizing the abso-
lute kurtosis, and is thus able to extract sources with positive
or negative kurtosis. In many applications, some information
may be known in advance about the source(s) of interest. For
example, the AA time-domain signal in AF ECGs (Section V),
and especially in atrial flutter episodes, typically lies in the sub-
Gaussian source subspace. The ventricular activity sources are
usually impulsive and thus super-Gaussian. If only a few of
these sources are desired, separating the whole mixture would
incur an unnecessary computational cost and, in the case of se-
quential extraction, an increased source estimation inaccuracy
due to error accumulation through successive deflation stages.
A wiser alternative consists of extracting the desired type of
sources exclusively.

RobustICA can easily be modified to deal with these situa-
tions by targeting a source with specific kurtosis sign . After
computing the roots of the step-size polynomial, one simply
needs to replace (16) by

fopt = arg max eK(w + prg) (17)
as best root selection criterion. If no source exists with the re-
quired kurtosis sign, the algorithm may converge to a nonex-
tracting local extremum, but will tend to produce components
with maximal or minimal kurtosis from the remaining signal
subspace when ¢ = 1 or ¢ = —1, respectively. The algorithm
can also be run by combining global line maximizations (17)
and (16) for sources with known and unknown kurtosis sign, re-
spectively, in any desired order.

C. Deflation

To extract more than one independent component, the
Gram—-Schmidt-type deflationary orthogonalization procedure
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proposed for FastICA [12], [18], [21] (see Section II-B) can also
be used in conjunction with RobustICA under prewhitening,
even if prewhitening is not mandatory for this method. After
step S4), the updated extracting vector is constrained to lie in
the orthogonal subspace of the extracting vectors previously
found [see (8)]. In the linear regression approach to deflation
[15], after convergence of the search algorithm the contribution
of the estimated source § to the observations is computed via
the minimum mean square error (MMSE) solution to the linear
regression problem x = hé. The observations are then deflated
as X — (x — hs) before reinitializing the algorithm in the
search for the next source. If prewhitening is not performed
and the mixture is not unitary, orthogonalization is no longer
an option and an alternative procedure like regression becomes
compulsory.

D. A Quick Look at Convergence

The theoretical study of RobustICA’s convergence character-
istics in the general case is beyond the scope of this paper. In
the real-valued two-signal scenario, however, the algorithm con-
verges to the global optimum in a single iteration, even without
prewhitening. The proof relies on the scale invariance property
of contrast (3) and follows straightforward geometrical argu-
ments. Suppose that the initial (nonzero) extracting vector wy
has an orientation of «; rad with respect to one of the axis vec-
tors spanning R2. In polar coordinates, the gradient at wq can
be expressed as

rof or

go = VK(wy) =

u,

where ug and u, denote the unit vectors in the radial and or-
thoradial directions, respectively. The radial component can be
computed as

oK (wy) . K(wo+ au,) — K(wy)
————2 = lim =0
or a—0 «

since wy < u, and the numerator is null for any « by virtue
of the contrast scale invariance. Vector g is orthogonal to wy
and its orientation is thus oy = a3 £ 7/2 rad. Now, as pu
varies in R, the orientation of vector w( + g spans a 7-rad in-
terval, which corresponds to the full solution space up to admis-
sible sign and scale ambiguities in the two-signal case. Hence,
the optimal step-size technique described in Section III-A will
find the global optimum of the absolute kurtosis contrast in a
single step. Although this result is not easily generalized to more
than two signals, it gives a glimpse of RobustICA’s speed of
convergence measured in terms of iterations. By construction
of the algorithm, the OS procedure guarantees at least mono-
tonic convergence of the kurtosis contrast to a local extremum
for any initial condition (cf., [50] and [51]). Also by construc-
tion, consecutive gradient vectors are orthogonal in the sense
that Re{gfg*} = 0, with gt = VK (w™). This gradient or-
thogonality may slow down convergence in high-dimensional
extracting vector spaces.

