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Robust Inferen
e for Generalized LinearModelsEva Cantoni and Elvezio Ron
hettiDepartment of E
onometri
sUniversity of GenevaCH - 1211 Geneva 4, SwitzerlandMay 1999Revised January 2001Abstra
tBy starting from a natural 
lass of robust estimators for generalized linearmodels based on the notion of quasi-likelihood, we de�ne robust devian
esthat 
an be used for stepwise model sele
tion as in the 
lassi
al framework.We derive the asymptoti
 distribution of tests based on robust devian
es andwe investigate the stability of their asymptoti
 level under 
ontamination. Thebinomial and Poisson models are treated in detail. Two appli
ations to realdata and a sensitivity analysis show that the inferen
e obtained by means ofthe new te
hniques is more reliable than that obtained by 
lassi
al estimationand testing pro
edures.



1 Introdu
tionGeneralized linear models (M
Cullagh and Nelder, 1989) are a powerful and popularte
hnique for modeling a large variety of data. In parti
ular, generalized linearmodels allow to model the relationship between the predi
tors and a fun
tion of themean of the response for 
ontinuous and dis
rete response variables. The responsevariables Yi, for i = 1; : : : ; n are supposed to 
ome from a distribution belonging tothe exponential family, su
h that E[Yi℄ = �i and V[Yi℄ = V (�i) for i = 1; : : : ; n and�i = g(�i) = xTi �; i = 1; : : : ; n; (1)where � 2 IRp is the ve
tor of parameters, xi 2 IRp, and g(:) is the link fun
tion.The non-robustness of the maximum likelihood estimator for � has been studiedextensively in the literature: 
f. for instan
e the early work of Pregibon (1982) onlogisti
 regression, Stefanski, Carroll, and Ruppert (1986), K�uns
h, Stefanski, andCarroll (1989), Morgenthaler (1992), and Ru
kstuhl and Welsh (1999). In morere
ent work, Preisser and Qaqish (1999) 
onsider a 
lass of robust estimators in thegeneral framework of generalized estimating equations.The quasi-likelihood estimator of the parameter of model (1) (see Wedderburn,1974, M
Cullagh and Nelder, 1989, and Heyde, 1997) shares the same non-robustnessproperties. This estimator is the solution of the system of estimating equationsnXi=1 ���Q(yi; �i) = nXi=1 (yi � �i)V (�i) �0i = 0; (2)where �0i = ����i, and Q(yi; �i) is the quasi-likelihood fun
tion. The solution of (2) isan M-estimator (see Huber, 1981, and Hampel, Ron
hetti, Rousseeuw, and Stahel,1986) de�ned by the s
ore fun
tion ~ (yi; �i) = (yi��i)V (�i) �0i. Its in
uen
e fun
tion(Hampel, 1974 and Hampel et al., 1986) is proportional to ~ and is unbounded.1



Therefore, large deviations of the response from its mean or outlying points in theexplanatory variables xi 
an have a large in
uen
e on the estimator. Thus, thequasi-likelihood estimator { as well as the maximum likelihood estimator { is notrobust. Several robust alternatives have been proposed in the literature; see thereferen
es given above.However, in spite of the fair amount of existing literature, robust inferen
e forgeneralized linear models seems to be very limited. Moreover, only the logisti
regression situation is usually 
onsidered in detail, and the problem of developingrobust alternatives to 
lassi
al tests is not addressed globally for the whole 
lass ofgeneralized linear models.In this paper we propose a robust approa
h to inferen
e based on robust de-vian
es whi
h are natural generalizations of quasi-likelihood fun
tions. Our robustdevian
es are based on the same 
lass of robust estimators as that proposed byPreisser and Qaqish (1999) in the more general setup of generalized estimatingequations. Although these estimators are not optimally robust, they form a 
lassof M-estimators easy to deal with, and whi
h admits handy inferen
e not only forlogisti
 regression but for the whole 
lass of generalized linear models.One 
ould argue that two alternative approa
hes 
ould be 
onsidered. A �rstpossibility would be to view variable sele
tion as a parametri
 hypothesis and touse Wald, s
ore or likelihood ratio tests for whi
h robust versions are available; seee.g. Heritier and Ron
hetti (1994) and Markatou and He (1994). While this wouldin prin
iple be feasible, Wald and s
ore tests do not seem to be used mu
h in the
lassi
al analysis of generalized linear models. Moreover, robust likelihood ratio tests
annot be proposed in this 
ase, be
ause the optimal robust s
ore fun
tion doesnot admit an analyti
 primitive fun
tion and numeri
al integration in the spa
e2



of parameters for 
omputing su
h a primitive is generally unfeasible. A se
ondapproa
h would be to rely on the robust model sele
tion based on Akaike Criterion,Mallows' Cp or similar te
hniques; see e.g. Ron
hetti and Staudte (1994), Sommerand Huggins (1996) and Ron
hetti (1997) for a review. This approa
h has theadvantage to perform a full model sear
h. However, when the number of variablesis moderate to large su
h a full sear
h is impossible and a stepwise sele
tion is theonly feasible alternative.For these reasons and in view of the importan
e of the notion of devian
e formodel building in generalized linear models, we propose robust devian
es based ongeneralizations of quasi-likelihood fun
tions. The general stru
ture of the 
lassi
alapproa
h by quasi-likelihood is preserved, whi
h o�ers the advantage of having ro-bust tools playing the same role as devian
es, anova tables, stepwise pro
edures,and so on.The paper is organized as follows. In the next se
tion we dis
uss robust estima-tors of a generalized linear model based on quasi-likelihood. As an illustration, wefo
us in parti
ular on the estimation of binomial and Poisson models. In Se
tion 3,we dis
uss inferen
e and propose a family of test statisti
s for model sele
tion. Wederive their asymptoti
 distribution through the development of an asymptoti
allyequivalent quadrati
 form and we study their robustness properties through the in-
uen
e fun
tion. Se
tion 4 presents some 
omputational aspe
ts and Se
tion 5 givestwo appli
ations. Finally, in Se
tion 6 we dis
uss some potential resear
h dire
tions.
3



