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Robust Inferene for Generalized LinearModelsEva Cantoni and Elvezio RonhettiDepartment of EonometrisUniversity of GenevaCH - 1211 Geneva 4, SwitzerlandMay 1999Revised January 2001AbstratBy starting from a natural lass of robust estimators for generalized linearmodels based on the notion of quasi-likelihood, we de�ne robust devianesthat an be used for stepwise model seletion as in the lassial framework.We derive the asymptoti distribution of tests based on robust devianes andwe investigate the stability of their asymptoti level under ontamination. Thebinomial and Poisson models are treated in detail. Two appliations to realdata and a sensitivity analysis show that the inferene obtained by means ofthe new tehniques is more reliable than that obtained by lassial estimationand testing proedures.



1 IntrodutionGeneralized linear models (MCullagh and Nelder, 1989) are a powerful and populartehnique for modeling a large variety of data. In partiular, generalized linearmodels allow to model the relationship between the preditors and a funtion of themean of the response for ontinuous and disrete response variables. The responsevariables Yi, for i = 1; : : : ; n are supposed to ome from a distribution belonging tothe exponential family, suh that E[Yi℄ = �i and V[Yi℄ = V (�i) for i = 1; : : : ; n and�i = g(�i) = xTi �; i = 1; : : : ; n; (1)where � 2 IRp is the vetor of parameters, xi 2 IRp, and g(:) is the link funtion.The non-robustness of the maximum likelihood estimator for � has been studiedextensively in the literature: f. for instane the early work of Pregibon (1982) onlogisti regression, Stefanski, Carroll, and Ruppert (1986), K�unsh, Stefanski, andCarroll (1989), Morgenthaler (1992), and Rukstuhl and Welsh (1999). In morereent work, Preisser and Qaqish (1999) onsider a lass of robust estimators in thegeneral framework of generalized estimating equations.The quasi-likelihood estimator of the parameter of model (1) (see Wedderburn,1974, MCullagh and Nelder, 1989, and Heyde, 1997) shares the same non-robustnessproperties. This estimator is the solution of the system of estimating equationsnXi=1 ���Q(yi; �i) = nXi=1 (yi � �i)V (�i) �0i = 0; (2)where �0i = ����i, and Q(yi; �i) is the quasi-likelihood funtion. The solution of (2) isan M-estimator (see Huber, 1981, and Hampel, Ronhetti, Rousseeuw, and Stahel,1986) de�ned by the sore funtion ~ (yi; �i) = (yi��i)V (�i) �0i. Its inuene funtion(Hampel, 1974 and Hampel et al., 1986) is proportional to ~ and is unbounded.1



Therefore, large deviations of the response from its mean or outlying points in theexplanatory variables xi an have a large inuene on the estimator. Thus, thequasi-likelihood estimator { as well as the maximum likelihood estimator { is notrobust. Several robust alternatives have been proposed in the literature; see thereferenes given above.However, in spite of the fair amount of existing literature, robust inferene forgeneralized linear models seems to be very limited. Moreover, only the logistiregression situation is usually onsidered in detail, and the problem of developingrobust alternatives to lassial tests is not addressed globally for the whole lass ofgeneralized linear models.In this paper we propose a robust approah to inferene based on robust de-vianes whih are natural generalizations of quasi-likelihood funtions. Our robustdevianes are based on the same lass of robust estimators as that proposed byPreisser and Qaqish (1999) in the more general setup of generalized estimatingequations. Although these estimators are not optimally robust, they form a lassof M-estimators easy to deal with, and whih admits handy inferene not only forlogisti regression but for the whole lass of generalized linear models.One ould argue that two alternative approahes ould be onsidered. A �rstpossibility would be to view variable seletion as a parametri hypothesis and touse Wald, sore or likelihood ratio tests for whih robust versions are available; seee.g. Heritier and Ronhetti (1994) and Markatou and He (1994). While this wouldin priniple be feasible, Wald and sore tests do not seem to be used muh in thelassial analysis of generalized linear models. Moreover, robust likelihood ratio testsannot be proposed in this ase, beause the optimal robust sore funtion doesnot admit an analyti primitive funtion and numerial integration in the spae2



of parameters for omputing suh a primitive is generally unfeasible. A seondapproah would be to rely on the robust model seletion based on Akaike Criterion,Mallows' Cp or similar tehniques; see e.g. Ronhetti and Staudte (1994), Sommerand Huggins (1996) and Ronhetti (1997) for a review. This approah has theadvantage to perform a full model searh. However, when the number of variablesis moderate to large suh a full searh is impossible and a stepwise seletion is theonly feasible alternative.For these reasons and in view of the importane of the notion of deviane formodel building in generalized linear models, we propose robust devianes based ongeneralizations of quasi-likelihood funtions. The general struture of the lassialapproah by quasi-likelihood is preserved, whih o�ers the advantage of having ro-bust tools playing the same role as devianes, anova tables, stepwise proedures,and so on.The paper is organized as follows. In the next setion we disuss robust estima-tors of a generalized linear model based on quasi-likelihood. As an illustration, wefous in partiular on the estimation of binomial and Poisson models. In Setion 3,we disuss inferene and propose a family of test statistis for model seletion. Wederive their asymptoti distribution through the development of an asymptotiallyequivalent quadrati form and we study their robustness properties through the in-uene funtion. Setion 4 presents some omputational aspets and Setion 5 givestwo appliations. Finally, in Setion 6 we disuss some potential researh diretions.
3