TABLE I
COMPUTATIONAL COMPLEXITY PER ITERATION IN TERMS OF NUMBER OF
REAL-VALUED FLOPS PER ITERATION FOR THE KURTOSIS-BASED
FASTICA AND ROBUSTICA METHODS. SIGNAL BLOCKS ARE
COMPOSED OF 1 SAMPLES OBSERVED AT
THE OUTPUT OF L SENSORS

Method | Real Case | Complex Case
FastICA 2L +2)T 8L+4)T
RobustICA | (5L +12)T | (18L+22)T

E. Computational Complexity

In the literature, complexity is commonly measured in terms
of iterations. Such a measure is unfair in that an algorithm re-
quiring few iterations to converge may involve heavy compu-
tations at each iteration. The average time taken by an algo-
rithm to achieve a solution, another complexity measure used in
some works [29], [36], does not take into account the fact that
computation time depends on the actual algorithmic implemen-
tation. For instance, when using the popular Matlab technical
computing environment, the execution time can be considerable
reduced if loops are replaced by vectorwise operations. These
observations point out that the number of real-valued floating
point operations (flops) required for an algorithm to reach a
solution arises as a more objective measure of complexity. A
flop is considered as a product followed by an addition and, in
practical implementations, would naturally correspond to a mul-
tiply-and-accumulate cycle in a digital signal processor. In the
signal extraction problem, the total cost of the extraction can be
computed as the product of the number of iterations, the cost
per iteration per source, and the number of extracted sources.
The prewhitening stage, if performed, adds around 2K 21 flops
(8K™?T in the complex case) to the total cost when computing
the economy singular value decomposition (SVD) of the data
matrix [60]. The complexity per source per sample is given by
the total cost divided by KT'.

Table I summarizes the main computations per iteration re-
quired by RobustICA and FastICA, for both the real-valued and
complex-valued scenarios; flop count details can be found in
[61]. Expectations are replaced by sample averages over the ob-
served signal block. The sample size T' is assumed to be suf-
ficiently large, so that only dominant terms (with a cost de-
pending on 7') are considered. For the sake of comparison, the
complex extension of FastICA developed in [31] and [32] (only
valid for second-order circular sources) is considered in the cor-
responding entry of Table I. The CFPA [33] and nc-FastICA
[34] algorithms [see (13)] have essentially the same cost as Fas-
tICA in the complex case; it suffices to add an initial burden
of L(2L + 1)T flops due to the computation of the pseudoco-
variance matrix. The KM-F algorithm [36] [see (12)] takes as
many operations per iteration as RobustICA’s gradient compu-
tation save for the term E{|y|*}, i.e., (14L +5)T flops. Robus-
tICA’s iterations are generally more expensive than FastICA’s
and its variants. However, as will be demonstrated in Section IV,
each RobustICA iteration is more effective in the search of good
extraction solutions, so that the overall complexity is actually
lower than FastICA’s for the same extraction accuracy. Fur-
thermore, in some cases FastICA cannot reach RobustICA’s
accuracy.
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IV. EXPERIMENTAL ANALYSIS

The following experimental analysis evaluates RobustICA’s
convergence characteristics, source extraction quality, and
computational complexity in several simulation conditions
involving synthetic data. In the real case (Sections IV-A-IV-D),
we use the original FastICA algorithm with cubic nonlinearity
[see (7)] as a benchmark, as it offers the fastest convergence
speed among the previously proposed kurtosis-based source
extraction methods. In the complex case (Section IV-E), we
compare RobustICA to recent FastICA variants capable of
dealing with noncircular sources. The processing of real data
is reported in Section V.