2 Robust Estimation Based on Quasi-likelihood2.1 General De�nitionWe 
onsider a general 
lass of M-estimators of Mallows's type, where the in
uen
eof deviations on y and on x are bounded separately. The estimator is the solutionof the estimating equations: nXi=1  (yi; �i) = 0; (3)where  (y; �) = �(y; �)w(x)�0 � a(�), a(�) = 1nPni=1 E[�(yi; �i)℄w(xi)�0i with theexpe
tation taken with respe
t to the 
onditional distribution of yjx, �(�; �), w(x)are weight fun
tions de�ned below, and �i = �i(�) = g�1(xTi �). The 
onstanta(�) ensures the Fisher 
onsisten
y of the estimator. The estimating equation (3)for generalized linear models is a spe
ial 
ase of equation (1) p. 575 for generalizedestimating equations in Preisser and Qaqish (1999), where our fun
tion �(y; �)w(x)is (in their notation) V �1(�)w(x; y;�)(y � �) and a(�) = �0 V �1(�) 
.Let y = (y1; : : : ; yn)T and � = (�1; : : : ; �n)T . The estimating equation (3)
orresponds to the minimization of the quantityQM(y;�) = nXi=1 QM (yi; �i); (4)with respe
t to �, where the fun
tions QM (yi; �i) 
an be written asQM(yi; �i) = Z �i~s �(yi; t)w(xi)dt� 1n nXj=1 Z �j~t E��(yj; t)w(xj)�dt; (5)with ~s su
h that �(yi; ~s) = 0, and ~t su
h that E[�(yi; ~t)℄ = 0. Note that di�eren
esof devian
es, as the test statisti
 (8), are independent of ~s and ~t.The stru
ture of (3) is suggested by the 
lassi
al quasi-likelihood equations. Theestimator de�ned by equation (3) is an M-estimator 
hara
terized by the s
ore fun
-4



tion  (yi; �i) = �(yi; �i)w(xi)�0i � a(�). Its in
uen
e fun
tion is then IF(y; ; F ) =M( ; F )�1 (y; �), where M( ; F ) = �E[ ��� (y; �)℄; 
f. Hampel et al. (1986).Moreover, the estimator has an asymptoti
 normal distribution with asymptoti
varian
e 
 = M( ; F )�1Q( ; F )M( ; F )�1, where Q( ; F ) = E[ (y; �) (y; �)T ℄.It is then 
lear that the 
hoi
e of a bounded fun
tion ensures robustness by puttinga bound on the in
uen
e fun
tion. Therefore, a bounded fun
tion �(y; �) is intro-du
ed to 
ontrol deviations in the y-spa
e, and leverage points are down-weighted bythe weights w(x). Simple 
hoi
es for �(�; �) and w(�) suggested by robust estimatorsin linear models are �(yi; �i) =  
(ri) 1V 1=2(�i) (see (6) below) and w(xi) = p1� hi,where hi is the i-th diagonal element of the hat matrix H = X(XTX)�1XT . Moresophisti
ated 
hoi
es for w(�) are available (see Staudte and Sheather, 1990, p. 258,for a dis
ussion in linear regression or Carroll and Welsh, 1988). Weights de�nedon H do not have high breakdown properties, and from this point of view, other
hoi
es of w(xi) are more suitable. For example, w(xi) 
an be 
hosen as the inverseof the Mahalanobis distan
e de�ned through a high breakdown estimate of the 
en-ter and of the 
ovarian
e matrix of the xi (see, for example, the minimum volumeellipsoid estimator or the minimum 
ovarian
e determinant estimator in Rousseeuwand Leroy, 1987, p. 258 �.). Finally noti
e that the 
hoi
e of �(yi; �i) = yi��iV (�i) andw(xi) = 1 for all i, re
overs the 
lassi
al quasi-likelihood estimator, so that for ajudi
ious 
hoi
e of �(yi; �i) and of the weights w(xi), the fun
tion QM (y;�) 
an beseen as the robust 
ounterpart of the 
lassi
al quasi-likelihood fun
tion.The form of this estimator is attra
tive be
ause the estimating equation (3)
orresponds to the minimization of (4) and this leads to a natural de�nition ofrobust devian
e; see Se
tion 3.1.
5



2.2 Robust Estimation for Binomial and Poisson ModelsWe 
onsider here the parti
ular 
ase of (3), de�ned by �(yi; �i) =  
(ri) 1V 1=2(�i) ,where ri = yi��iV 1=2(�i) are the Pearson residuals and  
 is the Huber fun
tion de�nedby  
(r) = 8<: r j r j� 
;
 sign(r) j r j> 
: (6)We 
all the estimator de�ned in this way, the Mallows quasi-likelihood estimator.It solves the set of estimating equationsnXi=1 h 
(ri)w(xi) 1V 1=2(�i)�0i � a(�)i = 0; (7)where a(�) = 1nPni=1 E[ 
(ri)℄w(xi) 1V 1=2(�i)�0i. Using the same notation as in thelinear regression 
ase, when w(xi) = 1 we 
all this estimator Huber quasi-likelihoodestimator.The tuning 
onstant 
 is typi
ally 
hosen to ensure a given level of asymptoti
eÆ
ien
y. In Se
tion 3.2 we propose an alternative pro
edure for the 
hoi
e ofthe tuning 
onstant. a(�) is a 
orre
tion term to ensure Fisher 
onsisten
y; seeHampel et al. (1986) for general parametri
 models and He and Simpson (1993),Se
tion 4.1, for power series distributions. Note that a(�) 
an be 
omputed expli
itlyfor binomial and Poisson models and does not require numeri
al integration; 
f.Appendix A. The matri
es M( 
; F ) and Q( 
; F ) 
an also be easily 
omputed forthe Mallows quasi-likelihood estimator:Q( 
; F ) = 1nXTAX � a(�)a(�)T ;where A is a diagonal matrix with elements ai = E[ 
(ri)2℄w2(xi) 1V (�i)(��i��i )2, andM( 
; F ) = 1nXTBX;6



