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We consider a class of semiparametric regression models which are
one-parameter extensions of the Cox [J. Roy. Statist. Soc. Ser. B 34 (1972)
187–220] model for right-censored univariate failure times. These models
assume that the hazard given the covariates and a random frailty unique to
each individual has the proportional hazards form multiplied by the frailty.
The frailty is assumed to have mean 1 within a known one-parameter
family of distributions. Inference is based on a nonparametric likelihood.
The behavior of the likelihood maximizer is studied under general conditions
where the fitted model may be misspecified. The joint estimator of the
regression and frailty parameters aswell as the baseline hazard is shown to
be uniformly consistent for the pseudo-value maximizing the asymptotic limit
of the likelihood. Appropriately standardized, the estimator converges weakly
to a Gaussian process. When the model is correctly specified, the procedure
is semiparametric efficient, achieving the semiparametric information bound
for all parameter components. It is also proved that the bootstrap gives valid
inferences for all parameters, even under misspecification. We demonstrate
analytically the importance of the robust inference in several examples. In
a randomized clinical trial, a valid test of the treatment effect is possible when
other prognostic factors and the frailty distribution are both misspecified.
Under certain conditions on the covariates, the ratios of the regression
parameters are still identifiable. The practical utility of the procedure is
illustrated on a non-Hodgkin’s lymphoma dataset.

1. Introduction. An objective of many medical studies is a predictive model
for survival. The Cox (1972) model is popular for such analyses, because of
its theoretical properties and availability in software packages. Unfortunately, in
many practical settings the phenomenon under study is quite complicated and
the assumed model is at best a working approximation to the truth. Consider
the Non-Hodgkin’s Lymphoma Prognostic Factors Project (1993) which analyzed
data from a collection of cancer clinical trials. A system was developed to
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classify patients according to baseline characteristics. The scheme employs a
proportional hazards model with five influential covariates. The ordinal and
continuous predictors are dichotomized for clinical interpretation. There are also
important risk factors which are omitted, such as treatment center. Diagnostics
show that the model fits poorly [Gray (2000)]. Furthermore, the survival estimates
are quite biased by the misspecification.

There are several alternatives to the Cox model which might improve the
fit. These include additive hazards regression models [Aalen (1978, 1980) and
Lin and Ying (1994)], accelerated failure time models [Tsiatis (1990) and Wei,
Ying and Lin (1990)] and time-varying coefficient models [Sargent (1997)].
Additional models have been developed for covariate-dependentheteroscedasticity
and other departures from proportionality [Bagdonavičius and Nikulin (1999) and
Hsieh (2001)].

Frailty models are a comparatively parsimonious representation which general-
ize the Cox model in a natural way. The misspecified and omitted covariates are
described by an unobservable random variable log(W) unique to the linear predic-
tor of each patient. LetT be the failure time andZ = {Z(t), t ≥ 0} a d × 1 vector
process of possibly time-dependent covariates. Denoteλ{t; Z̃(t),W } as the haz-
ard function ofT conditionally onZ̃(t) = {Z(s), s ≤ t} andW . Theproportional
hazards frailty regression model is

λ{t; Z̃(t),W } = a(t)exp{log(W) + β ′Z(t)},(1.1)

where β is a d × 1 regression parameter,a(t) is an unspecified base hazard
function and prime (′) denotes transpose. Takingf (w;γ ) to be the Lebesgue
density of a continuous frailtyW , where γ is an unknown scalar, yields a
rich class of semiparametric models. This class excludes models with positive
probability of W = 0. Examples in the class include the inverse Gaussian frailty
[Hougaard (1984)], the positive stablefrailty [Hougaard (1986)], the log-normal
frailty [McGilchrist and Aisbett (1991)], the power variance frailty [Aalen (1988)],
the uniform frailty [Lee and Klein (1988)] and the threshold frailty [Lindley
and Singpurwalla (1986)]. While the one-parameter extension (1.1) of the Cox
model is unlikely to address all misspecification, it is a point of departure. The
objective of this paper is to provide a rigorous foundation for inference within this
class of models, adopting the point of view that any model is at best a working
approximation to the truth.

It is popular to letW have a gamma distribution with mean 1 and varianceγ .
With time-independent covariates, the model is equivalent to the odds-rate
regression [Dabrowska and Doksum (1988)],

h(T ) = −βT Z + εγ ,(1.2)

whereh(t) is an unspecified strictly monotone increasing function, and exp(εγ )

has a Pareto(γ ) distribution. Fixingγ = 0 gives proportional hazards, whileγ = 1
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gives proportional odds [Bennett (1983)]. Iff (w;γ ) has zero variance, then (1.1)
reduces to the Cox model and efficient estimation ofβ is straightforward with the
partial likelihood [Andersen and Gill (1982)]. Estimation for the special case (1.2)
with γ known has been studied extensively [Pettitt (1982, 1984), Cheng, Wei and
Ying (1995, 1997), Murphy, Rossini and van der Vaart (1997), Fine, Ying and
Wei (1998), Scharfstein, Tsiatis and Gilbert (1998), Shen (1998) and Slud and
Vonta (2004)]. When the parameter in the frailty distribution is unknown, these
methods are not applicable. Asymptotic theory for maximum likelihood estimation
of model (1.1) with clusters of size greater than or equal to 2 and shared gammaW

having unknownγ was derived by Parner (1998). See Nielsen, Gill, Andersen and
Sørensen (1992) and Murphy (1994, 1995) for related work. A unified theory for
estimation in model (1.1) with uncorrelated data and general frailty distribution is
not available.

In this paper the focus is on independent observations. The data setup and frailty
model assumptions are given in Section 2. Bagdonavičius and Nikulin (1999)
suggested ad hoc estimators for the parameters, but their large-sample properties
were not established rigorously. The large-sample results in Parner (1998) can be
adapted to the univariate gamma frailty setting with a correctly specified model,
but do not apply to other frailty models and cannot be used to address model
misspecification.

In Section 3, a likelihood-based procedure for model (1.1) is formally proposed,
and the existence of likelihood maximizers and of both score and information
operators is examined without requiring the model to be correctly specified.
Section 4 establishes uniform consistency and weak convergence of the parameter
estimators under mild identifiability conditions which ensure the uniqueness of the
implied parameter corresponding to the maximizer of the asymptotic limit of the
likelihood with respect to the true model. We also study properties of the estimators
in settings where the model is not identifiable, as occurs whenβ = 0 and the
frailty variance and baseline hazard areconfounded. To our knowledge, this is
the first attempt at asymptotic theory for misspecified nonparametric maximum
likelihood estimation (NPMLE) for semiparametric survival regression models.
White’s (1982) work on robust parametric likelihood estimation is not directly
applicable due to the presence of nonparametric components in (1.1). The closest
related work is on asymptotic theory for the misspecified Cox model based on
partial likelihood [Struthers and Kalbfleisch (1986), Lin and Wei (1989) and
Sasieni (1993)]. However, these results do not apply to estimation based on full
nonparametric likelihood.

Because the parametric and nonparametric components in (1.1) are estimated
simultaneously, inference is complicated. Parner (1998) showed that the variance
of the NPMLE for the gamma frailty model with cluster sizes greater than
or equal to 2 can be consistently estimated by inverting a discrete observed
information matrix. However, computing the required second derivatives can be
difficult when the likelihood does not have a closed form, for example, with
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log-normal frailties. Furthermore, the limiting covariance function is extremely
complicated and does not permit the construction of analytic confidence bands
for functionals of the baseline hazard such as covariate-specific survival functions.
The procedure we employ is to maximize the profile likelihood using a simple
fixed-point algorithm for the baseline hazard motivated by the EM algorithm.
We show that bootstrapping this procedure provides valid inference, including
variance estimation and the construction of confidence bands for survival functions
under model misspecification. The estimated survival probabilities may not be
unbiased in large samples. However, it may be useful to interpret these quantities as
minimizing the Kullback–Leibler discrepancy between the survival curves under
the fitted and true models, conditionally on covariates.

In Section 5, the identifiability conditions given in Section 4 are shown to be
satisfied when the model is correctly specified. We further verify that the estimators
achieve the semiparametric variance bound [Sasieni (1992) and Bickel, Klaassen,
Ritov and Wellner (1993), hereafter abbreviated BKRW] and are fully efficient
for all model parameters. Section 6 evaluates the conditions of Section 4 under
misspecification. In this case the estimators are still uniformly consistent and
converge weakly, but inference must be based on an infinite-dimensional analogue
to White’s (1982) robust variance formula. Our contributions beyond Parner’s
(1998) work on the shared gamma frailty model are threefold. First, we study
univariate data. Second, we allow general frailty distributions. Third, we permit
misspecification.

The robust inferences are practically useful under some well-known misspec-
ification mechanisms. To begin, we establish that when the true model has the
form (1.1) but the choice of the distribution ofW is incorrect, the parameter esti-
mate for a single covariate which is independent of one or more other misspecified
covariates may be consistent up to sign. Note that all the covariates may be par-
tially misspecified under mild restrictions. The setting applies in particular when
assessing treatment effect in a randomized trial. Next we show that if the covariates
Z are correctly specified and E[b′Z|β ′

0Z] is linear inβ ′
0Z for all linear combina-

tions b′Z, then the parameter estimates are consistent forα2β0, whereβ0 is the
true regression parameter and 0< α2 ∈ R. When the Cox model is used but the
true model has frailty variance greater than 0, the estimated effect will beα1β0,
whereα1 ∈ (0,1) andβ0 is the true effect. The conditional linearity assumption
has been used by Li and Duan (1989) to establish similar robustness results un-
der link function violations for parametric regression and for the Cox model based
on partial likelihood but without censoring. Our results are applicable under in-
dependent censoring and are based on the full likelihood so that joint estimation
of γ andA(t) = ∫ t

0 a(s) ds as well asβ is possible, which may be necessary for
survival predictions.

While the focus of this paper is on independent survival times, many of the
results and methods of proof are potentially applicable to multivariate failure time
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data. Furthermore, the fact that a proportional hazards model can be changed to
a nonproportional hazards model by simply adding a frailty underscores the need
to be careful when interpreting marginal inferences based on multivariate shared
frailty models involving covariates. Nonproportional marginal hazards may not
imply correlation of the failure times [Hougaard (2000)]. Extending the univariate
results of this paper to the multivariate setting is an important topic for future
research.

Several computational issues are discussed in Section 7, and the utility of the
methods is illustrated on the lymphoma data in Section 8. All proofs are given
in Section 9.