A. Robustness to Saddle Points

The first experiment tests the comparative convergence
characteristics of RobustICA as well as its robustness to saddle
points degrading the performance of the FastICA algorithm for
short sample sizes [23]. Independent realizations of two uni-
formly distributed sources are mixed through Givens rotations
of random angle . The FastICA and RobustICA algorithms are
run on the same mixed data with a sufficiently small termination
testn = 0.5 x 1075, As a natural measure of extraction quality,
we employ the average signal mean square error (SMSE), a
contrast-independent criterion defined as

1 XK
SMSE - ? ]CZ:_ISMSEk,’i,(k/) (18)

where SMSEk,/ = FE {|Sk — a1§/|2}, with «yp =
E {sk8;} /E {|5¢]*}. Signal pairs (sj, 8¢ (4r)) are chosen in
increasing SMSE order as (k/,¢'(k")) = arg nklilp SMSEy ¢

and, once selected, are no longer taken into account in the
pairing of the remaining sources. When the source estimation
is good enough, this “greedy” algorithm allows an optimal
permutation and scaling of the estimated sources {8;}X ,
before evaluating the performance index. In the current setting,
the global matrix G = WTH is also a Givens rotation
of parameter A = (§ — 6), where 6 is the rotation angle
implicitly estimated by the separation methods.

For a particular signal realization, Fig. 1 plots the contrast
functions of the respective algorithms [kurtosis (3) for Robus-
tICA and fourth-order moment (4) for FastICA] over the op-
timization interval. The small sample size (here 50 samples)
smears FastICA’s contrast function, whose local minima tend
to form saddle regions while moving away from the valid sep-
aration solutions A = kx /2 rad, k € Z. The negative impact
of short data length is less manifest for the kurtosis contrast op-
timized by RobustICA. For the particular initialization shown
in Fig. 1(a), FastICA gets trapped inside a saddle area between
two separation solutions, yielding a final SMSE of —7.8 dB after
29 iterations. Depending on the initialization, FastICA can also
converge to the other local minimum with SMSE = —13.4 dB,
taking up to 24 iterations [cf., Fig. 1(b)]. By contrast, Robus-
tICA consistently converges to the solutions near A = +7/2
rad with —22.2-dB SMSE in a single iteration for all initializa-
tions, as expected from the theoretical analysis of Section III-D.
Fig. 2 shows the scatter plot of final SMSE values for both
methods over 1000 independent mixture realizations; Table II

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 2, FEBRUARY 2010

3.5—= r T
--- FastiCA , :
— RobustICA | - :
3 - - / =
= - 1 :
< < ! <
o : N :
3250 S E
© B ] :
| A ) :
S 2p ity : :
-
=} H < H H
= : : :
= 1.5r : :
g |
g : . :
0.5F
ol ; ; ; :
-1 -0.5 0 0.5 1
global matrix rotation angle, A6/x
(a)
3.5—= I T
--- FastiCA , :
— RobustICA | 1 :
3r— R :
a5 ¢
© B H
> 3 :
c H H
S 2r: :
S : :
c H H
2 : :
-0';)' 1.5' : :
s : :
0.5}
0 : i ; ; :
-1 -0.5 0.5 1
global matrix rotation angle, A6/r
(b)
Fig. 1. Contrast function values and trajectories for an orthogonal mixture re-
alization of two uniformly distributed sources composed of 7' = 50 sam-

ples. Dashed line: FastICA’s contrast function (4). Solid line: RobustICA’s con-
trast function (3). Triangle markers and upward arrows: initial positions. Cross
markers: algorithms’ solutions after each iteration. Round markers and down-
ward arrows: final solutions. Vertical dotted lines: satisfactory separation solu-
tions up to sign and permutation. Subplots (a)—(b) correspond to two different
extracting vector initializations over the same mixture realization.

summarizes the average performance parameters for different
sample size values between 50 and 150.