where B is a diagonal matrix with elements bi = E[ 
(ri) ���i log h(yijxi; �i)℄ 1V 1=2(�i)w(xi)(��i��i )2,and h(�) is the 
onditional density or probability of yijxi. We refer to Appendix B forfurther details and for the 
omputation of these matri
es for binomial and Poissonmodels.3 Robust Inferen
e3.1 Model Sele
tion Based on Robust Devian
esThe fun
tion QM(y;�) de�ned in (4) and (5) allows to develop robust tools forinferen
e and model sele
tion based on robust quasi-devian
es.Denote by a = (aT(1); aT(2))T the partition of a ve
tor a into (p� q) and q 
ompo-nents and the 
orresponding partition of a matrix A byA = 0� A11 A12A21 A22 1A ;where A11 2 IR(p�q)�(p�q), A12 2 IR(p�q)�q, A21 2 IRq�(p�q) and A22 2 IRq�q.To evaluate the adequa
y of a model, we de�ne a robust goodness-of-�t measure| 
alled robust quasi-devian
e | based on the notion of robust quasi-likelihoodfun
tion, i.e. DQM(y;�) = �2QM(y;�) = �2 nXi=1 QM(yi; �i);where QM is de�ned by (4) and (5).DQM(y;�) des
ribes the quality of a �t and will be used to de�ne a statisti
for model sele
tion. Let us 
onsider the model Mp, with p parameters. Supposethat the 
orresponding set of parameters is � = (�1; : : : ; �p)T = (�T(1);�T(2))T . Weare interested in testing the null hypothesis H0 : �(2) = 0. This is equivalent to7




onsider a nested model Mp�q � Mp with (p � q) parameters, and testing whetherthe sub-model Mp�q holds.We estimate the ve
tor of parameters by solving (3) for the 
omplete model, andwe obtain an estimator �̂ of �. Under the null hypothesis, the same pro
edure yieldsan estimator _� of (�(1); 0). We write �̂ and _� for the estimated linear predi
torsasso
iated to the estimate �̂ and _� respe
tively. Then, we de�ne a robust measureof dis
repan
y between two nested models by�QM = hDQM(y; _�)�DQM(y; �̂)i= 2h nXi=1 QM(yi; �̂i)� nXi=1 QM (yi; _�i)i; (8)where the fun
tion QM(yi; �i) is de�ned by (5).The statisti
 (8) is in fa
t a generalization of the quasi-devian
e test for general-ized linear models, whi
h is re
overed by taking QM(yi; �i) = R �iyi yi�tV (t)dt. Moreover,when the link fun
tion is the identity (linear regression), (8) be
omes the � -teststatisti
 de�ned in Hampel et al. (1986), Chapter 7.The same forms for the fun
tions �(yi; �i) and w(xi) as in the estimation problem
an be 
onsidered here. In parti
ular, a Mallows quasi-devian
e statisti
 
an bede�ned by taking �(yi; �i) =  
(ri)=V 1=2(�i).The following Proposition establishes the asymptoti
 distribution of the teststatisti
 (8). We assume the 
onditions for the existen
e, 
onsisten
y, and asymp-toti
 normality of M-estimators as given by (A.1)-(A.9) in Heritier and Ron
hetti(1994), p. 902. These 
onditions have been studied by Huber (1967, 1981), Clarke(1986) and Bednarski (1993).Proposition 1 Under 
onditions (A.1)-(A.9) in Heritier and Ron
hetti (1994),[C1℄, [C2℄ of Appendix C, and under H0 : �(2) = 0, the test statisti
 �QM de�ned8



by (8) equalsnLTnC( ; F )Ln + oP (1) = nRTn(2)M( ; F )22:1Rn(2) + oP (1); (9)where C( ; F ) =M�1( ; F )� ~M+( ; F ), pnLn is normally distributed N �0; Q( ; F )�,M( ; F )22:1 = M( ; F )22 � M( ; F )T12M( ; F )�111M( ; F )12, and pnRn is nor-mally distributed N �0;M�1( ; F )Q( ; F )M�1( ; F )�.Moreover, �QM is asymptoti
ally distributed asqXi=1 diN2i ;where N1; : : : ; Nq are independent standard normal variables, d1; : : : ; dq are the qpositive eigenvalues of the matrix Q( ; F )�M�1( ; F )� ~M+( ; F )�, and ~M+( ; F )is su
h that ~M+( ; F )11 = M( ; F )�111 and ~M+( ; F )12 = 0, ~M+( ; F )21 = 0,~M+( ; F )22 = 0.The proof is given in Appendix D. A similar result 
an be obtained for the dis-tribution of �QM under 
ontiguous alternatives �(2) = n�1=2�. In su
h a 
ase�QM is asymptoti
ally distributed as Pqi=1(d1=2i Ni + ST�)2, where S is su
h thatSST = M22:1 and ST (M�1( ; F�0)Q( ; F�0)M�1( ; F�0))22S = D and D is thediagonal matrix with elements d1; : : : ; dq.3.2 Robustness Properties and Choi
e of the Tuning Con-stantThe robustness properties of the test based on (8) 
an be investigated by showingthat a small amount of 
ontamination at a point z has bounded in
uen
e on theasymptoti
 level and power of the test. This ensures the lo
al stability of the test.9