2. The data setup and frailty models.

2.1. Data assumptions. The data{Xi = (Vi, δi,Zi), i = 1, . . . , n} consist ofn
i.i.d. realizations ofX = (V, δ,Z), whereV = T ∧ C, δ = 1{T ≤ C}, x ∧ y

denotes the minimum ofx andy, 1{B} is the indicator ofB andC is the right
censoring time. The analysis is restricted to an interval[0, τ ], where τ < ∞.
The covariateZ ≡ {Z(t), t ∈ [0, τ ]} is assumed to be a caglad (left-continuous
with right-hand limits) process withZ(t) ∈ R

d , t ∈ [0, τ ]. We make the following
additional assumptions:

(A1) P[C = 0] = 0, P[C ≥ τ |Z] = P[C = τ |Z] > 0 almost surely, and censoring
is independent ofT givenZ.

(A1′) Condition (A1) is strengthened to require thatC andZ are independent.
(A2) The true density ofT givenZ, f0(t|Z), exists and is bounded overt ∈ [0, τ ]

almost surely, and P[T > τ |Z] > 0 almost surely.
(A3) The total variation ofZ(·) on [0, τ ] is ≤ m0 < ∞ almost surely, and

var[Z(0+)] is positive definite, where for a real functionF with right-hand
limits we defineF(t+) = lims↓t F (s).

(A3′) Condition (A3) is strengthened to require thatZ = (Z1,Z2), whereZ1 ∈ R

is time independent andZ1 andZ2 are stochastically independent.
(A3′′) Condition A3 is strengthened to require thatZ is time independent and that

E[b′Z|c′Z] is linear inc′Z for all b, c ∈ R
d .

Conditions (A1) and (A2) are somewhat standard for right-censored regres-
sion models, while condition (A3) is needed for both asymptotic normality in
Section 4.3 and for parameter identifiability when the model is correctly spec-
ified in Section 5.1. The condition on var[Z(0+)] is similar to Parner’s (1998)
condition 2(g). The more restrictive assumptions (A1′), (A3′) and (A3′′) are only
used in Sections 6.2 and 6.3 for establishing robustness results under misspecifi-
cation. An important example of when condition (A3′) holds is whenZ1 indicates
treatment and treatment assignment has been randomized to ensure thatZ2, corre-
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sponding to other prognostic factors, is independent ofZ1. An important example
of when condition (A3′′) holds is whenZ is multivariate normal.

2.2. Frailty model assumptions. The frailty models we consider in this paper
posit that the hazard function has the form (1.1). After integrating overW , the
corresponding survival function at timet givenZ = z becomes

S(t|z) ≡ P[T > t|Z = z]
= E

[
exp

{
−W

∫ t

0
eβ ′z(s) dA(s)

}∣∣∣Z = z

]
(2.1)

= �γ

{∫ t

0
eβ ′z(s) dA(s)

}
,

where W is continuous and independent ofZ, A(s) ≡ ∫ s
0 a(u) du, �γ (t) ≡∫∞

0 e−wtf (w;γ ) dw is the Laplace transform ofW and γ ∈ R is an unknown
parameter. At this point we are not assuming that the posited model agrees with
the true conditional densityf0. The remainder of this section contains technical
conditions on the frailty models, conditions(B), (C), (D1)–(D3), (E1) and (E2),
which some readers may wish to skip over on the first reading.

We assume that the posited model consists of a family of frailty transforms{�γ }
and a collection of indices{ψ = (γ,β,A)}, which satisfy:

(B) β ∈ B0, whereB0 ⊂ R
d contains 0 and is open, convex and bounded and

whereB denotes closure of a setB.
(C) There exist a constantc0 and a continuous, decreasing functionε0 : [0,∞) 
→

(0,3/4), so that 0< c0 < ε0(0) < 3/4, limt→∞ ε0(t) = 0 and, for each
positivem, t < ∞, there is an extension of�(·)(·) : [0,m) × [0, t] 
→ [0,1]
having domain[−ε0(t),m] × [0, t].

For the parametric componentθ ≡ (γ,β), define the parameter set� ≡
(−c0,m1) × B0 for some positivem1 < ∞. In consequence of conditions
(A3) and (B), let 1≤ K0 < ∞ be the maximum possible value of 1 and botheβ ′Z(t)

ande−β ′Z(t) overβ ∈ B0 andt ∈ [0, τ ]. Also letA be the collection of monotone
increasing functionsA : [0, τ ] 
→ [0,∞), with A(τ) < ∞, and defineA0 to be
the subset ofA consisting of absolutely continuous functions with derivative
satisfying 0≤ a(t) < ∞ for all t ∈ [0, τ ]. For γ ∈ [−c0,m1], defineA(γ ) so that
A(γ ) = A whenγ ≥ 0, andA(γ ) = {A ∈ A :A(τ) ≤ ε−1

0 (γ )/K0} whenγ < 0.
Also defineA◦

(γ ) = A when γ ≥ 0 andA◦
(γ ) = {A ∈ A :A(τ) < ε−1

0 (γ )/K0}
when γ < 0. We can now define the index sets� ≡ {ψ : (γ,β) ∈ �,A ∈
A(γ )} = {ψ :A ∈ A, β ∈ B0, γ ∈ [−ε(K0A(τ)),m1]} and�0 ≡ {ψ : (γ,β) ∈ �,
A ∈ A0 ∩ A◦

(γ )}.
We need the following additional conditions on�γ , where we definė�γ ≡

∂�γ (t)/(∂t), �̈γ ≡ ∂�̇γ (t)/(∂t), Gγ ≡ − log�γ , Ġγ ≡ ∂Gγ (t)/(∂t), G̈γ ≡
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∂Ġγ (t)/(∂t),
...
Gγ ≡ ∂G̈γ (t)/(∂t), G

(1)
γ ≡ ∂Gγ /(∂γ ), Ġ

(1)
γ ≡ ∂G

(1)
γ (t)/(∂t) and

G̈
(1)
γ ≡ ∂Ġ

(1)
γ (t)/(∂t):

(D1) For each positivet < ∞, we have the following for allγ ∈ [−ε0(t),m1]
and u ∈ [0, t]: �γ (0+) = 1, �γ (u) > 0, 0 < −�̇γ (u) < ∞ and 0≤
�̈γ (u) < ∞; ∂

...
Gγ (u)/(∂u), ∂G̈

(1)
γ (u)/(∂u), ∂G̈

(1)
γ (u)/(∂γ ) and∂2Ġ

(1)
γ (u)/

(∂γ )2 exist and are bounded;̇Gγ (0+) = 1, Ġ
(1)
γ (0+) = 0, G̈γ (u) ≤ 0 and

G̈
(1)
γ (0+) < 0.

(D2) There exists ac1 : (0,m1] 
→ (0,∞] such that, for any sequence{γk} ∈
[0,m1] with γk → γ > 0, lim supk→∞ supu≥0 uc1(γ )�γk

(u) < ∞ and
lim supk→∞ supu≥0 |u1+c1(γ )�̇γk

(u)| < ∞.
(D3) There exists ac2 : [0,m1] 
→ (0,∞], with c2(0) = ∞, such that for all

sequencestk → ∞ and {γk} ∈ [−ε0(tk),m1] with γk → γ ≥ 0,
lim inf k→∞ infu∈[0,tk] tkĠγk

(u) ≥ c2(γ ).
(E1) For allγ ∈ [0,m1] and allt ∈ [0,∞), Ġγ (t) + tG̈γ (t) > 0 and

G̈γ (t)

Ġγ (t)
+ t

[ ...
Gγ (t)

Ġγ (t)
−
{

G̈γ (t)

Ġγ (t)

}2
]

≤ 0.

(E2) limγ↓0 E[(W − 1)2]/γ = 1 and limγ↓0 E[|W − 1|3]/γ = 0, whereW is a
random variable with Laplace transform�γ .

Conditions (D1)–(D3) are needed for uniform consistency and weak conver-
gence of the estimators. Condition (D1) is also used for identifiability when the
model is correctly specified. Conditions (E1) and (E2) are needed for identifiabil-
ity under misspecification.

REMARK 1. Condition (C) ensures thatγ0 = 0 is an interior point. Parts
of (D1)–(D3) are conditions on the moments ofW . For (D1) this follows since
Ġγ (0+) = E[W ] and G̈γ (0+) = −var[W ]. Condition (D2) is satisfied if there
exists a continuous functionc1 : (0,m1] 
→ (0,∞) such that E[W−c1(γ )] < ∞ for
all γ ∈ (0,m1].

2.3. Examples of frailty models. The following are instances of frailty
transforms:

1. Thegamma frailty has�γ (t) = (1+ γ t)−1/γ .
2. Theinverse Gaussian frailty [Hougaard (1984)] has�γ (t) = exp{−γ −1[(1 +

2γ t)1/2 − 1]}.
3. Thelog-normal frailty [McGilchrist and Aisbett (1991)] has

�γ (t) =
∫

R

exp
{−teγ 1/2v−γ /2}φ(v) dv.
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4. Thepositive stable frailty [Hougaard (1986)] has�γ (t) = exp{−tγ }.
5. The IGG(α) family of frailty transforms has the form

�γ = exp
{
−1− α

αγ

[(
1+ γ t

1− α

)α

− 1
]}

,

whereα ∈ [0,1) is assumed known. The IGG(0) family is obtained by taking
the limit asα ↓ 0.

REMARK 2. The IGG(α) family includes both the gamma frailty (α = 0) and
the inverse Gaussian frailty (α = 1/2). The IG is for “inverse Gaussian” and the
second G for “gamma.”

REMARK 3. �γ and the functionals of�γ introduced above are defined
atγ = 0 by continuity. In all the above frailties, excepting the positive stable frailty,
�0(t) = limγ→0 �γ (t) = e−t , corresponding to the Cox model.

The following states that most of the stated frailty conditions are valid for a
number of standard frailty families:

PROPOSITION 1. Conditions (C), (D1)–(D3) and (E2) are satisfied by the
gamma, inverse Gaussian, log-normal and IGG(α), for any fixed α ∈ [0,1),
frailty distributions.

REMARK 4. Verification of these conditions for the log-normal is hard
technically since�γ does not have a closed form.

REMARK 5. Condition (E1) is easily verified for the gamma, inverse Gaussian
and IGG(α) frailties, and has been validated numerically for the log-normal
frailty for γ ∈ [0,4.62], corresponding to a frailty variance of 100. We conjecture
that (E1) holds for the log-normal frailty for all 0≤ γ < ∞.