RobustICA provides a faster more robust performance, espe-
cially for short data sizes. The algorithm’s robustness to initial-
ization is also demonstrated in [39]. These results support the
finite sample analysis of [17], where the kurtosis is shown to
present lower variance than the fourth-order moment. Similarly,
the full expression of the fourth-order cumulant yields improved
extraction performance compared with the fourth-order moment
used in the FastICA algorithm [19]. The optimal step-size tech-
nique used in RobustICA further enhances the finite-sample
benefits of the kurtosis contrast.

B. Performance-Complexity Tradeoff

A wireless telecommunications scenario is simulated by con-
sidering noiseless orthogonal random mixtures of K unit-power
independent BPSK sources observed at the output of an L = K
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Fig. 2. Extraction quality scatter plots for the FastiCA and RobustICA algo-
rithms with random orthogonal mixtures of two uniformly distributed sources
composed of T' = 50 samples. Termination parameter 7 = 0.5 x 105, 1000
independent trials.

TABLE II
AVERAGE PERFORMANCE PARAMETERS FOR THE EXPERIMENTS ON
REAL-VALUED MIXTURES OF SECTION IV-A AND FIG. 2.
SYMBOL [-] DENOTES THE CLOSEST INTEGER

T | method SMSE (dB) iterations flops x10° cases with
([mean] % [std]) | (mean +std) | SMSE > —10 dB

50 | FastICA —-11.6 14 £+ 56 4.1+16.8 240
RobustICA —19.0 1+0 1.1+0 18

100 | FastICA —14.7 7+6 41+38 79
RobustICA —23.1 1+0 22+0 0

150 | FastICA —17.0 6+6 53+5.1 20
RobustICA —25.1 1+0 3.3+0 0

element array in signal blocks of T" samples. The search for each
extracting vector is initialized with the corresponding canonical
basis vector, and is stopped at a fixed number of iterations. The
SMSE performance index (18) is averaged over 1000 indepen-
dent random realizations of the sources and the mixing matrix.
Extraction solutions are computed directly from the observed
unitary mixtures (“FastICA” and “RobustICA” legend labels)
and after a prewhitening stage based on the SVD of the observed
data matrix (“pw + FastICA,” “pw + RobustICA”).

Fig. 3 summarizes the performance-complexity variation ob-
tained for 7" = 150 samples and different values of the mixture
size K. The best fastest performance is provided by RobustICA
without prewhitening: a given performance level is achieved
with lower cost or, alternatively, an improved extraction quality
is reached with a given complexity. Although not shown in the
plot, the method gets below the —60-dB SMSE level for K = 5
sources in this experiment. The use of prewhitening worsens
RobustICA’s performance-complexity tradeoff and, due to the
finite sample size, imposes the same SMSE bound for the two
methods. Using prewhitening, FastICA improves considerably
and becomes slightly faster than RobustICA with prewhitening,
especially when the mixture size increases. Fig. 4 displays the
quality-cost tradeoff for K = 10 sources and different block
length values. Improved performance bounds can be achieved
by RobustICA if avoiding prewhitening, even for short data
sizes.
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Fig. 3. Average extraction quality as a function of computational cost for dif-
ferent mixture sizes K with signal blocks composed of 7' = 150 samples and
1000 mixture realization. Solid lines: ' = 5. Dashed lines: K = 10. Dotted
lines: K = 20.
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Fig. 4. Average extraction quality as a function of computational cost for dif-
ferent sample sizes 1" with mixture size K = 10 sources and 1000 mixture real-
izations. Solid lines: T' = 50. Dashed lines: T = 100. Dotted lines: T' = 150.

C. Efficiency

We now evaluate the methods’ performance for a varying
block sample size T'. Extractions are obtained by limiting the
number of iterations per source, as explained above. To make
the comparison meaningful, the overall complexity is fixed at
400 flops/source/sample for all tested methods. Accordingly,
since RobustICA is more costly per iteration than FastICA, it
performs fewer iterations per source. Fig. 5 displays the av-
erage SMSE curves for different number of sources K. For
moderate K, RobustICA is considerably more efficient than
the other methods, as shown by the steeper slope of its curve,
achieving the same extraction performance with much smaller
signal blocks. Prewhitening smoothens FastICA’s and Robus-
tICA’s performance trends, which become comparable. As K
increases, FastICA with prewhitening becomes more efficient.