The global reliability (or robustness against large deviations) 
ould be measured bythe breakdown point as de�ned in He, Simpson, and Portnoy (1990). However, wefo
us here on small deviations whi
h are probably the main 
on
ern at the inferen
estage of a statisti
al analysis.We 
onsider the sequen
e of �-
ontaminationsF�;n = �1� �pn�F�0 + �pnG; (10)where G is an arbitrary distribution (see Heritier and Ron
hetti, 1994) and investi-gate the asymptoti
 level of the test under (10).Proposition 2 Consider a parametri
 model F�0 and the null hypothesis H0 :�(2) = 0. Denote by F (n) the empiri
al distribution and by Un the fun
tionalU(F (n))su
h that U(F�0) = 0, IF(z;U; F�0) is bounded andpn(Un �U(F�;n)) � N (0;�) (11)uniformly over the �-
ontamination F�;n. Let �(F ) be the level of the test based onthe quadrati
 form nUTnAUn when the underlying distribution is F . The nominallevel is �(F�0) = �0.Then, under the �-
ontamination F�;n, we havelimn!1�(F�;n) = �0 +�2�T � diag�P �Z IF(z;U; F�0)dG(z)� �Z IF(z;U; F�0)dG(z)�TP T� + o(�2);where � = � ���Hd1;:::;dq(�1��0 ;�)����=0, � = (�1; : : : ; �q)T = (�21; : : : ; �2q )T , Hd1;:::;dq(:;�)is the 
.d.f. of the random variable Pqi=1 di�21(�2i ), �1��0 is the (1� �0)-quantile ofPqi=1 di�21(0), P is an orthogonal matrix su
h that P TDP = �A, and D is the di-agonal matrix with elements d1; : : : ; dq, the eigenvalues of �A. Moreover, diag(R)indi
ates the ve
tor with 
omponents the diagonal elements of the matrix R.10



If the in
uen
e fun
tion of the fun
tional U is bounded, then the asymptoti
 levelunder 
ontamination is also bounded. The proof of this proposition is presentedin Appendix E. A similar result 
an be obtained for the power, showing that theasymptoti
 power is stable under 
ontamination.Note that this proposition generalizes the result of Proposition 4 in Heritier andRon
hetti (1994), whi
h 
an be re
overed by taking � = �1 = Æ(�) and A = Iq.The general result of Proposition 2 
an be applied to the robust quasi-likelihoodtest statisti
 (8) and in the spe
ial 
ase of a point mass 
ontamination G(z) = �z.This gives the following Corollary.Corollary 1 Under 
onditions (A.1)-(A.9) in Heritier and Ron
hetti (1994), andfor any M-estimator �̂(2) with bounded in
uen
e fun
tion, the asymptoti
 level of therobust quasi-likelihood test statisti
 (8) under a point mass 
ontamination is givenby limn!1�(F�;n) = �0 +�2�T � diag�P IF(z; �̂(2); F�0)IF(z; �̂(2); F�0)T P T� + o(�2);where P is an orthogonal matrix su
h that P TDP = 
22M22:1, 
 is the asymptoti
varian
e of �̂ de�ned in Se
tion 2.1, and D is the diagonal matrix with elementsd1; : : : ; dq de�ned in Proposition 1.The result is obtained by applying Proposition 2 with G(z) = �z, U = �̂(2),� = 
22, A = M22:1, and by using the Fr�e
het di�erentiability of �̂(2); see Heritierand Ron
hetti (1994).Hen
e, a bounded in
uen
e M-estimator �̂(2) ensures a bound on the asymptoti
level of the robust quasi-likelihood test under 
ontamination.11



We 
an now undertake a 
omplete robust analysis of a generalized linear model:the estimation of parameters 
an be performed via M-estimation a

ording to (3),and the test statisti
 (8) allows us to make inferen
e and model 
hoi
e.The fun
tion �(yi; �i) whi
h appears in the de�nition ofQM (yi; �i), is often tunedby a 
onstant; 
f. for instan
e (6). As suggested in Ron
hetti and Trojani (2001), we
an 
onsider the problem from the point of view of inferen
e and 
hoose the 
onstantthat 
ontrols the maximal bias on the asymptoti
 level of the test in a neighborhoodof the model. To serve this last purpose, one 
an use the Corollary above. Themaximal level � of the robust quasi-likelihood test statisti
 in a neighborhood of themodel of radius � is given by� = �0 + �2
(�̂(2); F�0)2�T diag�P11TP T�; (12)where 
(�̂(2); F�0) = supz jjIF(z; �̂(2); F�0)jj and 1 = (1; : : : ; 1)T .By (12), we 
an write b = 1�r �� �0�T diag(P11TP T ) ; (13)where b is the bound on the in
uen
e fun
tion of the estimator �̂(2). Then, for a�xed amount of 
ontamination � and by imposing a maximal error on the level of thetest ���0, one 
an determine the bound b on the in
uen
e fun
tion of the estimator,and hen
e the tuning 
onstant by solving b = 
(�̂(2); F�0) = 

 with respe
t to 
.For example, if q = 1 we have P = 1, diag(P11TP T ) = 1, and � = 0:1145, seeRon
hetti and Trojani (2001). In pra
ti
e, the supremum on z = (y;x) is taken asthe maximum over the sample of the supremum on yjx. Note also that the solutiondepends on the unknown parameter �0; our experien
e shows that it does not varymu
h for di�erent values of �, so that one 
an safely plug-in a reasonable (robust)estimate. This is valid for a single test. However, in a stepwise pro
edure (as in12