REMARK 6. For the positive stable frailty, conditions (D1), (D3), (E1)
and (E2) are not satisfied but conditions (C) and (D2) are. For example,
Ġγ (0+) = ∞ when γ < 1. Note also for this frailty that, whenZ is time
independent,− logS(t|z) = eγβ ′z + Aγ (t), and the model is thus not identifiable.

3. Nonparametric maximum likelihood estimation.

3.1. The estimator. The nonparametric log-likelihood has the form

Ln(ψ) ≡ Pn

{∫ τ

0

[
logĠγ (Hψ(s)) + β ′Z(s) + loga(s)

]
dN(s)

(3.1)

− Gγ (Hψ(V ))

}
,
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where N(t) ≡ 1{V ≤ t, δ = 1}, Y (t) ≡ 1{V ≥ t}, Hψ(t) ≡ ∫ t
0 eβ ′Z(s) dA(s),

a ≡ dA/dt and Pn is the expectation with respect to the empirical probability
measure. As discussed by Murphy, Rossini and van der Vaart (1997), the maximum
likelihood estimator fora does not exist, because any unrestricted maximizer
of (3.1) puts mass only at observed failure times and is not a continuous hazard.

Instead, we compute the maximizer by profiling overA. This yields esti-
mators forθ ≡ (γ,β) and A, but not a. The profile likelihood ispLn(θ) ≡
supA∈A(γ )

Ln(ψ) = Ln(θ, Âθ ), where Âθ ≡ arg maxA∈A(γ )
Ln(θ,A). Consider

one-dimensional submodels forA, t 
→ At(·) ≡ ∫ (·)
0 {1 + th(s)}dA(s), where

(·) denotes an argument ranging over[0, τ ] andh : [0, τ ] 
→ R is a bounded func-
tion. When theγ component ofθ is nonnegative, the upper limit of elements
of A(γ ) is unconstrained. In this setting one may differentiateLn{(θ,At)} with
respect tot , whereh(s) = 1{s ≤ u} andu ∈ [0, τ ], and solve forA with t = 0,
sinceA = At=0. Hence,Âθ solves

Âθ (u) =
∫ u

0

(
Pn

[
Y (s)eβ ′Z(s)

(
Ġγ

{
Hψ̂θ (V )

}− δ
G̈γ {Hψ̂θ (V )}
Ġγ {Hψ̂θ (V )}

)])−1

× Pn{dN(s)}(3.2)

≡
∫ u

0

{
J ψ̂θ

n (s)
}−1

Pn{dN(s)},

whereψ̂θ ≡ (θ, Âθ ).
Under model misspecification, it is possible that the best fit will occur for

someγ < 0. In this case,f (w;γ ) will usually not be a density, even though
the quantityS(t|z) in (2.1) is a proper survival function providedA(τ) is not
too large. Specifically, allA ∈ A(γ ) must satisfyA(τ) ≤ ε−1

0 (γ )/K0. Under this
constraint, one may differentiateLn{(θ,At)} with respect tot , whereh(s) =
1{v < s ≤ u} − [A(u) − A(v)]/A(τ ) andu, v ∈ [0, τ ], take t = 0, let v ↑ u and
solve forA. This yields

Âθ (u) =
∫ u

0

{
J ψ̂θ

n (s) + ρn(ψ̂θ )
}−1

Pn{dN(s)},(3.3)

where

ρn(ψ) ≡ Pnδ − ∫ τ
0 J

ψ
n (s) dA(s)

A(τ )
.

By considering one-dimensional submodels{As} with h(s) = −1, the fact that the
derivative ofLn(θ,As) at s = 0 is nonpositive implies thatρn(ψ̂θ ) ≥ 0. Thus, for
all θ ∈ �, Âθ has the form given in (3.3), withρn(ψ̂θ ) > 0 only whenγ < 0 and
Âθ (τ ) = ε−1

0 (γ )/K0, andρn(ψ̂θ ) = 0 otherwise.
The same maximizer occurs with�A in place ofa in Ln(ψ), where�A(s) ≡

A(s) − A(s−) and A(s−) ≡ lim t↑s A(t). That is, one maximizesLn(ψ) over
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all A with jumps at the observed failure times. We denote byL̃n(ψ) the log-
likelihood expression with�A in place of a. The nonparametric maximum
likelihood estimator (NPMLE) iŝψn ≡ (θ̂n, Âθ̂n

), whereθ̂n ≡ arg maxθ∈� pLn(θ).
Equivalently,ψ̂n = arg maxψ∈� L̃n(ψ).

We have the following existence result.

PROPOSITION2. Under conditions (A1)–(A3), (B), (C)and (D1)–(D3),and
provided max1≤i≤n δi > 0, then for some 1 < M < ∞ and all θ ∈ � there exist
maximizers Âθ , and all such maximizers satisfy (3.3)and 1/M ≤ Âθ ≤ M .

REMARK 7. Proposition 2 implies the existence of an NPMLÊψn as a
consequence of the compactness of�. However, the proposition says nothing
about uniqueness of the NPMLE.

For a limiting value of the NPMLE to exist, it is necessary (but not suf-
ficient) that theM in Proposition 2 does not go to∞ as n → ∞. How-
ever, a significantly stronger result can be obtained. DefineKM = {A ∈ A :
1/M ≤ A(τ) ≤ M,supt∈[0,τ ] a(t) ≤ M} and, for eachε > 0, define Kε

M =
{A ∈ A : supt∈[0,τ ] |A(t) − Ã(t)| ≤ ε for someÃ ∈ KM }. Note thatKM is com-
pact for each 1< M < ∞. Let P∗ denote inner probability. We have the follow-
ing result.

THEOREM 1. Assume conditions (A1)–(A3), (B), (C) and (D1)–(D3).Then,
for each η > 0, there exist some 1 < M < ∞ such that limε↓0 P∗({Âθ :
θ ∈ �} ∈ Kε

M ∀n large enough) > (1− η).

REMARK 8. Theorem 1 implies that all sequences of NPMLE’s have
convergent subsequences and that the resulting limit points forÂ

θ̂n
have bounded

derivatives almost surely. Consistency will then follow from identifiability of
the model. Moreover, when only some of the parameters are identifiable,
consistency of the identifiable parameters will also follow. The important example
of estimation ofβ when the survival distribution does not depend on covariates is
discussed in Section 4.2.

3.2. Kullback–Leibler information. We now establish properties of the
Kullback–Leibler information. Let pψ(v, e|z) ≡ f e(v|z)S1−e(v|z), where
f (t|z) ≡ −∂S(t|z)/(∂t), S(t|z) = exp{−Gγ (Hψ(t))} as defined in (2.1). For each
θ ∈ �, let Aθ ≡ arg maxA∈A(γ )∩A0 P0 log(pψ) andψθ ≡ (θ,Aθ). We have the fol-
lowing result.

LEMMA 1. Under conditions (A1)–(A3), (B), (C) and (D1)–(D3), and for
some 1 < M < ∞, Aθ ∈ KM for all θ ∈ �.
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REMARK 9. Lemma 1 tells us that, even without any model identifiability,
all possible Kullback–Leibler maximizers lie in a compact set. Questions about
consistency can thus be reduced to questions about identifiability or partial
identifiability as mentioned in Remark 8.

For eachθ ∈ �, let ψθ = (θ,Aθ) and ψ̂θ = (θ, Âθ ). For anyψ1,ψ2 in the
subset of� whereA1 andA2 have jumps only at observed failure times, define
the empirical Kullback–Leibler informationIn(ψ1,ψ2) ≡ L̃n(ψ1) − L̃n(ψ2), and,
for anyψ1,ψ2 in the subset of� for which the derivativesa1 anda2 exist, define
the Kullback–Leibler informationI0(ψ1,ψ2) ≡ P0 log(pψ1/pψ2). The following
theorem establishes, in the profile context, an important asymptotic equivalence
betweenIn andI0.

THEOREM 2. Under conditions (A1)–(A3), (B), (C)and (D1)–(D3),

sup
θ1,θ2∈�

∣∣In

(
ψ̂θ1, ψ̂θ2

)− I0
(
ψθ1,ψθ2

)∣∣→ 0

outer almost surely, as n → ∞.

REMARK 10. While Proposition 2 and Lemma 1 establish the existence
of the profile maximizersÂθ and Aθ , uniqueness is not established. However,
Theorem 2 tells us that all members of the equivalence classÂθ are asymptotically
equivalent to all members of the equivalence classAθ in terms of Kullback–
Leibler information. Thus, model identifiability immediately implies asymptotic
uniqueness.

3.3. Score and information operators. In this section we derive the score and
information operators. These play a key role in the weak convergence results
presented in later sections. For eachψ ∈ � with A having bounded derivative,
define the one-dimensional submodelst 
→ ψt ≡ ψ + t{h1, h2,

∫ (·)
0 h3(s) dA(s)},

where(h1, h2, h3) ∈ Hr for somer < ∞ and whereHr is the space of elements
h = (h1, h2, h3) such thath1 ∈ R, h2 ∈ R

d , h3 is a cadlag (right-continuous with
left-hand limits) function and|h1|+

√
h′

2h2+‖h3‖v ≤ r , with ‖ · ‖v being the total
variation norm. LetH∞ =⋃

0<r<∞ Hr . Sinceψ can be represented as a functional
onHr of the formψ(h) = h1γ + h′

2β + ∫ τ
0 h3(s) dA(s), the parameter space� is

then a subset of�∞(Hr) with norm‖ψ‖(r) ≡ suph∈Hr
|ψ(h)|, where�∞(B) is the

space of bounded functionals onB. Forψ ∈ � andg,h ∈ Hr , define

ψg(h) ≡ g1h1 + g′
2h2 +

∫ τ

0
g3(s)h3(s) dA(s).

Note that H1 is rich enough to extract all components ofψ since H1 in-
cludes{h :h1 = 1, h2 = h3 = 0} ∪ {h :h2 = 1, h1 = h3 = 0} ∪ {h :h1 = h2 = 0,
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h3(s) = 1{s ≤ t}, t ∈ [0, τ ]}. Let

Uτ
n (ψ)(h) ≡ ∂

∂t
Ln(ψt )

∣∣∣∣
t=0

= Pn

{[
δ
Ġ

(1)
γ (Hψ(V ∧ τ ))

Ġγ (Hψ(V ∧ τ ))
− G(1)

γ

(
Hψ(V ∧ τ )

)]
h1

+
∫ τ

0
[Z′(s)h2 + h3(s)]dN(s)

(3.4)

+
[
δ
G̈γ (Hψ(V ∧ τ ))

Ġγ (Hψ(V ∧ τ ))
− Ġγ

(
Hψ(V ∧ τ )

)]

×
∫ τ

0
Y (s)eβ ′Z(s)[Z′(s)h2 + h3(s)]dA(s)

}

≡ PnU
τ (ψ)(h).