2 Robust Estimation Based on Quasi-likelihood2.1 General De�nitionWe onsider a general lass of M-estimators of Mallows's type, where the inueneof deviations on y and on x are bounded separately. The estimator is the solutionof the estimating equations: nXi=1  (yi; �i) = 0; (3)where  (y; �) = �(y; �)w(x)�0 � a(�), a(�) = 1nPni=1 E[�(yi; �i)℄w(xi)�0i with theexpetation taken with respet to the onditional distribution of yjx, �(�; �), w(x)are weight funtions de�ned below, and �i = �i(�) = g�1(xTi �). The onstanta(�) ensures the Fisher onsisteny of the estimator. The estimating equation (3)for generalized linear models is a speial ase of equation (1) p. 575 for generalizedestimating equations in Preisser and Qaqish (1999), where our funtion �(y; �)w(x)is (in their notation) V �1(�)w(x; y;�)(y � �) and a(�) = �0 V �1(�) .Let y = (y1; : : : ; yn)T and � = (�1; : : : ; �n)T . The estimating equation (3)orresponds to the minimization of the quantityQM(y;�) = nXi=1 QM (yi; �i); (4)with respet to �, where the funtions QM (yi; �i) an be written asQM(yi; �i) = Z �i~s �(yi; t)w(xi)dt� 1n nXj=1 Z �j~t E��(yj; t)w(xj)�dt; (5)with ~s suh that �(yi; ~s) = 0, and ~t suh that E[�(yi; ~t)℄ = 0. Note that di�erenesof devianes, as the test statisti (8), are independent of ~s and ~t.The struture of (3) is suggested by the lassial quasi-likelihood equations. Theestimator de�ned by equation (3) is an M-estimator haraterized by the sore fun-4



tion  (yi; �i) = �(yi; �i)w(xi)�0i � a(�). Its inuene funtion is then IF(y; ; F ) =M( ; F )�1 (y; �), where M( ; F ) = �E[ ��� (y; �)℄; f. Hampel et al. (1986).Moreover, the estimator has an asymptoti normal distribution with asymptotivariane 
 = M( ; F )�1Q( ; F )M( ; F )�1, where Q( ; F ) = E[ (y; �) (y; �)T ℄.It is then lear that the hoie of a bounded funtion ensures robustness by puttinga bound on the inuene funtion. Therefore, a bounded funtion �(y; �) is intro-dued to ontrol deviations in the y-spae, and leverage points are down-weighted bythe weights w(x). Simple hoies for �(�; �) and w(�) suggested by robust estimatorsin linear models are �(yi; �i) =  (ri) 1V 1=2(�i) (see (6) below) and w(xi) = p1� hi,where hi is the i-th diagonal element of the hat matrix H = X(XTX)�1XT . Moresophistiated hoies for w(�) are available (see Staudte and Sheather, 1990, p. 258,for a disussion in linear regression or Carroll and Welsh, 1988). Weights de�nedon H do not have high breakdown properties, and from this point of view, otherhoies of w(xi) are more suitable. For example, w(xi) an be hosen as the inverseof the Mahalanobis distane de�ned through a high breakdown estimate of the en-ter and of the ovariane matrix of the xi (see, for example, the minimum volumeellipsoid estimator or the minimum ovariane determinant estimator in Rousseeuwand Leroy, 1987, p. 258 �.). Finally notie that the hoie of �(yi; �i) = yi��iV (�i) andw(xi) = 1 for all i, reovers the lassial quasi-likelihood estimator, so that for ajudiious hoie of �(yi; �i) and of the weights w(xi), the funtion QM (y;�) an beseen as the robust ounterpart of the lassial quasi-likelihood funtion.The form of this estimator is attrative beause the estimating equation (3)orresponds to the minimization of (4) and this leads to a natural de�nition ofrobust deviane; see Setion 3.1.
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2.2 Robust Estimation for Binomial and Poisson ModelsWe onsider here the partiular ase of (3), de�ned by �(yi; �i) =  (ri) 1V 1=2(�i) ,where ri = yi��iV 1=2(�i) are the Pearson residuals and   is the Huber funtion de�nedby  (r) = 8<: r j r j� ; sign(r) j r j> : (6)We all the estimator de�ned in this way, the Mallows quasi-likelihood estimator.It solves the set of estimating equationsnXi=1 h (ri)w(xi) 1V 1=2(�i)�0i � a(�)i = 0; (7)where a(�) = 1nPni=1 E[ (ri)℄w(xi) 1V 1=2(�i)�0i. Using the same notation as in thelinear regression ase, when w(xi) = 1 we all this estimator Huber quasi-likelihoodestimator.The tuning onstant  is typially hosen to ensure a given level of asymptotieÆieny. In Setion 3.2 we propose an alternative proedure for the hoie ofthe tuning onstant. a(�) is a orretion term to ensure Fisher onsisteny; seeHampel et al. (1986) for general parametri models and He and Simpson (1993),Setion 4.1, for power series distributions. Note that a(�) an be omputed expliitlyfor binomial and Poisson models and does not require numerial integration; f.Appendix A. The matries M( ; F ) and Q( ; F ) an also be easily omputed forthe Mallows quasi-likelihood estimator:Q( ; F ) = 1nXTAX � a(�)a(�)T ;where A is a diagonal matrix with elements ai = E[ (ri)2℄w2(xi) 1V (�i)(��i��i )2, andM( ; F ) = 1nXTBX;6