D. Performance in the Presence of Noise

Fig. 6 assesses the comparative performance of RobustICA
in the presence of noise for K = 10 sources, different sample
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Fig. 5. Average extraction quality as a function of block length for different
mixture sizes J{' with complexity fixed at 400 flops/source/sample and 1000
mixture realizations. Solid lines: X' = 5. Dashed lines: ' = 10. Dotted lines:
K = 20.
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Fig. 6. Average extraction quality in isotropic additive white Gaussian noise
with &' = 10 sources, 1" samples per source and a complexity fixed at 400 flops/
source/sample and 1000 mixture realizations. Solid lines: 7' = 100. Dashed
lines: T = 200. Dotted lines: T = 500.

sizes, and a fixed complexity of 400 flops/source/sample.
Isotropic additive white Gaussian noise is added to the obser-
vations, with a signal-to-noise ratio (SNR) given by

trace(HH)
SNR = ———— =
o2L

1

on

where o2 denotes the noise power at each sensor output. The
MMSE receiver is shown as a performance bound for linear de-
tection. RobustICA appears more robust to additive noise, as
it obtains an improved SMSE performance for the same noise
level or, alternatively, it tolerates more noise without sacrificing
performance. At high SNR, RobustICA achieves a lower per-
formance flooring than FastICA and, for sufficient sample size,
it attains the MMSE bound, employing three times fewer iter-
ations than the other method in this experiment. Analogous re-
sults involving noise data are reported in [40].
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Fig. 7. Average extraction quality as a function of computational cost for dif-
ferent sample sizes T" with mixture size K = 10 sources and 1000 mixture real-
izations. Solid lines: T' = 50. Dashed lines: " = 100. Dotted lines: T" = 150.
(a) Without prewhitening. (b) With prewhitening.

E. Complex-Valued Mixtures

To briefly test RobustICA’s performance on complex-valued
synthetic mixtures of noncircular sources, we repeat the experi-
ment of Section IV-B but using random unitary mixing matrices.
The method is compared with the KM-F algorithm of [36] and
the nc-FastICA algorithm of [34] with kurtosis-based nonlin-
earity, similar to the CFPA algorithm of [33] (Section II-C). The
quality-cost tradeoff of the three algorithms for different block
sizes is shown in Fig. 7. Once more, without the performance
limitations imposed by prewhitening, RobustICA proves supe-
rior to the other methods. Performances become similar under
prewhitening imposed to both methods, as FastICA improves
whereas RobustICA degrades.

V. PROCESSING REAL DATA WITH ROBUSTICA

Although good performance is obtained with sub-Gaussian
sources [23] as in the above numerical experiments, the use of
kurtosis as a general contrast function has been discouraged
on the basis of poor asymptotic efficiency for super-Gaussian
sources and lack of robustness to outliers [16], because the
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Fig. 8. AA extraction in AF ECGs. (a) A 5-s segment of lead V1 from the
first patient of the database. (b) AA contribution to lead V1 estimated by Fas-
tICA-SOBI from the 12-lead ECG. (c) AA contribution to lead V1 estimated by
RobustICA from the 12-lead ECG. Only relative amplitudes are relevant on the
vertical axes.

analysis was restricted to FastICA only. This section reports a
biomedical application involving noncircular complex strongly
super-Gaussian sources where the kurtosis contrast, optimized
by the RobustICA technique, shows satisfactory results.