This score operator can easily be extended so that the bounded derivative
restriction onA is unnecessary. The operator has expectationUτ

0 (ψ) ≡ P0U
τ(ψ).

The dependence onτ will be needed later.
The Gâteaux derivative ofUτ

0 (ψ)(h) at ψ1 ∈ � exists and is obtained by
differentiating the score operator for the submodelst 
→ ψ1 + tψ . This deri-
vative is

−U̇ψ1(ψ)(h) ≡ − ∂

∂t
Uτ

0 (ψ1 + tψ)(h)

∣∣∣∣
t=0

= ψ
(
σψ1(h)

)
,

where the operatorσψ :H∞ 
→ H∞ is

σψ(h) =



σ 11
ψ σ 12

ψ σ 13
ψ

σ 21
ψ σ 22

ψ σ 23
ψ

σ 31
ψ σ 32

ψ σ 33
ψ




h1

h2
h3




≡ P0




σ̂ 11
ψ σ̂ 12

ψ σ̂ 13
ψ

σ̂ 21
ψ σ̂ 22

ψ σ̂ 23
ψ

σ̂ 31
ψ σ̂ 32

ψ σ̂ 33
ψ




h1

h2
h3




= P0σ̂ψ(h).

(3.5)

The operatorsσ jk
ψ = P0σ̂

jk
ψ , for 1≤ j, k ≤ 3, are well defined and bounded, where

σ̂ 11
ψ (h1) = ξ̂

(1)
ψ h1,

σ̂ 21
ψ (h1) = ξ̂

(2)
ψ

∫ τ

0
Z(s)Y (s)eβ ′Z(s) dA(s)h1,
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σ̂ 31
ψ (h1)(t) = ξ̂

(2)
ψ Y (t)eβ ′Z(t)h1,

σ̂ 12
ψ (h2) = ξ̂

(2)
ψ

∫ τ

0
Z′(s)h2Y (s)eβ ′Z(s) dA(s),

σ̂ 13
ψ (h3) = ξ̂

(2)
ψ

∫ τ

0
h3(s)Y (s)eβ ′Z(s) dA(s),

σ̂ 22
ψ (h2) = ξ̂

(0)
ψ

∫ τ

0
Z(s)Z′(s)h2Y (s)eβ ′Z(s) dA(s)

+ ξ̂
(3)
ψ

∫ τ

0
Z(s)Y (s)eβ ′Z(s) dA(s)

∫ τ

0
Z′(s)h2Y (s)eβ ′Z(s) dA(s),

σ̂ 23
ψ (h3) = ξ̂

(0)
ψ

∫ τ

0
Z(s)h3(s)Y (s)eβ ′Z(s) dA(s)

+ ξ̂
(3)
ψ

∫ τ

0
Z(s)Y (s)eβ ′Z(s) dA(s)

∫ τ

0
h3(s)Y (s)eβ ′Z(s) dA(s),

σ̂ 32
ψ (h2)(t) = ξ̂

(0)
ψ Z′(t)h2Y (t)eβ ′Z(t)

+ ξ̂
(3)
ψ Y (t)eβ ′Z(t)

∫ τ

0
Z′(s)h2Y (s)eβ ′Z(s) dA(s),

σ̂ 33
ψ (h3)(t) = ξ̂

(0)
ψ h3(t)Y (t)eβ ′Z(t)

+ ξ̂
(3)
ψ Y (t)eβ ′Z(t)

∫ τ

0
h3(s)Y (s)eβ ′Z(s) dA(s)

and where

ξ̂
(0)
ψ = Ġγ

(
Hψ(V ∧ τ )

)− δ
G̈γ (Hψ(V ∧ τ ))

Ġγ (Hψ(V ∧ τ ))
,

ξ̂
(1)
ψ = G(2)

γ

(
Hψ(V ∧ τ )

)

− δ

[
Ġ

(2)
γ (Hψ(V ∧ τ ))

Ġγ (Hψ(V ∧ τ ))
−
{

Ġ
(1)
γ (Hψ(V ∧ τ ))

Ġγ (Hψ(V ∧ τ ))

}2
]
,

ξ̂
(2)
ψ = Ġ(1)

γ

(
Hψ(V ∧ τ )

)

− δ

[
G̈

(1)
γ (Hψ(V ∧ τ ))

Ġγ (Hψ(V ∧ τ ))
− Ġ

(1)
γ (Hψ(V ∧ τ ))G̈γ (Hψ(V ∧ τ ))

{Ġγ (Hψ(V ∧ τ ))}2

]

and

ξ̂
(3)
ψ = G̈γ

(
Hψ(V ∧ τ )

)− δ

[ ...
Gγ (Hψ(V ∧ τ ))

Ġγ (Hψ(V ∧ τ ))
−
{

G̈γ (Hψ(V ∧ τ ))

Ġγ (Hψ(V ∧ τ ))

}2
]
,

where we also definėG(2)
γ ≡ ∂Ġ

(1)
γ (t)/(∂γ ).
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To use theZ-estimator master theorem to obtain weak convergence in
Section 4.3, the Gâteaux differentiability ofUτ

0 needs to be strengthened to Fréchet
differentiability. Accordingly, we have the following result.

LEMMA 2. Under conditions (A1)–(A3), (B), (C) and (D1)–(D3), and for
any ψ1 ∈ �, the operator ψ 
→ Uτ

0 (ψ) is Fréchet differentiable at ψ1, with
derivative ψ(σψ1(h)).

4. General results.

4.1. Additional assumptions. Let S0(t|z) = ∫∞
t f0(s|z) ds, wheref0 is as de-

fined in condition (A2). Denotep0(v, e|z) = f e
0 (v|z)S(1−e)

0 (v|z) and letν(v, e, z)

be the implicitly defined measure for(V, δ,Z) such that the true expectation
of g(X), denotedP0g, can be written as

∫
X gp0 dν, whereX is the sample space

for X andg is measurable. Recall that the operatorσψ was defined in (3.5) for
all ψ ∈ �. We make the following assumptions about the relationship between the
posited frailty model and the true distribution:

(F) P0 log(pψ/p0) has a unique maximum overψ ∈ �0 at ψ∗ = (γ∗, β∗,
A∗) ∈ �0.

(G) σψ∗ :H∞ 
→ H∞ is one-to-one.

REMARK 11. Assumption (F) is analogous to assumption A3(b) of White
(1982) and is required for consistency, while condition (G) is analogous to
assumption A6(b) of White (1982) and is required for asymptotic normality. The
lack of convexity of the Kullback–Leibler information in the posited frailty models
generally prevents assumptions (F) and (G) from being direct consequences of the
other conditions, except when the frailty model is correctly specified (Section 5)
or when the true model is not too far from a member of the posited frailty model
(Section 6.1).

REMARK 12. With a misspecified frailty model, the existence of the implicitly
definedψ∗ does not guarantee its meaningfulness. In general,pψ∗ �= p0 and
ψ∗ = ψ0 only when pψ0 = p0. We show in Sections 6.2 and 6.3 that when
pψ is misspecified but assumption (F) holds, some of the components ofψ∗ may
sometimes be useful for inference aboutp0.

4.2. Consistency. The theorem we now present establishes the consistency
of ψ̂n under the identifiability assumed in (F).

THEOREM 3. Under the conditions of Proposition 2 and condition (F),
ψ̂n converges outer almost surely to ψ∗ in the uniform norm.
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The following gives us the consistency of̂βn under an important partial
identifiability setting not requiring condition (F).

PROPOSITION 3. Assume the conditions of Proposition 2 and that f0(t|Z =
z1) = f0(t|Z = z2) for all t ∈ [0, τ ] and all possible values z1 and z2 of the
covariate process. Then β̂n converges outer almost surely to 0.

REMARK 13. An innovation in the proofs of Theorem 3 and Proposition 3
is that the existence and asymptotic boundedness ofÂn is established even when
the model is misspecified or when condition (F) may not hold. This was shown
in Proposition 2 and Theorem 1, where it wasdemonstrated that the asymptotic
boundedness and equicontinuity ofÂn depends only on the structure of the data,
the posited model and the general condition (A2), but does not depend on any other
aspects of the underlying true distribution.

4.3. Asymptotic normality. We use Hoffmann–Jørgensen weak convergence
as described in van der Vaart and Wellner (1996) (hereafter abbreviated VW).
We have the following result.

THEOREM 4. Under the conditions of Theorem 3 and condition (G),√
n(ψ̂n − ψ∗) is asymptotically linear, with influence function �̃(h) = Uτ (ψ∗) ×

(σ−1
ψ∗ (h)), h ∈ H1, converging weakly in the uniform norm to a tight, mean-zero

Gaussian process Z∗ with covariance V∗(g,h) = E[�̃(g)�̃(h)], g, h ∈ H1.

REMARK 14. In the proof in Section 9, the problem of establishing weak
convergence can be cleanly divided into establishing properties of the data and
fitted model (1.1), based on conditions (A1)–(A3), (B), (C) and (D1)–(D3), and
establishing properties of the Kullback–Leibler discrepancyP0 log(pψ/p0), based
on conditions (F) and (G), which involves the true distribution of the censoring
and covariates.

4.4. The bootstrap. The usual nonparametric bootstrap resamples with
replacement from the observed data. A disadvantage is that ties can arise with cen-
sored survival data. We propose an alternative weighted bootstrap. In each boot-
strap sample one generatesn independent and identically distributed nonnegative
weightsζ1, . . . , ζn, with mean and variance 1 and with

∫∞
0

√
P[ζ1 > x]dx < ∞.

Each weight is divided by the average weight (rejecting samples with all 0’s) to ob-
tain “standardized weights”ζ ◦

1 , . . . , ζ ◦
n which sum ton. Distributions satisfying the

moment conditions include the unit exponential and the Poisson with mean 1. For
the nonparametric bootstrap the weightsζ ·

1, . . . , ζ
·
n are generated from a multino-

mial distribution with Eζ ·
i = 1, i = 1, . . . , n, and

∑n
i=1 ζ ·

i = n.
For a known functionf , let P

◦
nf (V, δ,Z;ψ) ≡ n−1∑n

i=1 ζ ◦
i f (Vi, δi,Zi;ψ)

define the weighted empirical measureP
◦
n. The weighted bootstrap estimateψ̂◦

n
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is computed by substitutingP◦
n for Pn in the expressions in Section 2.2 and

maximizing overψ . Note thatP·
n is defined similarly toP

◦
n with the weights

ζ ·
1, . . . , ζ

·
n in place of ζ ◦

1 , . . . , ζ ◦
n . The nonparametric bootstrap estimateψ̂ ·

n is
computed by usingP·

n in place ofPn in Section 2.2.
The following result establishes the validity of both the nonparametric and the

weighted bootstraps.