where B is a diagonal matrix with elements bi = E[ (ri) ���i log h(yijxi; �i)℄ 1V 1=2(�i)w(xi)(��i��i )2,and h(�) is the onditional density or probability of yijxi. We refer to Appendix B forfurther details and for the omputation of these matries for binomial and Poissonmodels.3 Robust Inferene3.1 Model Seletion Based on Robust DevianesThe funtion QM(y;�) de�ned in (4) and (5) allows to develop robust tools forinferene and model seletion based on robust quasi-devianes.Denote by a = (aT(1); aT(2))T the partition of a vetor a into (p� q) and q ompo-nents and the orresponding partition of a matrix A byA = 0� A11 A12A21 A22 1A ;where A11 2 IR(p�q)�(p�q), A12 2 IR(p�q)�q, A21 2 IRq�(p�q) and A22 2 IRq�q.To evaluate the adequay of a model, we de�ne a robust goodness-of-�t measure| alled robust quasi-deviane | based on the notion of robust quasi-likelihoodfuntion, i.e. DQM(y;�) = �2QM(y;�) = �2 nXi=1 QM(yi; �i);where QM is de�ned by (4) and (5).DQM(y;�) desribes the quality of a �t and will be used to de�ne a statistifor model seletion. Let us onsider the model Mp, with p parameters. Supposethat the orresponding set of parameters is � = (�1; : : : ; �p)T = (�T(1);�T(2))T . Weare interested in testing the null hypothesis H0 : �(2) = 0. This is equivalent to7



onsider a nested model Mp�q � Mp with (p � q) parameters, and testing whetherthe sub-model Mp�q holds.We estimate the vetor of parameters by solving (3) for the omplete model, andwe obtain an estimator �̂ of �. Under the null hypothesis, the same proedure yieldsan estimator _� of (�(1); 0). We write �̂ and _� for the estimated linear preditorsassoiated to the estimate �̂ and _� respetively. Then, we de�ne a robust measureof disrepany between two nested models by�QM = hDQM(y; _�)�DQM(y; �̂)i= 2h nXi=1 QM(yi; �̂i)� nXi=1 QM (yi; _�i)i; (8)where the funtion QM(yi; �i) is de�ned by (5).The statisti (8) is in fat a generalization of the quasi-deviane test for general-ized linear models, whih is reovered by taking QM(yi; �i) = R �iyi yi�tV (t)dt. Moreover,when the link funtion is the identity (linear regression), (8) beomes the � -teststatisti de�ned in Hampel et al. (1986), Chapter 7.The same forms for the funtions �(yi; �i) and w(xi) as in the estimation probleman be onsidered here. In partiular, a Mallows quasi-deviane statisti an bede�ned by taking �(yi; �i) =  (ri)=V 1=2(�i).The following Proposition establishes the asymptoti distribution of the teststatisti (8). We assume the onditions for the existene, onsisteny, and asymp-toti normality of M-estimators as given by (A.1)-(A.9) in Heritier and Ronhetti(1994), p. 902. These onditions have been studied by Huber (1967, 1981), Clarke(1986) and Bednarski (1993).Proposition 1 Under onditions (A.1)-(A.9) in Heritier and Ronhetti (1994),[C1℄, [C2℄ of Appendix C, and under H0 : �(2) = 0, the test statisti �QM de�ned8



by (8) equalsnLTnC( ; F )Ln + oP (1) = nRTn(2)M( ; F )22:1Rn(2) + oP (1); (9)where C( ; F ) =M�1( ; F )� ~M+( ; F ), pnLn is normally distributed N �0; Q( ; F )�,M( ; F )22:1 = M( ; F )22 � M( ; F )T12M( ; F )�111M( ; F )12, and pnRn is nor-mally distributed N �0;M�1( ; F )Q( ; F )M�1( ; F )�.Moreover, �QM is asymptotially distributed asqXi=1 diN2i ;where N1; : : : ; Nq are independent standard normal variables, d1; : : : ; dq are the qpositive eigenvalues of the matrix Q( ; F )�M�1( ; F )� ~M+( ; F )�, and ~M+( ; F )is suh that ~M+( ; F )11 = M( ; F )�111 and ~M+( ; F )12 = 0, ~M+( ; F )21 = 0,~M+( ; F )22 = 0.The proof is given in Appendix D. A similar result an be obtained for the dis-tribution of �QM under ontiguous alternatives �(2) = n�1=2�. In suh a ase�QM is asymptotially distributed as Pqi=1(d1=2i Ni + ST�)2, where S is suh thatSST = M22:1 and ST (M�1( ; F�0)Q( ; F�0)M�1( ; F�0))22S = D and D is thediagonal matrix with elements d1; : : : ; dq.3.2 Robustness Properties and Choie of the Tuning Con-stantThe robustness properties of the test based on (8) an be investigated by showingthat a small amount of ontamination at a point z has bounded inuene on theasymptoti level and power of the test. This ensures the loal stability of the test.9