Se
tion 5) several tests are performed, and one would have to 
hoose a di�erentvalue of 
 for ea
h test. Sin
e this is unreasonable from a pra
ti
al point of view,we suggest to 
hoose a global value of 
 by solving b = supz jjIF(z; �̂; F�0)jj, basedon the fa
t that 
(�̂(2); F�0) = supz jjIF(z; �̂(2); F�0)jj � jj supz IF(z; �̂; F�0)jj.4 Computational Aspe
tsThe solution of equation (3) 
an be obtained numeri
ally by a Newton-Raphsonpro
edure or by a Fisher s
oring pro
edure. In the latter 
ase, the algorithm isalso known as the in
uen
e algorithm; 
f. for instan
e Hampel et al. (1986), p. 263.However, there is a potential problem with multiple roots of equation (3). In this
ase, we re
ommend to use a bootstrap root sear
h as proposed in Markatou, Basu,and Lindsay (1998), p. 743-744, based on the obje
tive fun
tion QM de�ned in (4)as a sele
tion rule; see also Hanfelt and Liang (1995).The test statisti
 �QM of equation (8), 
an be 
omputed dire
tly. It involvesn one-dimensional integrations, whi
h are performed numeri
ally. Our experien
eshows that it works well for binomial and Poisson models. To avoid these numeri
alintegrations { espe
ially in the 
ase when n is large { one 
an 
onsider using theasymptoti
 quadrati
 forms of Proposition 1 given by (9) whi
h are asymptoti
allyequivalent to the test statisti
 �QM . A systemati
 study on the 
omparison of (8)with the asymptoti
 equivalent quadrati
 forms (9) is left for further work. Moreover,
riti
al regions or p-values for the test statisti
 �QM are easy to obtain. In fa
t, linear
ombinations of �21 variables have been well studied in the literature. Algorithmsfor the 
omputation of these p-values have been proposed among others by Davies(1980) and by Farebrother (1990). Analyti
al approximations of these distributions13



were studied by Pearson (1959) and Imhof (1961).S-PLUS (MathSoft, Seattle) routines for estimation and inferen
e based on ro-bust quasi-likelihood are 
olle
ted in a library and are available from the authors.5 Appli
ations5.1 Binomial modelsIn this se
tion, we analyze the damaged 
arrots dataset. It is taken from Phelps(1982) and is dis
ussed by Williams (1987) and used in M
Cullagh and Nelder(1989) to illustrate te
hniques for 
he
king for isolated departures from the model,be
ause of the presen
e of an outlier in the y-spa
e. The data are issued from a soilexperiment and give the proportion of 
arrots showing inse
t damage in a trial withthree blo
ks and eight dose levels of inse
ti
ide. The logarithm of the dose rangesfrom 1.52 to 2.36 in an equally spa
ed grid. The sample size is 24.We assume a binomial model with logit linklog � �m� �� = �0 + �1 log(dose) + �2blo
k2 + �3blo
k1;where � = E[Y ℄ = E[number of damaged 
arrots℄, blo
ki; i = 1; 2 are indi
atorsvariables taking the value of 1 if measures are taken in blo
k i and 0 otherwise.Di�erent te
hniques | plot of devian
e residuals, plot of Pearson residuals andCook's distan
e | show that there is a single large outlier, namely observation 14(dose level 6 and blo
k2). On the other hand, this observation does not appearas a leverage point be
ause its hi value is small.In the following we 
ompare the 
lassi
al and the robust analysis. The 
lassi
alestimates are obtained by maximum likelihood. The robust estimates are based on14



the Huber quasi-likelihood estimator de�ned by (7) with w(xi) = 1 for all i. Thetuning 
onstant of the Huber fun
tion is 
hosen to be 1:2, whi
h is obtained by thepro
edure des
ribed at the end of Se
tion 3.2 with � � �0 = 0:02, � = 0:04 and� = 0:1145. [Table 1 about here.℄Table 1 shows the e�e
t of observation 14: it seems to in
rease the value of �2
orresponding to the variable blo
k2. The robust te
hnique automati
ally takesinto a

ount the parti
ularity of observation 14: in the estimation pro
edure, mostof the observations re
eive a weight equal to 1, or at least greater than 0.70, whereasobservation 14 re
eives a weight equal to 0.26.Also, the e�e
t of observation 14 is 
lear on the value of the devian
e. Thisseems dangerous be
ause the devian
e is used for assessing the signi�
an
e of thevariables used for modeling the response. This is 
on�rmed by Table 2, where theresults of a 
lassi
al and robust stepwise pro
edure are 
ompared.[Table 2 about here.℄The 
lassi
al analysis shows that all the variables, added sequentially, are highlysigni�
ant on the basis of their devian
e value. Model sele
tion via a robust step-wise pro
edure based on the Huber quasi-devian
e de�ned by equation (8) with�(yi; �i) =  
(ri)=V 1=2(�i) and 
 = 1:2 shows that the variable blo
k1 is not signif-i
ant.5.2 Poisson modelsWe use a dataset issued from a study of the diversity of arboreal marsupials in theMontane ash forest (Australia). This dataset was 
olle
ted in view of the man-15



agement of hardwood forest to take 
onservation and re
reation values, as well aswood produ
tion, into a