COROLLARY 1. Under the assumptions of Theorem 4, the conditional boot-
strap of ψ̂n, based either on ψ̂ ·

n or ψ̂◦
n , is asymptotically consistent for the

limiting process Z∗. That is,
√

n(ψ̂ ·
n − ψ̂n) and

√
n(ψ̂◦

n − ψ̂n) are asymptoti-
cally measurable,

(i) supg∈BL1
|E·g(

√
n(ψ̂ ·

n − ψ̂n)) − Eg(Z∗)| → 0 in outer probability, and

(ii) supg∈BL1
|E◦g(

√
n(ψ̂◦

n − ψ̂n)) − Eg(Z∗)| → 0 in outer probability,

where BL1 is the space of functions mapping R
d+1 × �∞([0, τ ]) 
→ R with

Lipschitz norm ≤ 1, and conditional on the data E· and E◦ are expectations over
the multinomial and standardized weights, respectively.

REMARK 15. While the choice of{ζi} in the weighted bootstrap has no
effect asymptotically, the rate of convergence may be affected. Newton and
Raftery (1994) discuss different choices in the context of parametric maximum
likelihood. They demonstrate that unit exponential weights, which are Dirichlet
after standardizing, perform well. Our own experience is that exponential weights
also work well for semiparametric inference. A detailed analysis of the distribution
of the weights is beyond the scope of this paper.

REMARK 16. An advantage of usingZ-estimator theory for establishing
weak convergence of estimators for likelihood inference under possible model
misspecification is that consistency of the bootstrap is essentially an immediate
consequence of the influence function beingP0-Donsker.

5. Results under correctly specified model. The focus of this section is
on the behavior ofψ̂n when the frailty regression model is correctly specified.
Accordingly, ψ∗ = ψ0 throughout this section. In Section 5.1 we establish that
the identifiability condition [condition (F)] holds. In Section 5.2 the injectiveness
of σψ0 [condition (G)] is established and shown to imply thatψ̂n is both regular
and efficient. In addition to assuming that�γ is correctly specified, we make the
following assumption:

(H) γ0 ∈ [0,m1), 0 �= β0 ∈ B0 andA0 ∈ A0 with a0 > 0.

REMARK 17. Condition (H) is also assumed by Parner (1998). Whenβ0 = 0,
the survival functionS0(t) does not depend on covariates, and we have the situation
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considered in Proposition 3. Moreover, we have that for anyγ ≥ 0, there exists
an Aγ ∈ A0 so thatS0(t) = �γ (Aγ (t)). Thus, γ and A are not identifiable
whenβ0 = 0.

5.1. Identifiability. Nonparametric identifiability of the mixed proportional
hazards model, under the assumption thatβ ′

0Z takes on at least two distinct
values, has been established for right-, left- and double-censored data with finite-
mean frailties by Kortram, van Rooij,Lenstra and Ridder (1995). For earlier
related work, see also Heckman and Taber (1994), Elbers and Ridder (1982) and
Heckman and Singer (1984). In our case,�γ is parametric rather than completely
unspecified and may not have the interpretation of being the Laplace transform
of a frailty when γ < 0. The following proposition establishes uniqueness of
the model.

PROPOSITION4. Under conditions (A1)–(A3), (B), (C), (D1)–(D3)and (H),
model (2.1) is identifiable over �0, and thus condition (F) is satisfied.

REMARK 18. The monotonicity in γ of G̈γ (0+), where G̈γ (t) ≡
− ∂2 log�γ (t)/(∂t)2, as given in condition (D1), is the key to establishing identi-
fiability of the extended Laplace transform. Since−G̈γ (0+) is the variance ofW
whenγ ≥ 0, this is the same as requiring that var[W ] be a monotone function
of γ . The positive stable frailty model violates this condition and is not identifi-
able without clustered data as noted in Remark 6 above. Because ofProposition 1,
the gamma, inverse Gaussian, log-normal and IGG(α) frailties are identifiable.

5.2. Efficiency. The main result of this section is as follows.

THEOREM 5. The information operator σψ0 is one-to-one. Thus, σψ0 is
continuously invertible, condition (G) is satisfied and ψ̂n is a regular and efficient
estimator of ψ0 when γ0 ≥ 0 and censoring is uninformative of ψ . The limiting
covariance for

√
n(ψ̂n − ψ0) is ψ

g
0 (σ−1

ψ0
(h)), g,h ∈ H1.

REMARK 19. For the shared gamma frailty regression model, Parner (1998)
suggests inference based on estimating the covariance. This is done through first
estimatingσψ0 by plugging inψ̂n for ψ0 and then inverting, considering only the
parametersγ , β and�A at observed failure times. Because this approach may
be difficult to implement with generalf (w;γ ) and does not readily enable the
construction of confidence bands, the bootstrap is recommended for inference.
By Corollary 1, Theorem 5 implies that the bootstrap will yield valid inferences.

REMARK 20. The proof of Theorem 5 draws heavily on the tangent setHr ,
as defined in the proof of Theorem 4. The issue is showing that, forh ∈ Hr ,
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σψ0(h) = 0 impliesh = 0. This gives thatσψ0 is continuously invertible and onto,
and thus the influence function is contained in the closed linear span of the score
operator, yielding the given covariance. Regularity and efficiency then follow from
Theorems 5.2.3 and 5.2.1 of BKRW.

REMARK 21. An alternative estimator tôψn is to take

ψ̃n =
{

ψ̂n, if γ̂n > 0,

(0, β̃n, Ãn), otherwise,

whereβ̃n, Ãn are the estimates based on the Cox model. It is not difficult to show
that, whenγ0 > 0, ψ̃n has the same limiting behavior aŝψn, but whenγ0 = 0,
the limiting distribution of

√
n(ψ̃n − ψ0) is a mixture of the limiting distribution

of
√

n(ψ̂n − ψ0) and the limiting distribution under the Cox model (with a 0 in
the γ component), each with probability 1/2. This alternative estimator is thus
more precise whenγ0 = 0. It also follows without difficulty that the conditional
limit law of the bootstrap which imitates this estimation procedure is equal to the
limit law of

√
n(ψ̃n − ψ0) in the sense of Corollary 1.

6. Results under model misspecification. In this section, we examine
conditions under which the model is misspecified but the parameter estimates
are consistent and asymptotically Gaussian, and some of the components of the
estimated quantity may be interpreted viap0. In Section 6.1 we demonstrate
that if the posited conditional survival distribution—based on the chosen frailty
transform�γ —is not too badly misspecified, then conditions (F) and (G) are
satisfied under certain restrictions on the index set�. In Section 6.2, we examine
the effect of testing for the effect of a single covariate with misspecification. In
Section 6.3 we studyγ andβ under misspecification with structural requirements
on the covariates.

6.1. Existence of unique Kullback–Leibler maximizers. Define

�M = {
ψ = (γ,β,A) :γ ∈ (−ε0

(
K0A(τ)

)
,m1

)
,

β ∈ B0,A ∈ A◦
(γ ),1/M < a < M

}
,

where 1< M < ∞, ε0(·) is as defined in condition (C) andK0 is as defined
in Section 2.1. LetD(ν) be the space of all conditional densitiesk(v|z) such
that ke(v|z)L(v|z)1−e, whereL(v|z) = ∫∞

v k(u|z) du, is ν-measurable. Denote
fψ(v|z) = pψ(v,1|z). Also, for f ∈ D(ν), let p(f )(v, e|z) = f e(v|z)S1−e(v|z),
whereS(v|z) is the survival function corresponding tof (v|z). The main result of
this section is as follows.

THEOREM 6. Assume that conditions (A1)–(A3), (B), (C), (D1)–(D3)
and (H) are satisfied by the data and the posited frailty distribution. Then for
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every Q < ∞ there exists an ε > 0 such that for each conditional density
f ∈ D(ν), with f ≤ Q ν-almost surely and

∫
X |f −fψ |dν ≤ ε for some ψ ∈ �M ,

there exists a unique Kullback–Leibler maximizer ψ(f ) = arg maxψ∗∈�M
P(f ) ×

log(pψ∗/p(f )) ∈ �M , with σψ(f )
≡ P(f )σ̂ψ(f )

:H∞ 
→ H∞ being one-to-one,
where P(f )g = ∫

X gp(f ) dν.

REMARK 22. This theorem tells us that for any given class of proportional
hazards frailty regressionmodels parameterized by�M and satisfying the stated
regularity conditions, there exist an infinite number of true models not agreeing
with the posited model but which satisfy conditions (F) and (G) withψ∗ =
(γ∗, β∗,A∗) = ψ(f ). In other words, conditions (F) and (G) are satisfied when the
posited frailty family is sufficiently close to the true distribution. This is important
in misspecified frailty model settings where uniqueness is not guaranteed by
convexity. Note that without the condition bounding the true densities byQ,
the Kullback–Leibler discrepancy between the true and posited models may be
unbounded even when the respective densities are quite close inL1(ν).

REMARK 23. It is worth emphasizing thatγ∗ may be less than 0. In practice,
one might mistakenly assume that the model is correctly specified and constrain the
maximization to be over the subset of�M for which γ ≥ 0. Denote the resulting
maximizerψ̃∗ = (γ̃∗, β̃∗, Ã∗) and assume it is unique. The results in Section 2 can
then be redone for the estimatorψ̃n defined in Remark 21. In the general setting,
ψ̃n will be uniformly consistent for̃ψ∗, and

√
n(ψ̃n − ψ̃∗) will have three possible

limiting distributions: whenγ̃∗ > 0, the limiting distribution is a Gaussian process
as given in Theorem 4; wheñγ∗ = 0 and theγ term inUτ

0 (ψ̃∗) = 0, the limiting
distribution is a mixture of two Gaussian processes similar to the mixture described
in Remark 21; and wheñγ∗ = 0 but theγ term in Uτ

0 (ψ̃∗) < 0, the limiting
distribution for

√
n(γ̃n − γ̃∗) is a point mass at 0 while the remaining components

have the limiting distribution resulting from assuming the Cox model (γ∗ = 0). It is
not possible, under the stated regularity conditions, to haveγ̃∗ = 0 but theγ term
in Uτ

0 (ψ̃∗) > 0, since this would imply thatγ∗ > 0. It also can be shown that
the conditional limit law of the bootstrap, which imitates the foregoing estimation
procedure, is equal to the limit law of

√
n(ψ̃n − ψ∗) in the sense of Corollary 1.