A. AA Extraction in AF Episodes

AF is the most common cardiac arrhythmia encountered in
clinical practice, affecting up to 10% of the population over
70 years of age [62]. The trouble is characterized by an ab-
normal atrial electrical activation, whereby the organized wave-
front propagation in normal sinus rhythm is replaced by several
wavelets wandering around the atria in a disorganized manner.
This disorderly electrical activation causes an inefficient atrial
mechanical function and leads to an increased risk of blood-
clot formation and stroke. Despite its incidence, prevalence, and
risks of serious complications, the understanding of the gener-
ation and self-perpetuation mechanisms of this disease is still
unsatisfactory.

Over the recent years, signal processing has helped cardi-
ologists in shedding some light over AF, as certain features
of the AA signal recorded in the surface ECG provide infor-
mation about the arrhythmia. The dominant frequency of the
AA signal is shown to be related to the refractory period of
atrial myocardium cells, and thus to the degree of evolution of
the disease and the probability of spontaneous cardioversion
(return to normal sinus rhythm) [63]. The analysis and char-
acterization of AA from the ECG requires the previous sup-
pression of interference such as the QRST complex of ventric-
ular electrical activation [or ventricular activity (VA)], artifacts,
and noise. Fig. 8(a) shows a 5-s segment of precordial lead V1
from an AF patient’s ECG; its power spectral density, estimated

Fig. 9. AA extraction in AF ECGs. Frequency spectra of the signals shown in
Fig. 8. (a) Power spectral density of signal V1 from the first patient of the data-
base. (b) Power spectral density of AA contribution to lead V1 estimated by
FastICA-SOBI from the 12-lead ECG. (c) Power spectral density of AA contri-
bution to lead V1 estimated by RobustICA from the 12-lead ECG. Values on the
left-hand side and dashed lines: dominant frequency. Values on the right-hand
side: SC. Dashed—dotted lines: bounds used in the computation of SC. Only rel-
ative amplitudes are relevant on the vertical axes.

through Welch’s averaged periodogram method as in [64] [av-
eraged 8192-point fast Fourier transform (FFT) of 4096-point
Hamming-windowed segments with 50% overlap], is shown in
Fig. 9(a). The mixture of VA and AA can usually be perceived
in this lead as one of its electrodes lies close to the atria.

A recent approach to AA extraction relies on the observa-
tion that AA and VA can be considered statistically indepen-
dent phenomena [65]. Techniques for the separation of inde-
pendent signals such as PCA and ICA can then be applied on
the 12-lead ECG to search for the AA source, thus allowing the
reconstruction of AA in all leads free from VA and other inter-
ference. Prior information on the atrial source, in particular its
narrowband character and near-Gaussian behavior, can be ex-
ploited to improve AA extraction performance. In [64], the kur-
tosis-based FastICA method is first applied to extract impulsive
interference, essentially the VA, from the ECG recording. The
remaining sources contain mixtures of AA and noise, which,
through a kurtosis-based test, are selected and passed on as
inputs to the second-order blind identification (SOBI) method
[66]. Through the joint approximate diagonalization of the input
correlation matrices at several time lags, SOBI is particularly
suited to the separation of narrowband sources. In this applica-
tion, the correlation lags are chosen in accordance with typical
AF cycle length values [64].

B. Application of RobustICA to AA Extraction

AA is a narrowband signal, so that its frequency-domain rep-
resentation is sparse and can thus be considered to stem from an
impulsive distribution with high kurtosis value. Indeed, when
mapping certain signals from the time domain to the frequency
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TABLE III
AA EXTRACTION IN AF EPISODES: SC, POSITION OF DOMINANT SPECTRAL PEAK (f,,), NUMBER OF ITERATIONS, ALGORITHMIC COMPLEXITY AND POSITION
OF ESTIMATED AA SOURCE AVERAGED OVER THE 35 ECG RECORDINGS

SC (%) fp» (Hz) iterations flops x10° AA source position
Method (mean =+ std) (mean =+ std) | ([mean] =+ [std]) (mean + std) (median + [std])
FastICA-SOBI || 48.55 £17.06 | 5.40 +1.18 1245 £+ 934 406.2 £ 302.8 9+2
RobustICA 55.67£16.78 | 541 £1.18 202 £ 99 786.9 £ 387.4 3+2

or the wavelet domains, the statistics of the sources tend to be-
come less Gaussian, as observed in [67] in the context of an-
other biomedical problem. Relying on this simple observation,
RobustICA can be applied on the ECG recording after transfor-
mation into the frequency domain. It is expected that the f-do-
main AA source be found among the first extracted components
(typically those with higher kurtosis values); its time course can
then be recovered by transforming back into the time domain.