The global reliability (or robustness against large deviations) ould be measured bythe breakdown point as de�ned in He, Simpson, and Portnoy (1990). However, wefous here on small deviations whih are probably the main onern at the inferenestage of a statistial analysis.We onsider the sequene of �-ontaminationsF�;n = �1� �pn�F�0 + �pnG; (10)where G is an arbitrary distribution (see Heritier and Ronhetti, 1994) and investi-gate the asymptoti level of the test under (10).Proposition 2 Consider a parametri model F�0 and the null hypothesis H0 :�(2) = 0. Denote by F (n) the empirial distribution and by Un the funtionalU(F (n))suh that U(F�0) = 0, IF(z;U; F�0) is bounded andpn(Un �U(F�;n)) � N (0;�) (11)uniformly over the �-ontamination F�;n. Let �(F ) be the level of the test based onthe quadrati form nUTnAUn when the underlying distribution is F . The nominallevel is �(F�0) = �0.Then, under the �-ontamination F�;n, we havelimn!1�(F�;n) = �0 +�2�T � diag�P �Z IF(z;U; F�0)dG(z)� �Z IF(z;U; F�0)dG(z)�TP T� + o(�2);where � = � ���Hd1;:::;dq(�1��0 ;�)����=0, � = (�1; : : : ; �q)T = (�21; : : : ; �2q )T , Hd1;:::;dq(:;�)is the .d.f. of the random variable Pqi=1 di�21(�2i ), �1��0 is the (1� �0)-quantile ofPqi=1 di�21(0), P is an orthogonal matrix suh that P TDP = �A, and D is the di-agonal matrix with elements d1; : : : ; dq, the eigenvalues of �A. Moreover, diag(R)indiates the vetor with omponents the diagonal elements of the matrix R.10



If the inuene funtion of the funtional U is bounded, then the asymptoti levelunder ontamination is also bounded. The proof of this proposition is presentedin Appendix E. A similar result an be obtained for the power, showing that theasymptoti power is stable under ontamination.Note that this proposition generalizes the result of Proposition 4 in Heritier andRonhetti (1994), whih an be reovered by taking � = �1 = Æ(�) and A = Iq.The general result of Proposition 2 an be applied to the robust quasi-likelihoodtest statisti (8) and in the speial ase of a point mass ontamination G(z) = �z.This gives the following Corollary.Corollary 1 Under onditions (A.1)-(A.9) in Heritier and Ronhetti (1994), andfor any M-estimator �̂(2) with bounded inuene funtion, the asymptoti level of therobust quasi-likelihood test statisti (8) under a point mass ontamination is givenby limn!1�(F�;n) = �0 +�2�T � diag�P IF(z; �̂(2); F�0)IF(z; �̂(2); F�0)T P T� + o(�2);where P is an orthogonal matrix suh that P TDP = 
22M22:1, 
 is the asymptotivariane of �̂ de�ned in Setion 2.1, and D is the diagonal matrix with elementsd1; : : : ; dq de�ned in Proposition 1.The result is obtained by applying Proposition 2 with G(z) = �z, U = �̂(2),� = 
22, A = M22:1, and by using the Fr�ehet di�erentiability of �̂(2); see Heritierand Ronhetti (1994).Hene, a bounded inuene M-estimator �̂(2) ensures a bound on the asymptotilevel of the robust quasi-likelihood test under ontamination.11



We an now undertake a omplete robust analysis of a generalized linear model:the estimation of parameters an be performed via M-estimation aording to (3),and the test statisti (8) allows us to make inferene and model hoie.The funtion �(yi; �i) whih appears in the de�nition ofQM (yi; �i), is often tunedby a onstant; f. for instane (6). As suggested in Ronhetti and Trojani (2001), wean onsider the problem from the point of view of inferene and hoose the onstantthat ontrols the maximal bias on the asymptoti level of the test in a neighborhoodof the model. To serve this last purpose, one an use the Corollary above. Themaximal level � of the robust quasi-likelihood test statisti in a neighborhood of themodel of radius � is given by� = �0 + �2(�̂(2); F�0)2�T diag�P11TP T�; (12)where (�̂(2); F�0) = supz jjIF(z; �̂(2); F�0)jj and 1 = (1; : : : ; 1)T .By (12), we an write b = 1�r �� �0�T diag(P11TP T ) ; (13)where b is the bound on the inuene funtion of the estimator �̂(2). Then, for a�xed amount of ontamination � and by imposing a maximal error on the level of thetest ���0, one an determine the bound b on the inuene funtion of the estimator,and hene the tuning onstant by solving b = (�̂(2); F�0) =  with respet to .For example, if q = 1 we have P = 1, diag(P11TP T ) = 1, and � = 0:1145, seeRonhetti and Trojani (2001). In pratie, the supremum on z = (y;x) is taken asthe maximum over the sample of the supremum on yjx. Note also that the solutiondepends on the unknown parameter �0; our experiene shows that it does not varymuh for di�erent values of �, so that one an safely plug-in a reasonable (robust)estimate. This is valid for a single test. However, in a stepwise proedure (as in12