Hence, when the bootstrap distribution ofγ∗ under this constraint is frozen at 0,
there is significant evidence against the frailty model being correctly specified.

6.2. Identifying an independent covariate effect under a misspecified model.
In this section, we examine the effect of testing for a univariate covariate effect in
the presence of other covariates and frailties when the posited frailty distribution
and some of the covariates may be misspecified. We assume throughout this
section that the data satisfy conditions (A1′), (A2) and (A3′) for the covariate
processZ = (Z1,Z2) and that the posited model satisfies conditions (B), (C), (D1),
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(D2) and (E1). We allowZ2 to be misspecified andZ1 to be partly misspecified,
in that we only assumeP0{T ≤ (·)|Z1 = z1} is monotone inz1.

The following is the main result of this section.

THEOREM 7. Assume conditions (A1′), (A2), (A3′), (B), (C), (D1)–(D3)
and (E1) hold for the data and posited frailty model. Denote F

z1
0 (t) = P[T > t|

Z1 = z1] and assume that F
z1
0 (·) is monotone in z1 almost surely. The covariates

may be otherwise misspecified. Also assume condition (F) holds with Kullback–
Leibler maximizer ψ∗ = (γ∗, β∗ = (β∗1, β∗2),A∗) ∈ �0, where γ∗ ≥ 0. Then
(i) if F

z1
0 is constant in z1, β∗1 = 0; (ii) if F

z1
0 is strictly increasing in z1, β∗1 > 0;

and (iii) if F
z1
0 is strictly decreasing in z1, β∗1 < 0.

REMARK 24. If we interpret the covariate effect ofZ1 to be positive when
F

z1
0 is increasing inz1, negative when decreasing, 0 when constant and ambiguous

otherwise, then Theorem 7 implies that the covariate effect can be consistently
estimated up to the correct sign even if bothZ1 andZ2 are otherwise misspecified.
If condition (G) also holds, then the score and Wald tests forH0 :β∗1 = 0 will
be valid for testing the covariate effect ofZ1. These results generalize Kong and
Slud (1997) to more general misspecification when fitting the more general class
of models (1.1).

REMARK 25. Note that we requireγ∗ ≥ 0. This is becausecondition (E1)
appears to be needed for Theorem 7, and this condition only works whenγ ≥ 0.
This requirement is stronger than necessary for the consistency and asymptotic
normality results for possibly misspecified models given in Section 4.

6.3. Coefficient effects under misspecified models. In this section we examine
the effect of regression parameter estimates under a misspecified frailty distribu-
tion and stronger conditions on the covariates. We assume that the data and posited
frailty distribution satisfy (A1′), (A2), (A3′′), (B), (C), (D1)–(D3) and (E1).

REMARK 26. Conditional linearity [condition (A3′′)] is also used by Li and
Duan (1989) in their study of regression analysis under link violation. Their results
apply to fitting parametric models based on maximum likelihood and to semi-
parametric Cox models based on partial likelihood without censoring. Brillinger
(1983) used this assumption to study unobserved Gaussian regressor variables in
generalized linear models. In contrast, our results apply to semiparametric frailty
regression models under frailty misspecification using nonparametric maximum
likelihood with or without censoring. While condition (A3′′) is sufficient, it may
not be necessary for the results below.

We have the following proposition which extends Li and Duan (1989) to
censoring when the true model has the form (1.1).
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PROPOSITION5. Assume conditions (A1′), (A2) and (A3′′) hold for the data,
the posited model is a Cox proportional hazards model with β ∈ R

d , and the
true failure time distribution satisfies a proportional hazards frailty regression
model with parameter ψ0 = (γ0, β0,A0) ∈ �0, where γ0 ≥ 0 and where the
corresponding true negative log frailty transform family (denoted {G◦

γ }) satisfies
conditions (C), (D1)–(D3)and (E1).Then conditions (F) and (G) are satisfied with
β∗ = α1β0, where α1 = 1 if γ0 = 0 and α1 ∈ (0,1) if γ0 > 0.

The following result establishes consistency up to scale when fitting (1.1) with
a misspecified Laplace transform.

PROPOSITION 6. Assume conditions (A1′), (A2) and (A3′′) hold for the
data; the posited and true proportional hazards frailty regression models satisfy
conditions (B), (C), (D1)–(D3) and (E1) for the common index set �, where
the posited negative log frailty transform family is denoted {Gγ } and the true
family is denoted {G◦

γ }; and the true parameter value for the true model
is ψ0 = (γ0, β0,A0) ∈ �0, where γ0 ≥ 0. Also assume condition (F) holds
with Kullback–Leibler maximizer ψ∗ = (γ∗, β∗,A∗) ∈ �0, where γ∗ ≥ 0. Then
β∗ = α2β0, where α2 = α1 when γ∗ = 0, α2 > 0 when γ∗ > 0 and α1 is as defined
in Proposition 5.

REMARK 27. If conditional linearity is violated, it may be possible to
perform a reweighted maximum likelihood estimation procedure, based on weights
described in Cook and Nachtsheim (1994). The resulting estimator would have
the properties described in Proposition 6 and could be employed as a diagnostic
for (A3′′) by comparing to the unweighted estimator.

REMARK 28. Under the stated regularity conditions, these results show that
using the Cox model when an unobserved frailty is present results in an estimate
which is an attenuation of the true effect. When fitting (1.1) with the Laplace
transform correctly specified, there is a deattenuation relative to the Cox model
as a consequence of model identifiability. With a misspecified frailty distribution,
the correct direction is obtained. However, it is unclear whether the effect size is
deattenuated relative to the Cox model.

REMARK 29. One can test whether the Cox model is an attenuation of the true
effect, that is,α1 < 1, if the score test forH0 :γ0 = 0 remains valid and consistent
under misspecification of the frailty distribution. Proving this in generality appears
to be quite difficult, but the following result is a step in the right direction.

PROPOSITION7. Assume conditions (A1′), (A2) and (A3′′) hold for the data
and the posited and true proportional hazards frailty regression models satisfy
conditions (B), (C), (D1)–(D3), (E1)and (E2) for the common index set �. Then
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the score test for H0 :γ0 = 0 based on the posited model is valid and consistent
under positive contiguous alternatives.

REMARK 30. Proposition 7 points out that this score test has the same form
at γ = 0 under both correctly and incorrectly specified frailty models. Thus, to
ensure that this score test is consistent for the fixed alternativeH1 :γ0 > 0, one
would need to establish that the profile likelihood forγ , profiling overβ andA, is
convex over the region[0,m1] when the model is correctly specified. This appears
to be very challenging analytically.

7. Computational issues. We implemented the profile likelihood estimation
method of Section 3.1, along with the bootstrap procedure of Section 4.4 based on
Dirichlet weights, for the gamma and inverse Gaussian frailty models. We did not
implement the log-normal frailty model because of the additional computational
burden resulting from�γ not having a closed form. Although this issue can be
addressed using Monte Carlo quadrature methods, we do not pursue it further
here. To estimate the parameters in the gamma and inverse Gaussian frailty
models, we maximized the nonparametric likelihood via profiling. A simple
random search method based on the Metropolis–Hastings algorithm was used to
maximizepLn(θ) over�. For each candidate value ofθ , the fixed-point equation
given in (3.2) was iterated until stabilization to obtain̂Aθ . Some simplification
of J

ψ
n occurs for these two frailty models. For the gamma frailty,

Jψ
n (t) = Pn

[
Y (t)eβ ′Z(t)(1+ γ δ)

1+ γHψ(V )

]
,

and for the inverse Gaussian frailty,

Jψ
n (t) = Pn

[
Y (t)eβ ′Z(t)({1+ 2γHψ(V )}1/2 + γ δ)

1+ γHψ(V )

]
.

When the candidate value ofγ was negative, the likelihood was considered 0

if Gγ (H(θ,Âθ )(V )) was either negative or undefined for any data point. Overall,
we found that this procedure was accurate and computationally efficient at finding
the maximum, with or without bootstrap weights.

8. Example: non-Hodgkin’s lymphoma data. The data are a subset of
1385 patients with aggressive non-Hodgkin’s lymphoma (NHL), from 16 insti-
tutions and cooperative groups in North America and Europe. These patients
were treated with a particular chemotherapy regimen. Survival was documented
from start of treatment until either death or loss to follow-up. The censoring rate
was 54.7%. Information on the following pretreatment covariates is complete for
all patients in the subset:age at the diagnosis of NHL (≤ 60 or> 60 years), perfor-
mancestatus (ambulatory or nonambulatory), serum lactate dehydrogenaselevel
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(below normal or above normal), number of extranodal diseasesites (≤ 1 or > 1)
and Ann Arbor classification of tumorstage [stage I or II (localized disease) or
stage III or IV (advanced disease)]. Each characteristic is coded 0 for the first
group in the parentheses and 1 for the second. These dichotomous predictors are
the basis for the original model [Non-Hodgkin’s Lymphoma Prognostic Factors
Project (1993)]. A clinical reason for using dichotomous predictors is that it pro-
vides a simple classification of risk based on only a finite set of risk groups.

We now illustrate the utility of the procedures described in Section 7 for the
gamma and inverse Gaussian frailty models. The bootstrap procedure based on
the Dirichlet weights was repeated 500 times for inference. Parameter estimates,
standard errors andZ values for the parameters in the gamma frailty model both
with unknownγ (GF) and with the estimated value ofγ treated as known (GF0),
the inverse Gaussian frailty model with unknownγ (IGF), the proportional odds
model and the Cox model are given in Table 1. While the coefficient estimates
are the same for GF and GF0, the difference is that the standard errors for GF0
are based on bootstrap estimates from a model with fixedγ = 2.197. The GF0
standard errors are helpful in assessing the bias in precision estimation due to
assumingγ known. This bias is generally nontrivial and should not be ignored in
practice.

The attenuation of the covariate effects in the Cox model, predicted in
Section 6.3, is evident in the results, although the attenuation does not appear to
be uniform across all covariates. Forstatus, the ratio of the parameter coefficient
under the gamma frailty model to the coefficient under the Cox model is about 2.2,
while the corresponding ratio forstage is only about 1.6. This difference may
be related to the fact that the ratio of the standard errors of thestatus coefficient
estimates for GF to GF0 is about 1.27, while the corresponding ratio forstage
is only 1.03. An anonymous referee has suggested that the Cox attenuation
phenomenon for a covariate effect may depend on the degree to which that
covariate’s parameter estimate is correlated with the frailty variance estimate.
Except for the GF0 results, theZ values for the covariate effects are fairly stable
across models.