This idea is tested on a database of 35 standard ECG seg-
ments recorded from 34 different AF sufferers. Each segment
represents an observation window of around 12 seconds sam-
pled at 1 kHz. Baseline wander and high-frequency interference
are suppressed by zero-phase Chebyshev type-II high-pass and
low-pass filters with cutoff frequencies of 0.5 and 30 Hz,
respectively. The filtered 12-lead ECG data are then spatially
prewhitened before being passed on to the FastICA-SOBI
method of [64], which performs all operations in the time
domain. Concerning the RobustICA method, the prewhitened
filtered recordings are first transformed into the frequency
domain by the zero-padded 16384-point FFT. The sources
extracted in the f-domain are then transformed back to the
time domain via the inverse FFT and truncated to their original
length for further analysis. The AA source is automatically
selected as the extracted component with dominant peak in
the interval [3, 9] Hz, the typical AF frequency band. The
percentage of signal power around the dominant peak, or
spectral concentration (SC), has been shown to correlate with
AA extraction quality [64], and is hence used as a measure of
performance. Power spectra are estimated by Welch’s method
with the same parameters as in [64]. The same initialization,
maximum number of iterations per source, and termination
criterion are used for FastICA and RobustICA.

Fig. 8(b) and (c) shows a 5-s segment of the AA reconstructed
by the two methods in lead V1 from the first patient of the AF
ECG database. The corresponding frequency spectra, together
with the estimated dominant peak position and the associated
SC values, are shown in Fig. 9(b) and (c). As can be seen in
the intervals between successive heartbeats, RobustICA obtains
a more accurate estimate of the AA taking place in lead V1, as
quantified by a higher SC value, requiring a total of 698 itera-
tions or around 2721.8 x 10° flops to separate the whole mixture
(53 iterations or 206.7 x 10° flops if stopped at the AA source,
found in the third extracted component), for 1178 iterations or
391.1 x10° flops by FastICA (AA source in the ninth compo-
nent). Performance parameters averaged over the whole data set
are summarized in Table III. A cost of about 3.5 x10° flops
due to prewhitening should be added to the complexity figures.
If stopped at the AA source, RobustICA only requires an av-
erage of 62 + 41 iterations or 241.3 £159.9 x 10° flops. Re-

mark that, according to Table I, RobustICA’s cost per iteration
is about an order of magnitude greater than FastICA’s in this par-
ticular setting. These results confirm that RobustICA achieves
an improved AA signal extraction quality with virtually iden-
tical dominant frequency estimate at a comparable complexity
relative to the alternative two-stage technique. As a measure of
second-order circularity, the ratio |E{s?}|/E{|s|?} averaged
over all f-domain sources extracted by RobustICA is 0.85 +
0.02. Since the noncircular second-order moment £{s?} cannot
be considered to be null, complex-valued extensions of FastiCA
such as those proposed in [31] and [32] would not be expected
to perform well in this context; more recent variants such as
the KM-F and nc-FastICA algorithms [34], [36] (Section II-C)
should be more successful. More importantly, the average kur-
tosis of the frequency-domain sources extracted by RobustICA
in the frequency domain is 231, whereas that of the AA sources
equals 731. These are strongly super-Gaussian signals.