Setion 5) several tests are performed, and one would have to hoose a di�erentvalue of  for eah test. Sine this is unreasonable from a pratial point of view,we suggest to hoose a global value of  by solving b = supz jjIF(z; �̂; F�0)jj, basedon the fat that (�̂(2); F�0) = supz jjIF(z; �̂(2); F�0)jj � jj supz IF(z; �̂; F�0)jj.4 Computational AspetsThe solution of equation (3) an be obtained numerially by a Newton-Raphsonproedure or by a Fisher soring proedure. In the latter ase, the algorithm isalso known as the inuene algorithm; f. for instane Hampel et al. (1986), p. 263.However, there is a potential problem with multiple roots of equation (3). In thisase, we reommend to use a bootstrap root searh as proposed in Markatou, Basu,and Lindsay (1998), p. 743-744, based on the objetive funtion QM de�ned in (4)as a seletion rule; see also Hanfelt and Liang (1995).The test statisti �QM of equation (8), an be omputed diretly. It involvesn one-dimensional integrations, whih are performed numerially. Our experieneshows that it works well for binomial and Poisson models. To avoid these numerialintegrations { espeially in the ase when n is large { one an onsider using theasymptoti quadrati forms of Proposition 1 given by (9) whih are asymptotiallyequivalent to the test statisti �QM . A systemati study on the omparison of (8)with the asymptoti equivalent quadrati forms (9) is left for further work. Moreover,ritial regions or p-values for the test statisti �QM are easy to obtain. In fat, linearombinations of �21 variables have been well studied in the literature. Algorithmsfor the omputation of these p-values have been proposed among others by Davies(1980) and by Farebrother (1990). Analytial approximations of these distributions13



were studied by Pearson (1959) and Imhof (1961).S-PLUS (MathSoft, Seattle) routines for estimation and inferene based on ro-bust quasi-likelihood are olleted in a library and are available from the authors.5 Appliations5.1 Binomial modelsIn this setion, we analyze the damaged arrots dataset. It is taken from Phelps(1982) and is disussed by Williams (1987) and used in MCullagh and Nelder(1989) to illustrate tehniques for heking for isolated departures from the model,beause of the presene of an outlier in the y-spae. The data are issued from a soilexperiment and give the proportion of arrots showing inset damage in a trial withthree bloks and eight dose levels of insetiide. The logarithm of the dose rangesfrom 1.52 to 2.36 in an equally spaed grid. The sample size is 24.We assume a binomial model with logit linklog � �m� �� = �0 + �1 log(dose) + �2blok2 + �3blok1;where � = E[Y ℄ = E[number of damaged arrots℄, bloki; i = 1; 2 are indiatorsvariables taking the value of 1 if measures are taken in blok i and 0 otherwise.Di�erent tehniques | plot of deviane residuals, plot of Pearson residuals andCook's distane | show that there is a single large outlier, namely observation 14(dose level 6 and blok2). On the other hand, this observation does not appearas a leverage point beause its hi value is small.In the following we ompare the lassial and the robust analysis. The lassialestimates are obtained by maximum likelihood. The robust estimates are based on14



the Huber quasi-likelihood estimator de�ned by (7) with w(xi) = 1 for all i. Thetuning onstant of the Huber funtion is hosen to be 1:2, whih is obtained by theproedure desribed at the end of Setion 3.2 with � � �0 = 0:02, � = 0:04 and� = 0:1145. [Table 1 about here.℄Table 1 shows the e�et of observation 14: it seems to inrease the value of �2orresponding to the variable blok2. The robust tehnique automatially takesinto aount the partiularity of observation 14: in the estimation proedure, mostof the observations reeive a weight equal to 1, or at least greater than 0.70, whereasobservation 14 reeives a weight equal to 0.26.Also, the e�et of observation 14 is lear on the value of the deviane. Thisseems dangerous beause the deviane is used for assessing the signi�ane of thevariables used for modeling the response. This is on�rmed by Table 2, where theresults of a lassial and robust stepwise proedure are ompared.[Table 2 about here.℄The lassial analysis shows that all the variables, added sequentially, are highlysigni�ant on the basis of their deviane value. Model seletion via a robust step-wise proedure based on the Huber quasi-deviane de�ned by equation (8) with�(yi; �i) =  (ri)=V 1=2(�i) and  = 1:2 shows that the variable blok1 is not signif-iant.5.2 Poisson modelsWe use a dataset issued from a study of the diversity of arboreal marsupials in theMontane ash forest (Australia). This dataset was olleted in view of the man-15