ount. The study is fully des
ribed in Lindenmayer et al.(1990, 1991). The number of di�erent spe
ies of arboreal marsupials (possum) wasobserved on 151 di�erent 3ha sites with uniform vegetation. For ea
h site the fol-lowing measures were re
orded: number of shrubs, number of 
ut stumps from pastlogging operations, number of stags (hollow-bearing trees), a bark index re
e
tingthe quantity of de
orti
ating bark, a habitat s
ore indi
ating the suitability of nest-ing and foraging habitat for Leadbeater's possum, the basal area of a
a
ia spe
ies,the spe
ies of eu
alypt with the greatest stand basal area (Eu
alyptus regnans, Eu-
alyptus delegatensis, Eu
alyptus nitens), and the aspe
t of the site. The problem isto model the relationship between diversity and these other variables.Weisberg and Welsh (1993) used these data to investigate by nonparametri
te
hniques the shape of the link fun
tion. Their 
on
lusion was that the 
anoni
allink �ts this dataset well. Therefore, we 
onsider a Poisson generalized linear modelswith log-link to des
ribe diversity as a fun
tion ofshrubs + stumps + stags + bark + habitat + a
a
ia + eu
alyptus + aspe
t,where eu
alyptus is a fa
tor with three levels and aspe
t is a fa
tor with fourlevels. Hen
e, the model involves the estimation of a parameter of dimension 12.The robust estimation of parameters via a Mallows quasi-likelihood estimatorde�ned by (7) with tuning 
onstant 
 = 1:6 and weights w(xi) = p1� hi givesthe result of Table 3. In the same table, we report within parentheses the resultsobtained by means of 
lassi
al quasi-likelihood. It has to be noti
ed that 4 observa-tions, namely observations 59, 110, 133, 139, re
eive a weight with respe
t to theirresidual between 0.68 and 0.88. This shows that these 4 observations are potentiallyin
uential not only for the estimation pro
edure, but also for inferen
e and model16



sele
tion. As one 
an see from Table 3, based on the asymptoti
 
on�den
e intervals,many explanatory variables do not enter signi�
antly in the model, and a redu
tionof the number of variables in the model is ne
essary.[Table 3 about here.℄We applied a forward stepwise pro
edure based on quasi-likelihood and on therobust version of it. Starting from the null model where only the 
onstant term is�tted, we tested whether it is appropriate to add the next explanatory variable. We
hose to retain a variable if the p-value was smaller than 5%. Table 4 shows thep-value obtained at ea
h step of the pro
edure. Bold p-values indi
ate the variableswhi
h have been retained in the model.[Table 4 about here.℄As one 
an see from the table, the models 
hosen by the 
lassi
al and the robustanalysis are essentially the same, even if the p-values involved are sometimes quitedi�erent. The variable habitat is at the border of the de
ision rule and external
onsideration may be used to judge if it has to be kept in the model. It has to benoti
ed that the 
orrelation between habitat and a
a
ia is high (0.54) and one ofthese variables 
an be dropped.[Table 5 about here.℄In the robust �nal �t, observations 59, 110, 133, 139 re
eive a weights withrespe
t to their residuals between 0.68 and 0.86, as it was already the 
ase in thefull model. On the other hand, with respe
t to the in
uen
e of position, the onlyobservations re
eiving a weight less than 0.9 is the �rst one. There were three other17



observations whi
h seemed to be potentially dangerous in the model 
ontaining thewhole set of variables. Probably, this outlyingness was due to some explanatoryvariables, whi
h were not retained in the �nal model.For the �nal model as presented in Table 5, we investigate the sensitivity of Mal-lows quasi-likelihood tests 
ompared to 
lassi
al tests by 
onsidering the followingpro
edure: we let the response of the observation re
eiving the lowest weight in theestimation of the �nal model, namely observation 110, span the range of values from0 to 6. These values 
over the range of the response in the sample. In ea
h situa-tion, we test the null hypothesis that the 
oeÆ
ient 
orresponding to the variablehabitat is equal to 0. The p-values of these tests are represented in Figure 1.[Figure 1 about here.℄The p-value of the robust test (
 = 1:6) is stable, irrespe
tive to the responsevalue taken by observation 110. This p-value ranges from 2:6 to 3:3%. On the otherhand, the p-value of the 
lassi
al test (
 =1), varies mu
h more: from 2:3 to 6:5%,giving rise to a di�erent model 
hoi
e, if the de
ision rule is set at 5%. Moreover, byletting observation 110 take arbitrarily large values, the p-value of the robust test isbounded, whereas the p-value of the 
lassi
al test 
ontinues to in
rease.6 Con
lusionIn this paper we proposed a natural 
lass of robust testing pro
edures for generalizedlinear models. They are a valuable 
omplement to 
lassi
al te
hniques and are morereliable in the presen
e of outlying points and other deviations from the assumedmodel. Further resear
h in
ludes the extension of these pro
edures to generalizedestimating equations and to nonparametri
 models like generalized additive models.18



A Fisher 
onsisten
y 
orre
tionWe derive the 
onstanta(�) = 1n nXi=1 E� 
� Yi � �iV 1=2(�i)�� 1V 1=2(�i)�0i;for binomial and Poisson models, whi
h redu
es to the 
omputation of E� 
� Yi��iV 1=2(�i)��.Let us de�ne j1 = b�i � 
V 1=2(�i)
, and j2 = b�i + 
V 1=2(�i)
.The binomial model states that Yi � B(mi; pi), so that E[Yi℄ = �i = mipi andV[Yi℄ = �i mi��imi . Then we haveE� 
� Yi � �iV 1=2(�i)�� = 1Xj=�1 
� j � �iV 1=2(�i)�P(Yi = j)1Ifj2[0;mi℄g= 
�P(Yi � j2 + 1)� P(Yi � j1)�+ �iV 1=2(�i)�P(j1 � ~Yi � j2 � 1)� P(j1 + 1 � Yi � j2)�;with ~Yi � B(mi � 1; pi).The Poisson model states that Yi � P(�i), and hen
e E[Yi℄ = V (�i) = �i. Then,E� 
� Yi � �iV 1=2(�i)�� = 1Xj=�1 
� j � �iV 1=2(�i)�P(Yi = j)1Ifj�0g= 
�P(Yi � j2 + 1)� P(Yi � j1)�+ �iV 1=2(�i)�P(Yi = j1)� P(Yi = j2)�:B Asymptoti
 varian
eWe �rst determine the matrix Q( 
; F ) in the parti
ular situation of Mallows quasi-likelihood estimator. Using its de�nition, we haveQ( 
; F ) = E�� 
(r)w(x) 1V 1=2(�)�0 � a(�)�� 
(r)w(x) 1V 1=2(�)�0 � a(�)�T �= 1nXTAX � a(�)a(�)T ; 19