VI. CONCLUSION

Kurtosis has long been known to be a valid contrast for in-
dependent source extraction in instantaneous as well as con-
volutive linear mixtures, whether the sources are real or com-
plex, circular or noncircular, sub-Gaussian or super-Gaussian,
and whether prewhitening is performed. The global maximizer
of this contrast across the search direction can be obtained al-
gebraically at each extracting filter update iteration, giving rise
to the RobustICA method developed in this work. Among other
interesting features naturally inherited from the kurtosis con-
trast, RobustICA can process real- and complex-valued (pos-
sibly noncircular) sources and does not require prewhitening.
As a result, the method is more tolerant than whitening-based
techniques to residual source correlations likely to appear in
short data records. In addition, the optimal step-size approach
endows the method with an increased robustness to initializa-
tion and saddle points, particularly in small observation win-
dows. The computational complexity required to reach a given
source extraction quality has been put forward as a natural ob-
jective measure of convergence speed for BSS/ICA algorithms.
Without the performance limitations imposed by second-order
preprocessing (whitening), RobustICA proves computationally
faster and more efficient than the popular kurtosis-based Fas-
tICA algorithm with asymptotic cubic global convergence and
some of its most recent variants. RobustICA’s ability to process
real-world noncircular complex strongly super-Gaussian sig-
nals has been successfully illustrated by the extraction of AA
in AF ECG recordings. In conclusion, the RobustICA method,
although conceptually simple, presents a number of benefits that
make it particularly attractive in practical BSS/ICA settings. Ex-
tensions to convolutive scenarios such as blind SISO and MIMO
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channel deconvolution are also possible with few modifications.
An illustration of the optimal step-size technique on the kurtosis
contrast in the SISO case is reported in [52]. The MIMO case
calls essentially for the definition of appropriate deflation pro-
cedures along the lines of [15], which should be the subject of
fresh investigations. More robust cumulant estimates (see, e.g.,
[20, Ch. 5] and references therein) would increase the method’s
ability to handle outliers, and would be another interesting av-
enue for the continuation of this work.

APPENDIX
DERIVATION OF THE OPTIMAL STEP-SIZE POLYNOMIAL

Contrast K evaluated at w+ g becomes a function of 1 only,
and is given by the rational fraction

E{lyt '} = [E{(y")*}? P(p)
]C — — = — 9
(N) E2{|y*]2} 2 Q2%(p) 2 (19)
where yt y+pgy = wix, g = gflx, P(u)

() — [Pa(u). Pi(n) = E{ly*1*). Pa(u) = E{(w")).
and Q(u) = E{|y*|*}. Let us denote

2

a=y> b=g*> c=yg d=Re(yg").

After some tedious but otherwise straightforward algebraic ma-
nipulations, the above polynomials turn out to be

2

P(u)=> hep® Qu) = iru

k=0

(20)

where

ho = B{lal?} — |F{a}?
h1 =4E{|a|d} — 4Re(E{a}FE{c*})

hy =4E{d*} 4+ 2E{|a||b|} — 4|E{c}|* — 2Re(E{a}E{b*})
hs =4E{|b|d} — ARe(E{b} E{c*})

ha = B{P} - [B{b)}?
io = E{|al} i1 =2E{d}

in = E{|b|}. @1

Hence, the derivative of (w + ug) with respect to ;1 reads

K = P00 — 2P _ pip)

Q3(n) Q3 (1)
Relating (20)—(22), polynomial p(p) is given by (15) with

(22)

apg = —2h0i1 + hl’io
a9 = —3h1i2 + 3h3i0
ag = —hgio + 2h4i1.

ay; = —4h0’i2 - hlil + 2h2’i0
as = —2hgis + hgiy + 4haig

The real parts of the roots of this polynomial are the
step-size candidates to be found in step S2) of the algo-
rithm (Section III-A). These candidates are then plugged back
into (19) and (20) to check which one provides the optimum
value of |[K(w + pg)l, or of el(w + pg) if the alternative
procedure of Section III-B is employed; this is the optimal step
size sought in step S3) of the algorithm.
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