agement of hardwood forest to take onservation and rereation values, as well aswood prodution, into aount. The study is fully desribed in Lindenmayer et al.(1990, 1991). The number of di�erent speies of arboreal marsupials (possum) wasobserved on 151 di�erent 3ha sites with uniform vegetation. For eah site the fol-lowing measures were reorded: number of shrubs, number of ut stumps from pastlogging operations, number of stags (hollow-bearing trees), a bark index reetingthe quantity of deortiating bark, a habitat sore indiating the suitability of nest-ing and foraging habitat for Leadbeater's possum, the basal area of aaia speies,the speies of eualypt with the greatest stand basal area (Eualyptus regnans, Eu-alyptus delegatensis, Eualyptus nitens), and the aspet of the site. The problem isto model the relationship between diversity and these other variables.Weisberg and Welsh (1993) used these data to investigate by nonparametritehniques the shape of the link funtion. Their onlusion was that the anoniallink �ts this dataset well. Therefore, we onsider a Poisson generalized linear modelswith log-link to desribe diversity as a funtion ofshrubs + stumps + stags + bark + habitat + aaia + eualyptus + aspet,where eualyptus is a fator with three levels and aspet is a fator with fourlevels. Hene, the model involves the estimation of a parameter of dimension 12.The robust estimation of parameters via a Mallows quasi-likelihood estimatorde�ned by (7) with tuning onstant  = 1:6 and weights w(xi) = p1� hi givesthe result of Table 3. In the same table, we report within parentheses the resultsobtained by means of lassial quasi-likelihood. It has to be notied that 4 observa-tions, namely observations 59, 110, 133, 139, reeive a weight with respet to theirresidual between 0.68 and 0.88. This shows that these 4 observations are potentiallyinuential not only for the estimation proedure, but also for inferene and model16



seletion. As one an see from Table 3, based on the asymptoti on�dene intervals,many explanatory variables do not enter signi�antly in the model, and a redutionof the number of variables in the model is neessary.[Table 3 about here.℄We applied a forward stepwise proedure based on quasi-likelihood and on therobust version of it. Starting from the null model where only the onstant term is�tted, we tested whether it is appropriate to add the next explanatory variable. Wehose to retain a variable if the p-value was smaller than 5%. Table 4 shows thep-value obtained at eah step of the proedure. Bold p-values indiate the variableswhih have been retained in the model.[Table 4 about here.℄As one an see from the table, the models hosen by the lassial and the robustanalysis are essentially the same, even if the p-values involved are sometimes quitedi�erent. The variable habitat is at the border of the deision rule and externalonsideration may be used to judge if it has to be kept in the model. It has to benotied that the orrelation between habitat and aaia is high (0.54) and one ofthese variables an be dropped.[Table 5 about here.℄In the robust �nal �t, observations 59, 110, 133, 139 reeive a weights withrespet to their residuals between 0.68 and 0.86, as it was already the ase in thefull model. On the other hand, with respet to the inuene of position, the onlyobservations reeiving a weight less than 0.9 is the �rst one. There were three other17



observations whih seemed to be potentially dangerous in the model ontaining thewhole set of variables. Probably, this outlyingness was due to some explanatoryvariables, whih were not retained in the �nal model.For the �nal model as presented in Table 5, we investigate the sensitivity of Mal-lows quasi-likelihood tests ompared to lassial tests by onsidering the followingproedure: we let the response of the observation reeiving the lowest weight in theestimation of the �nal model, namely observation 110, span the range of values from0 to 6. These values over the range of the response in the sample. In eah situa-tion, we test the null hypothesis that the oeÆient orresponding to the variablehabitat is equal to 0. The p-values of these tests are represented in Figure 1.[Figure 1 about here.℄The p-value of the robust test ( = 1:6) is stable, irrespetive to the responsevalue taken by observation 110. This p-value ranges from 2:6 to 3:3%. On the otherhand, the p-value of the lassial test ( =1), varies muh more: from 2:3 to 6:5%,giving rise to a di�erent model hoie, if the deision rule is set at 5%. Moreover, byletting observation 110 take arbitrarily large values, the p-value of the robust test isbounded, whereas the p-value of the lassial test ontinues to inrease.6 ConlusionIn this paper we proposed a natural lass of robust testing proedures for generalizedlinear models. They are a valuable omplement to lassial tehniques and are morereliable in the presene of outlying points and other deviations from the assumedmodel. Further researh inludes the extension of these proedures to generalizedestimating equations and to nonparametri models like generalized additive models.18



A Fisher onsisteny orretionWe derive the onstanta(�) = 1n nXi=1 E� � Yi � �iV 1=2(�i)�� 1V 1=2(�i)�0i;for binomial and Poisson models, whih redues to the omputation of E� � Yi��iV 1=2(�i)��.Let us de�ne j1 = b�i � V 1=2(�i), and j2 = b�i + V 1=2(�i).The binomial model states that Yi � B(mi; pi), so that E[Yi℄ = �i = mipi andV[Yi℄ = �i mi��imi . Then we haveE� � Yi � �iV 1=2(�i)�� = 1Xj=�1 � j � �iV 1=2(�i)�P(Yi = j)1Ifj2[0;mi℄g= �P(Yi � j2 + 1)� P(Yi � j1)�+ �iV 1=2(�i)�P(j1 � ~Yi � j2 � 1)� P(j1 + 1 � Yi � j2)�;with ~Yi � B(mi � 1; pi).The Poisson model states that Yi � P(�i), and hene E[Yi℄ = V (�i) = �i. Then,E� � Yi � �iV 1=2(�i)�� = 1Xj=�1 � j � �iV 1=2(�i)�P(Yi = j)1Ifj�0g= �P(Yi � j2 + 1)� P(Yi � j1)�+ �iV 1=2(�i)�P(Yi = j1)� P(Yi = j2)�:B Asymptoti varianeWe �rst determine the matrix Q( ; F ) in the partiular situation of Mallows quasi-likelihood estimator. Using its de�nition, we haveQ( ; F ) = E�� (r)w(x) 1V 1=2(�)�0 � a(�)�� (r)w(x) 1V 1=2(�)�0 � a(�)�T �= 1nXTAX � a(�)a(�)T ; 19