The estimated frailty variances in GF and IGF are 2.197 and 4.325, respec-
tively, which are significantly higher than that assumed by the Cox model (γ = 0)
and the proportional odds model (γ = 1). The maximized log profile likelihood
values for the GF, IGF, PO and PH models are−4618.39,−4628.37,−4623.30
and−4688.40, respectively. This suggests that GF provides the best fit to the data
and thatγ is significantly greater than 1 (p = 0.0074 via the two-sided Wald test
based on the bootstrap). Also, PO is better that IGF, even though IGF is more
flexible, seemingly.

In Figure 1, we plot the Kaplan–Meier estimates of the marginal survival
distributions for the LDH level and performance status groups. The estimates
from GF and the Cox model are also displayed. The survival estimate in a group
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TABLE 1
Parameter estimates for the non-Hodgkin’s lymphoma data using the gamma frailty model with γ

both unknown (GF)and fixed at the estimated value (GF0), the inverse Gaussian frailty model
with γ unknown (IGF), the proportional odds model (PO)and the Cox model (PH)

Covariate Parameter Model Estimate S.E. Z value

(oddsrate) γ GF 2.197 0.447 4.914
GF0 2.197∗ — —
IGF 4.325 1.855 2.332
PO 1∗ — —
PH 0∗ — —

Age β1 GF 1.100 0.139 7.903
GF0 1.100 0.127 8.628
IGF 1.008 0.138 7.291
PO 0.881 0.118 7.457
PH 0.683 0.088 7.796

Level β2 GF 1.024 0.159 6.433
GF0 1.024 0.144 7.155
IGF 0.933 0.143 6.524
PO 0.833 0.120 6.967
PH 0.624 0.092 6.796

Status β3 GF 1.291 0.210 6.136
GF0 1.291 0.166 7.779
IGF 0.994 0.147 6.767
PO 0.949 0.145 6.562
PH 0.586 0.098 5.958

Sites β4 GF 0.694 0.156 4.444
GF0 0.694 0.149 4.644
IGF 0.622 0.139 4.464
PO 0.546 0.122 4.458
PH 0.394 0.092 4.272

Stage β5 GF 0.584 0.158 3.693
GF0 0.584 0.154 3.779
IGF 0.545 0.148 3.680
PO 0.485 0.137 3.549
PH 0.369 0.104 3.560

∗γ is fixed at the given value.

(e.g., patients withstatus = 0) from GF is
∏

0<s≤t {1− �H̄(s)}, where

H̄ (t) =
∫ t

0

∑
i Yi(s)exp{β̂ ′

nZi(s)}∑
i Yi(s)

×
(

1+ γ̂n

∫ s

0
exp{β̂ ′

nZi(u)}dÂn(u)

)−1

dÂn(s),
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FIG. 1. Estimated marginal survival distributions of non-Hodgkin’s lymphoma patients for LDH
level (a) and performance status (b) under the gamma frailty model. The Kaplan–Meier estimates
and Cox model estimates are included for comparison.

and summation is over all observations in the group. That is,H̄ (t) is a model-based
estimate of the cumulative hazard which averages over the observed covariate
distribution in that group. The estimate based on the Cox model uses the partial
likelihood estimator, Breslow’s estimator and 0 in the place ofβ̂n, Ân and γ̂n,
respectively, inH̄ . The reason the Kaplan–Meier curves may be quite different
from the model-based curves in the tail is that there are fewer observations in the
subgroups available for the Kaplan–Meier curves, whereas the model-based curves
utilize all of the data. In general, the GF estimates are closer to the Kaplan–Meier
curves than the proportional hazards fit, particularly with the performance status
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group comparison. This demonstrates the superior fit of the frailty model. We also
examined the survival curve estimates based on the proportional odds model and
found them to be intermediate between GF and the Cox model. These are omitted
from the figures for clarity.

Next, we illustrate the robust inference procedure for the best fitting survival
probabilities under the assumed gamma frailty model. Survival predictions for two
covariate values, representing an elderly high-risk patient [Z = (1,1,1,1,1)′] and
an elderly low-risk patient [Z = (1,0,0,0,0)′], are shown in Figure 2. Also shown
are 95% simultaneous confidence bands for the GF prediction using 500 multiplier

FIG. 2. Survival predictions and 95%simultaneous confidence bands for the gamma frailty model:
(a) high risk, Z = (1,1,1,1,1)′ ; (b) low risk, Z = (1,0,0,0,0)′ . The Cox model predictions are
included for comparison.
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bootstrap samples with Dirichlet weights. The Cox proportional hazards survival
predictions are included for comparison. The Cox prediction for the high-risk
patient significantly underestimates the long-term survival probability relative
to GF. The difference between the Cox and GF predictions is less pronounced
for the low-risk patient. Some improvement in the model fit may be possible if
continuous rather than dichotomous covariates are used, but we do not pursue this
further here.

9. Proofs.

PROOF OF PROPOSITION 1. For any IGG(α) frailty family, the conditions
hold with ε0(t) = (2/3)(1 ∨ t)−1, c1(γ ) = 1/γ and c2(γ ) = (1 − α)/γ , where
a ∨ b is the maximum ofa andb. Establishing these results is straightforward. For
the log-normal, we now show that the conditions hold withε0(t) = (1 ∨ t)−4/64,
c1(γ ) = 1 andc2(γ ) = 1/γ . Complex analysis is involved since

√
γ is imaginary

for γ < 0. However, the imaginary components of�γ , Gγ and their derivatives
are all 0. Moreover,�γ (t) and its first two derivatives int have the following form,

with ξ ≡ √|γ | andu ≡ teξ2/2:

(−1)kekξ2/2
∫

R

e−ucosξv cos(usinξv − kξv)φ(v) dv(9.1)

for k = 0,1,2, respectively. If we establish that (9.1), fork = 2, is greater than 0
over the correct range, then (C) follows and showing (D1) is easy. Fix 0< u′ < ∞.
If there exists av0 ≥ 2 andξ0 ∈ [0, π/(2v0)] such that

u′ sinξ0v0 + 2ξ0v0 = π/4(9.2)

and such that the part of the integral over|v| > v0 is completely dominated by
the part over|v| ≤ v0, then (9.1) will be greater than 0 for allu ∈ [0, u′] and
all ξ ∈ [0, ξ0]. Assume thatv0 ≥ 2 andξ0 satisfies (9.2). Then∫ v0

−v0

e−u′ cosξ0v cos(u′ sinξ0v − 2ξ0v)φ(v) dv ≥ 0.95√
2

e−u′

and ∫
|v|>v0

e−u′ cosξ0v cos(u′ sinξ0v − 2ξ0v)φ(v) dv ≤ 1√
2π

eu′−v2
0/2.

Thus, the total integral is clearly positive when

1√
2π

eu′−v2
0/2

{
0.95√

2
e−u′

}−1

≤ 3

4
.

Note that this is satisfied wheneverv0 ≥ 2
√

1∨ u′. Choosing any positive
ξ0 ≤ π(1 ∨ u′)−3/2/24 assures that there exists av0 ≥ 2

√
1∨ u′ which also
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satisfies (9.2). Settingteξ2
0/2 = u′, we have thatξ0 = (1/8)(1∨ t)−3/2 is sufficient

and thenε0(t) = (1∨ t)−3/64 works. However, to satisfy (D2) and (D3) we reduce
the rate to(1∨ t)−4/64. Lemma 3 gives that this rate is sufficient.�

LEMMA 3. Conditions (D2) and (D3) are satisfied by the log-normal frailty
model with ε0(t) = (1∨ t)−4/64,c1(γ ) = 1 and c2(γ ) = 1/γ .

PROOF. For (D2), letWk ≡ eγ
1/2
k Z−γk/2, whereZ ∼ N(0,1). Now,

sup
u≥0

u�γk
(u) = sup

u≥0
E
[
ue−uWk

]

≤ E
[

sup
u≥0

ue−uWk

]
≤ E[W−1

k ],

sup
u≥0

∣∣u2�̇γk
(u)

∣∣ = sup
u≥0

E
[
u2Wke

−uWk
]

≤ E
[

sup
u≥0

u2Wke
−uWk

]
≤ E[W−1

k ],

and it follows since E[W−1
k ] = eγk . For (D3), if tk → ∞ and γk → 0, then

γk consists of one or both of two subsequences, one less than or equal to 0
and one greater than or equal to 0. Without loss of generality, assumeγk → 0
from above or below but not both. We begin with a sequence approaching from
below. Letξ ≡ √|γ |, ξk ≡ √|γk|, u ≡ teξ2/2, uk ≡ tke

ξ2
k /2, and reparameterize

t infw∈[0,t] Ġγ (w) for γ < 0 as

t inf
w∈[0,t] Ġ−ξ2(w) = u inf

w∈[0,u]

∫
R

e−w cosξv cos(w sinξv − ξv)φ(v) dv∫
R

e−w cosξv cos(w sinξv)φ(v) dv

≡ u inf
w∈[0,u]gξ (w).

Forv > vk ≡ u
2/3
k , thev2 term inφ(v) completely dominatesuk sincev2

k/uk →∞.

Sinceukξkvk ≤ u
−1/3
k → 0,

inf
w∈[0,uk]

gξk
(w) = inf

w∈[0,uk]

∫
R

ew(1−cosξkv) cos(w sinξkv − ξkv)φ(v) dv∫
R

ew(1−cosξkv) cos(w sinξkv)φ(v) dv

→ 1.

Hence,uk infw∈[0,uk] gξk
(w) → ∞.

Now assume thatγk → 0 from above. Then

−t�̇γ (t)

�γ (t)
=

∫
R

te
√

γ v−γ /2 exp{−te
√

γv−γ /2}φ(v) dv∫
R

exp{−te
√

γ v−γ /2}φ(v) dv

=
[
u−1

∫
R

e−wζu(w)φγ (w)dw∫
R

ζu(w)φγ (w)dw

]−1

,
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where u ≡ te−γ /2, ζu(w) ≡ uew exp{−uew} and φγ (w) ≡ γ −1/2φ(γ −1/2w).
Sincee−w is a decreasing function, for anywk → ∞,∫

R
e−wζu(w)φγ (w)dw∫
R

ζu(w)φγ (w)dw
≤

∫−wk−∞ e−wζu(w)φγ (w)dw∫−wk−∞ ζu(w)φγ (w)dw
(9.3)

=
∫∞
wk

ewζu(−w)φγ (w)dw∫∞
wk

ζu(−w)φγ (w)dw
.