where A is the diagonal matrix with elements ai = E[ 
(ri)2℄w2(xi) 1V (�i)(��i��i )2, sin
e�0i = ���i��i �xi. In the same manner, writing s(y;x;�) = ��� log h(yijxi; �i), we derivethe expression of M( 
; F ),M( 
; F ) = E�� 
(r)w(x) 1V 1=2(�)�0 � a(�)�s(y;x;�)T �= 1n nXi=1 E� 
(ri) ���i logh(yijxi; �i)� 1V 1=2(�i)w(xi)�0i�0Ti= 1nXTBX;where B is the diagonal matrix with elements bi = E[ 
(ri) ���i log h(yijxi; �i)℄ 1V 1=2(�i)w(xi)(��i��i )2.So, the determination of the asymptoti
 varian
e of a Mallows quasi-likelihoodestimator involves the 
omputation of the diagonal terms of the matri
es A and B.We determine the three terms: ���ig�1(�i), E[ 
(ri)2℄, and E[ 
(ri) ���i logh(yijxi; �i)℄for binomial and Poisson models.For the binomial model with logit link���i g�1(�i) = mi exp(�i)(1 + exp(�i))2 ;and E� 2
� Yi � �iV 1=2(�i)�� = 
2�P(Y � j1) + P(Y � j2 + 1)�++ 1V (�i)h�2imi(mi � 1)P(j1 � 1 � ~~Y � j2 � 2) ++ (�i � 2�2i )P(j1 � ~Y � j2 � 1) ++ �2iP(j1 + 1 � Y � j2)i;with Y � B(mi; �i), ~Y � B(mi � 1; �i) and ~~Y � B(mi � 2; �i).20



���i logh(yijxi; �i) being equal to Yi��iV (�i) , we haveE� 
(ri) ���i log h(yijxi; �i)� = E� 
� Yi � �iV 1=2(�i)�Yi � �iV (�i) � == 
�iV (�i)hP(Yi � j1)� P( ~Yi � j1 � 1) + P( ~Yi � j2)� P(Yi � j2 + 1)i++ 1V 3=2(�i)h�2imi(mi � 1)P(j1 � 1 � ~~Yi � j2 � 2)+(�i � 2�2i )P(j1 � ~Yi � j2 � 1) + �2iP(j1 + 1 � Yi � j2)i:For the Poisson model, we use the log-link �i = g(�i) = log(�i) whi
h leads to���i g�1(�i) = exp(�i). We also haveE� 2
� Yi � �iV 1=2(�i)�� = 
2�P(Yi � j1) + P(Yi � j2 + 1)�++ 1V (�)h�2P(j1 � 1 � Yi � j2 � 2) + (�� 2�2)P(j1 � Yi � j2 � 1)+ �2P(j1 + 1 � Yi � j2)i:The s
ore fun
tion equals ���i logh(yijxi; �i) = Yi��i�i = Yi��iV (�i) , so thatE� 
(ri) ���i log h(yijxi; �i)� = E� 
� Yi � �iV 1=2(�i)�Yi � �iV (�i) � == 
�P(Yi = j1) + P(Yi = j2)�++ 1V 3=2(�i)�2i �P(Yi = j1 � 1)� P(Yi = j1)� P(Yi = j2 � 1) + P(Yi = j2)�++ �iP(j1 � Yi � j2 � 1):C Conditions for Robust Quasi-devian
e Tests[C1℄: Denote by Dn the set of all sample points zi, i = 1; : : : ; n for whi
h the se
ond-order derivatives �2QM (zi;�)=��j��k, i = 1; : : : ; n; j; k = 1; : : : ; p exist andare 
ontinuous fun
tions of �. It is assumed that limn!1 P�(Dn) = 1.21



[C2℄: For any z 2 Dn, any positive value Æ, and any �1 denote by �jk(z;�1; Æ) theleast upper bound and by 
jk(z;�1; Æ) the greatest lower bound of �2QM(z;�)=��j��k,with respe
t to � in the � interval jj�1 � �jj � Æ.Moreover, assume that for any sequen
e fÆng for whi
h limn!1 Æn = 0,limn!1E���jk(z;�; Æn)� = limn!1E��
jk(z;�; Æn)� = E���2QM(z;�)=��j��k�;and that there exists a positive � su
h that the expe
tations E���2jk(z;�; Æ)�and E��
2jk(z;�; Æ)� are bounded fun
tions of � and Æ for all � and Æ < �.These 
onditions are obtained by repla
ing log f(z;�) by QM (z;�) in the 
orre-sponding 
lassi
al results for the likelihood ratio test; 
f. Rao (1973), Wald (1943).D Proof of Proposition 1First, we derive the asymptoti
 equivalent quadrati
 form of �QM . The proof followsthe same lines as in the 
lassi
al theory.The �rst step of the proof 
onsists in approximating �QM under 
onditions [C1℄-[C2℄ by pn(�̂ � _�)TM( ; F )pn(�̂ � _�); (14)via a Taylor expansion and by making use of Slutsky's theorem. Then, under H0 andby the asymptoti
 properties of M-estimators whi
h hold under 
onditions (A.1)-(A.9) of Heritier and Ron
hetti (1994), the following distribution equality holdsasymptoti
ally pn(�̂ � _�) D� pn�M�1( ; F )� ~M+( ; F )�Ln; (15)22



where Ln = 1nPni=1 (yi; �i) is su
h that pnLn � N �0; Q( ; F )�. Putting (15)in (14), and taking into a