where A is the diagonal matrix with elements ai = E[ (ri)2℄w2(xi) 1V (�i)(��i��i )2, sine�0i = ���i��i �xi. In the same manner, writing s(y;x;�) = ��� log h(yijxi; �i), we derivethe expression of M( ; F ),M( ; F ) = E�� (r)w(x) 1V 1=2(�)�0 � a(�)�s(y;x;�)T �= 1n nXi=1 E� (ri) ���i logh(yijxi; �i)� 1V 1=2(�i)w(xi)�0i�0Ti= 1nXTBX;where B is the diagonal matrix with elements bi = E[ (ri) ���i log h(yijxi; �i)℄ 1V 1=2(�i)w(xi)(��i��i )2.So, the determination of the asymptoti variane of a Mallows quasi-likelihoodestimator involves the omputation of the diagonal terms of the matries A and B.We determine the three terms: ���ig�1(�i), E[ (ri)2℄, and E[ (ri) ���i logh(yijxi; �i)℄for binomial and Poisson models.For the binomial model with logit link���i g�1(�i) = mi exp(�i)(1 + exp(�i))2 ;and E� 2� Yi � �iV 1=2(�i)�� = 2�P(Y � j1) + P(Y � j2 + 1)�++ 1V (�i)h�2imi(mi � 1)P(j1 � 1 � ~~Y � j2 � 2) ++ (�i � 2�2i )P(j1 � ~Y � j2 � 1) ++ �2iP(j1 + 1 � Y � j2)i;with Y � B(mi; �i), ~Y � B(mi � 1; �i) and ~~Y � B(mi � 2; �i).20



���i logh(yijxi; �i) being equal to Yi��iV (�i) , we haveE� (ri) ���i log h(yijxi; �i)� = E� � Yi � �iV 1=2(�i)�Yi � �iV (�i) � == �iV (�i)hP(Yi � j1)� P( ~Yi � j1 � 1) + P( ~Yi � j2)� P(Yi � j2 + 1)i++ 1V 3=2(�i)h�2imi(mi � 1)P(j1 � 1 � ~~Yi � j2 � 2)+(�i � 2�2i )P(j1 � ~Yi � j2 � 1) + �2iP(j1 + 1 � Yi � j2)i:For the Poisson model, we use the log-link �i = g(�i) = log(�i) whih leads to���i g�1(�i) = exp(�i). We also haveE� 2� Yi � �iV 1=2(�i)�� = 2�P(Yi � j1) + P(Yi � j2 + 1)�++ 1V (�)h�2P(j1 � 1 � Yi � j2 � 2) + (�� 2�2)P(j1 � Yi � j2 � 1)+ �2P(j1 + 1 � Yi � j2)i:The sore funtion equals ���i logh(yijxi; �i) = Yi��i�i = Yi��iV (�i) , so thatE� (ri) ���i log h(yijxi; �i)� = E� � Yi � �iV 1=2(�i)�Yi � �iV (�i) � == �P(Yi = j1) + P(Yi = j2)�++ 1V 3=2(�i)�2i �P(Yi = j1 � 1)� P(Yi = j1)� P(Yi = j2 � 1) + P(Yi = j2)�++ �iP(j1 � Yi � j2 � 1):C Conditions for Robust Quasi-deviane Tests[C1℄: Denote by Dn the set of all sample points zi, i = 1; : : : ; n for whih the seond-order derivatives �2QM (zi;�)=��j��k, i = 1; : : : ; n; j; k = 1; : : : ; p exist andare ontinuous funtions of �. It is assumed that limn!1 P�(Dn) = 1.21



[C2℄: For any z 2 Dn, any positive value Æ, and any �1 denote by �jk(z;�1; Æ) theleast upper bound and by jk(z;�1; Æ) the greatest lower bound of �2QM(z;�)=��j��k,with respet to � in the � interval jj�1 � �jj � Æ.Moreover, assume that for any sequene fÆng for whih limn!1 Æn = 0,limn!1E���jk(z;�; Æn)� = limn!1E��jk(z;�; Æn)� = E���2QM(z;�)=��j��k�;and that there exists a positive � suh that the expetations E���2jk(z;�; Æ)�and E��2jk(z;�; Æ)� are bounded funtions of � and Æ for all � and Æ < �.These onditions are obtained by replaing log f(z;�) by QM (z;�) in the orre-sponding lassial results for the likelihood ratio test; f. Rao (1973), Wald (1943).D Proof of Proposition 1First, we derive the asymptoti equivalent quadrati form of �QM . The proof followsthe same lines as in the lassial theory.The �rst step of the proof onsists in approximating �QM under onditions [C1℄-[C2℄ by pn(�̂ � _�)TM( ; F )pn(�̂ � _�); (14)via a Taylor expansion and by making use of Slutsky's theorem. Then, under H0 andby the asymptoti properties of M-estimators whih hold under onditions (A.1)-(A.9) of Heritier and Ronhetti (1994), the following distribution equality holdsasymptotially pn(�̂ � _�) D� pn�M�1( ; F )� ~M+( ; F )�Ln; (15)22