ount the symmetry of M( ; F ), we �nally have, asn!1, �QM D� nLTnC( ; F )Ln: (16)(16) 
an be rewritten as �QM D� nRTn(2)M( ; F )22:1Rn(2);where M( ; F )22:1 = M( ; F )22 �M( ; F )12M( ; F )�111M( ; F )12, and pnRn isdistributed a

ording to N �0;M�1( ; F )Q( ; F )M�1( ; F )�.Finally, from (16) we 
on
lude that�QM � qXi=1 diN2i ;where di are the q positive eigenvalues of Q( ; F )C( ; F ) and N1; : : : ; Nq are in-dependent standard normal variables. Thus, the distribution of �QM is a linear
ombination of �2 random variables with 1 degree of freedom.E Proof of Proposition 2By using (11) and by standard results on the distribution of quadrati
 forms in nor-mal variables, we 
an say that the statisti
 nUTnAUn is asymptoti
ally distributedas Pqi=1 di�21(�2i ), with �(�) = (�1(�); : : : ; �q(�))T = pnPU(F�;n). Noti
e that thedistribution depends only on the �2i (�) (see Johnson and Kotz (1970), Chapter 29).Moreover, up to O(1=n), we have that �(F�;n) = 1 �Hd1;:::;dq(�1��0 ;�(�)), with�(�) = diag(�(�)�(�)T ) = n diag �PU(F�;n)U(F�;n)TP T�.23



Let b(�) = �Hd1;:::;dq(�1��0 ;�(�)). Then, up to O(1=n), we have�(F�;n)� �0 = b(�)� b(0) = �b0(0) + 12�2b00(0) + o(�2):But b0(0) = �T � ��������=0 = 2n�T � diag�Ph ���U(F�;n)i�=0U(F�0)P T� = 0;be
ause U(F�0) = 0.We also have thatb00(0) = �T � �2��2�����=0 = �T � 2n diag�Ph ���U(F�;n) ���U(F�;n)Ti�=0P T�= 2�T � diag�P �Z IF(z;U; F�0)dG(z)� � Z IF(z;U; F�0)dG(z)�TP T�;by using again the fa
t thatU(F�0) = 0 and be
ause ���U(F�;n)���=0 = R IF(z;U; F�0) 1pndG(z)(see Hampel et al., 1986, p. 83). This 
ompletes the proof.A
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Figure 1: Sensitivity 
urves of the p-value for Mallows quasi-likelihood tests with
 = 1:6 (solid line) and 
 =1 (dashed line).
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Max. likelihood Huber quasi-likelihoodInter
ept 1.480 (0.66) 1.939 (0.70)logdose -1.817 (0.34) -2.049 (0.37)blo
k2 0.843 (0.23) 0.685 (0.24)blo
k1 0.542 (0.23) 0.450 (0.24)Table 1: Estimation of � by maximum likelihood and by the Huber quasi-likelihoodestimator with 
 = 1:2. Standard errors are indi
ated within parentheses.
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Resid. Devian
e Resid. Huber quasi-devian
eNULL 83.34 60.46logdose 54.73 (0.000) 39.94 (0.000)blo
k2 45.59 (0.003) 35.21 (0.017)blo
k1 39.98 (0.018) 32.74 (0.085)Table 2: Residual devian
e and residual Huber quasi-devian
e with 
 = 1:2. p-valuesare indi
ated within parentheses.
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Variable CoeÆ
ient Standard ErrorInter
ept -0.8978 (-0.947) 0.2682 (0.265)shrubs 0.0099 (0.012) 0.0222 (0.022)stumps -0.2514 (-0.272) 0.2876 (0.286)stags 0.0402 (0.040) 0.0113 (0.011)bark 0.0400 (0.040) 0.0145 (0.014)a
a
ia 0.0178 (0.018) 0.0107 (0.011)habitat 0.0714 (0.072) 0.0385 (0.038)eu
alyptus nitens 0 (0) - (-)eu
alyptus regnans -0.020 (-0.015) 0.1938 (0.192)eu
alyptus delegatensis 0.127 (0.115) 0.2738 (0.272)aspe
t NW-NE 0 (0) - (-)aspe
t NW-SE 0.0601 (0.067) 0.1913 (0.190)aspe
t SE-SW 0.0949 (0.117) 0.1920 (0.190)aspe
t SW-NW -0.5079 (-0.489) 0.2505 (0.247)Table 3: CoeÆ
ients estimation and 
orresponding standard errors for the Poissonmodel with log-link of the possum dataset.
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Classi
al QL Robust QLshrubs 0.0871 0.3642stumps 0.0646 0.2988stags 0.0000 0.0000bark 0.0035 0.0039a
a
ia 0.0002 0.0009habitat 0.0500 0.0443eu
alyptus regnans 0.8754 0.8030eu
alyptus delegatensis 0.8591 0.8074eu
alyptus nitens 0.5681 0.6461aspe
t NW-NE 0.8336 0.9100aspe
t NW-SE 0.2612 0.3462aspe
t SE-SW 0.1996 0.1646aspe
t SW-NW 0.0012 0.0023Table 4: p-values of a forward stepwise pro
edure for the Poisson model with log-linkof the possum dataset.
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Variable CoeÆ
ient Standard ErrorInter
ept -0.7981 (-0.8213) 0.2030 (0.2000)stags 0.0406 (0.0410) 0.0104 (0.0103)bark 0.0410 (0.0406) 0.0126 (0.0125)habitat 0.0143 (0.0136) 0.0098 (0.0097)a
a
ia 0.0776 (0.0782) 0.0371 (0.0367)aspe
t SW-NW -0.6044 (-0.5968) 0.2121 (0.2086)Table 5: CoeÆ
ients estimation and 
orresponding standard errors for the �nalPoisson model with log-link of the possum dataset.
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