where Ln = 1nPni=1 (yi; �i) is suh that pnLn � N �0; Q( ; F )�. Putting (15)in (14), and taking into aount the symmetry of M( ; F ), we �nally have, asn!1, �QM D� nLTnC( ; F )Ln: (16)(16) an be rewritten as �QM D� nRTn(2)M( ; F )22:1Rn(2);where M( ; F )22:1 = M( ; F )22 �M( ; F )12M( ; F )�111M( ; F )12, and pnRn isdistributed aording to N �0;M�1( ; F )Q( ; F )M�1( ; F )�.Finally, from (16) we onlude that�QM � qXi=1 diN2i ;where di are the q positive eigenvalues of Q( ; F )C( ; F ) and N1; : : : ; Nq are in-dependent standard normal variables. Thus, the distribution of �QM is a linearombination of �2 random variables with 1 degree of freedom.E Proof of Proposition 2By using (11) and by standard results on the distribution of quadrati forms in nor-mal variables, we an say that the statisti nUTnAUn is asymptotially distributedas Pqi=1 di�21(�2i ), with �(�) = (�1(�); : : : ; �q(�))T = pnPU(F�;n). Notie that thedistribution depends only on the �2i (�) (see Johnson and Kotz (1970), Chapter 29).Moreover, up to O(1=n), we have that �(F�;n) = 1 �Hd1;:::;dq(�1��0 ;�(�)), with�(�) = diag(�(�)�(�)T ) = n diag �PU(F�;n)U(F�;n)TP T�.23
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Figure 1: Sensitivity urves of the p-value for Mallows quasi-likelihood tests with = 1:6 (solid line) and  =1 (dashed line).
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Max. likelihood Huber quasi-likelihoodInterept 1.480 (0.66) 1.939 (0.70)logdose -1.817 (0.34) -2.049 (0.37)blok2 0.843 (0.23) 0.685 (0.24)blok1 0.542 (0.23) 0.450 (0.24)Table 1: Estimation of � by maximum likelihood and by the Huber quasi-likelihoodestimator with  = 1:2. Standard errors are indiated within parentheses.
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Resid. Deviane Resid. Huber quasi-devianeNULL 83.34 60.46logdose 54.73 (0.000) 39.94 (0.000)blok2 45.59 (0.003) 35.21 (0.017)blok1 39.98 (0.018) 32.74 (0.085)Table 2: Residual deviane and residual Huber quasi-deviane with  = 1:2. p-valuesare indiated within parentheses.
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Variable CoeÆient Standard ErrorInterept -0.8978 (-0.947) 0.2682 (0.265)shrubs 0.0099 (0.012) 0.0222 (0.022)stumps -0.2514 (-0.272) 0.2876 (0.286)stags 0.0402 (0.040) 0.0113 (0.011)bark 0.0400 (0.040) 0.0145 (0.014)aaia 0.0178 (0.018) 0.0107 (0.011)habitat 0.0714 (0.072) 0.0385 (0.038)eualyptus nitens 0 (0) - (-)eualyptus regnans -0.020 (-0.015) 0.1938 (0.192)eualyptus delegatensis 0.127 (0.115) 0.2738 (0.272)aspet NW-NE 0 (0) - (-)aspet NW-SE 0.0601 (0.067) 0.1913 (0.190)aspet SE-SW 0.0949 (0.117) 0.1920 (0.190)aspet SW-NW -0.5079 (-0.489) 0.2505 (0.247)Table 3: CoeÆients estimation and orresponding standard errors for the Poissonmodel with log-link of the possum dataset.
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Classial QL Robust QLshrubs 0.0871 0.3642stumps 0.0646 0.2988stags 0.0000 0.0000bark 0.0035 0.0039aaia 0.0002 0.0009habitat 0.0500 0.0443eualyptus regnans 0.8754 0.8030eualyptus delegatensis 0.8591 0.8074eualyptus nitens 0.5681 0.6461aspet NW-NE 0.8336 0.9100aspet NW-SE 0.2612 0.3462aspet SE-SW 0.1996 0.1646aspet SW-NW 0.0012 0.0023Table 4: p-values of a forward stepwise proedure for the Poisson model with log-linkof the possum dataset.
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Variable CoeÆient Standard ErrorInterept -0.7981 (-0.8213) 0.2030 (0.2000)stags 0.0406 (0.0410) 0.0104 (0.0103)bark 0.0410 (0.0406) 0.0126 (0.0125)habitat 0.0143 (0.0136) 0.0098 (0.0097)aaia 0.0776 (0.0782) 0.0371 (0.0367)aspet SW-NW -0.6044 (-0.5968) 0.2121 (0.2086)Table 5: CoeÆients estimation and orresponding standard errors for the �nalPoisson model with log-link of the possum dataset.
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