Now denoteuk ≡ tke
−γk/2 and letwk = log(1+ γkuk + u

1/2
k ). Since

γ −1
k wk(wk + uke

−wk)−1 = wk

(
γkwk + γkuk

1+ γkuk + u
1/2
k

)−1

→ ∞

for all w ≥ wk , theφγ (w) term dominates the expectation in (9.3) withu = uk

and γ = γk . Hence, with this substitution, (9.3)= 1 + γkuk + u
1/2
k + O(1)

and tkĠγk
(tk) → ∞. The same arguments work whenγk → γ > 0, except that

lim inf k→∞ tkĠγk
(tk) ≥ 1/γ . Condition (D3) follows since (C) implies forγ ≥ 0

that infw∈[0,t] Ġγ (w) = Ġγ (t). �

PROOF OF PROPOSITION 2. Fix the sample sizen. If the conclusion of
this proposition does not hold, there exists a sequence{θm ≡ (γm,βm) ∈ �} so
that, for Ãm ≡ Âθm , either lim supm→∞ Ãm(τ ) = ∞ or lim infm→∞ Ãm(τ ) = 0.
Assume first that lim supm→∞ Ãm(τ ) = ∞ and let {mk} be a subsequence for
which limk→∞ Ãmk

(τ ) = ∞ andγmk
→ γ . Let ψ̃m ≡ (γm,βm, Ãm) andψm ≡

(γm,βm,PnN). Using arguments from the proof of Theorem 1, we can conclude
thatγ > 0 and, for a partition 0= u0 < u1 < · · · < uJ ≤ τ , that

L̃n(ψ̃m) − L̃n(ψm)

≤ c + log
(
Ãmk

(τ )
)
Pn

[
δ1{V ∈ [uJ−1,∞]}
− (

c1(γ ) + δ
)
1{V ∈ [uJ ,∞]}](9.4)

+
J−1∑
j=1

log
(
Ãmk

(uj )
)
Pn

[
δ1{V ∈ [uj−1, uj ]}

− (
c1(γ ) + δ

)
1{V ∈ [uj ,uj+1]}],

where c ∈ (0,∞) is a constant not depending on the parameter values or
on the partition, and where the summation is 0 whenJ = 1. Let T1, . . . , TJ

be the observed failure times and define a partition withuJ = TJ , and, if
J > 1, let uj ∈ (Tj , Tj+1) for j = 1, . . . , J − 1. Now the intervals[uj ,uj+1],
for j = 0, . . . , J , whereuJ+1 = ∞, all contain exactly one failure time. Thus,
(9.4)≤ c − c1(γ )[log(Ãmk

(τ )) + ∑J−1
j=1 log(Ãmk

(uj ))]. Hence, using again argu-
ments from the proof of Theorem 1, (9.4)→ −∞. This is a contradiction. Thus,
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lim supm→∞ Âm(τ ) < ∞. The proof that infθ∈� Âθ(τ ) > 0 can also be obtained
from arguments similar to those employed in the proof of Theorem 1.�

PROOF OFTHEOREM 1. Let(X∞,B∞,P ∞
0 ) be the probability space for in-

finite sequences of observations, letW ⊂ X∞ be the set of observation sequences
for which PnN converges uniformly toµ0 ≡ P0N and note thatP∗(W) = 1.
Then if the conclusion of Theorem 1 does not hold, there exist a sequence
{θn ≡ (γn,βn) ∈ �} and anω ∈ W so that, forÂn ≡ Âθn{ω} (we will suppress
dependence onω hereafter), lim supn→∞ Ân(τ ) = ∞, lim infn→∞ Ân(τ ) = 0
or Ân is not asymptotically close to an absolutely continuous function with
bounded derivative.

Assume first that lim supn→∞ Ân(τ ) = ∞. Now supposeγn has an accumula-
tion point atγ < 0 along a subsequence for whicĥAn(τ ) → ∞. But this is im-
possible by (C) and the constraints onA(γ ). Thus,γn has no such accumulation
points less than 0. Suppose, however, thatγn has 0 as one of these accumulation
points. Accordingly, take a subsequence{nk} such thatγnk

→ 0 andÂnk
(τ ) → ∞.

Since, by (D1),Ġγ (u) − G̈γ (u){Ġγ (u)}−1 = −�̈γ (u){�̇γ (u)}−1 ≥ 0, we have
by (3.3) that

Ânk
(τ ) ≤

∫ τ

0

(
Pn

[
Y (t)e

β ′
nk

Z(t)
(
Ġγnk

{
Hψ̂nk (V )

}− δ
G̈γnk

{Hψ̂nk (V )}
Ġγnk

{Hψ̂nk (V )}

)])−1

× dPn{N(t)}

≤ O(1)

{
inf

u∈[0,K0Ânk
(τ)]

Ġγnk
(u)

}−1

,

since inft∈[0,τ ] PnY (t)e
β ′

nk
Z(t) is bounded below for alln large enough. Thus,

by (D3), 1≤ O(1) {Ânk
(τ ) inf

u∈[0,K0Ânk
(τ)] Ġγnk

(u)}−1 → 0, which is a contra-

diction. Hence, for any subsequence withÂnk
(τ ) → ∞, the accumulation points

of γnk
are greater than 0. Now let{nk} be a subsequence witĥAnk

(τ ) → ∞
andγnk

→ γ > 0.
Let ψ̂n ≡ (γn,βn, Ân) andψn ≡ (γn,βn,PnN). Then

0 ≤ L̃nk

(
ψ̂nk

)− L̃nk

(
ψnk

)

≤ Pnk

{∫ τ

0

[
log

{Ġγnk
(H ψ̂nk (s))

Ġγnk
(Hψnk (s))

}
+ log

(
nk�Ânk

(s)
)]

dN(s)

+ log
[
�γnk

(H ψ̂nk (V ))

�γnk
(Hψnk (V ))

]}
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≤ O(1) + Pnk

{∫ τ

0
log

(
nk�Ânk

(s)
)
dN(s)

+ [−δ
(
1+ c1(γ )

)
logHψ̂nk (V )

]∧ 0

− (1− δ)Gγnk

(
Hψ̂nk (V )

)}

≡ Cnk
,

since

Pn

[∫ τ

0
log

{
Ġγnk

(
Hψnk (s)

)}
dN(s) + log�γnk

(
Hψnk (V )

)] = O(1)

and since (D2) implies

logĠγnk

(
Hψ̂nk (s)

) ≤ [−(
1+ c1(γ )

)
logHψ̂nk (s)

]∧ 0+ O(1).

Now Cnk
is bounded above by

O(1) + Pnk

{∫ τ

0
log

(
nk�Ânk

(s)
)
dN(s)

(9.5)

+ [−(
δ + c1(γ )

)
logÂnk

(V )
]∧ 0

}
,

since (D2) also impliesGγnk
(H ψ̂nk (V )) ≥ [c1(γ ) logÂnk

(V )] ∨ 0 + O(1). For a

sequence 0= u0 < u1 < u2 < · · · < uJ = τ , let Nj(s) ≡ N(s)1{V ∈ [uj−1, uj ]},
j = 1, . . . , J . By Jensen’s inequality,∫ τ

0
log

(
nk�Ânk

(s)
)
dPnk

{Nj(s)}

≤ Pnk
Nj (τ ) log

(∫ uj

0
n�Ânk

(s) dPnk
Nj (s)/Pnk

Nj (τ )

)

≤ O(1) + log
(
Ânk

(uj )
)
Pnk

(
δ1{V ∈ [uj−1, uj ]}).

Thus, (9.5) is dominated by

O(1) + log
(
Ânk

(τ )
)
Pnk

[
δ1{V ∈ [uJ−1,∞]} − (

c1(γ ) + δ
)
1{V ∈ [τ,∞]}]

+
J−1∑
j=1

log
(
Ânk

(uj )
)
Pnk

[
δ1{V ∈ [uj−1, uj ]}(9.6)

− (
c1(γ ) + δ

)
1{V ∈ [uj ,uj+1]}].

Chooseε : 0 < ε < P0{V = τ } and the sequence{uj } for finite J such that
c1(γ )ε/(c1(γ ) + 1) < µ0(uj+1) − µ0(uj ) < c1(γ )ε for j = 0, . . . , J − 2 and
µ0(τ ) − µ0(uJ−1) = c1(γ )ε/(c1(γ ) + 1). Note that (3.3) implies log(Ânk

(u)) ≥
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log(Pnk
N(u)) + O(1), sinceĠγnk

(t) − δG̈γnk
(t)/Ġγnk

(t) ≤ 2 − G̈γnk
(0+) for all

t ≥ 0 and allk large enough. Since alsoPnk
N → µ0 uniformly, (9.6) goes to−∞.

This is a contradiction. Thus, lim sup̂Ank
(τ ) < ∞.

Now assume that there are a sequence{(γn,βn) ∈ �} and anω ∈ W so that
lim infn→∞ Ân(τ ) = 0. DefineÃn = ε−1

0 (c0)PnN/K0 and note thatÃn ∈ A(γn)

for all n ≥ 1. Now let {nk} be a subsequence witĥAnk
(τ ) → 0 and define

ψn ≡ (γn,βn, Ãn). Then

0 ≤ L̃nk

(
ψ̂nk

)− L̃nk

(
ψnk

)
≤ O(1) + Pnk

{∫ τ

0
log

(
�Ânk

(s)
)
dN(s)

}

≤ O(1) + Pnk

{∫ τ

0
log

(
Ânk

(τ )
)
dN(s)

}
→ −∞.

This is again a contradiction. Hence, lim infÂn(τ ) > 0. By previous arguments
and (3.3), we also have, fors, t ∈ [0, τ ], that∣∣Ân(s) − Ân(t)

∣∣ ≤ O(1)Pn|N(s) − N(t)| ≤ O(1)|µ0(s) − µ0(t)| + o(1),

and the conclusions of the theorem hold by (A2).�

PROOF OFLEMMA 1. Fix a convergent sequence{θm} ∈ �. The arguments
used in the proof of Theorem 1, after replacing the measurePn with P0, can be
used with only minor modification to show that lim supm→∞ Aθm(τ ) < ∞ and
lim infm→∞ Aθm(τ ) > 0. Using again arguments from the proof of Theorem 1,
we can also establish that|Aθm(s)−Aθm(t)| ≤ c|µ0(s)−µ0(t)| for all s, t ∈ [0, τ ]
and a constantc ∈ (0,∞) not depending on the sequence. The desired results now
follow from condition (A2). �

PROOF OF THEOREM 2. Let W ⊂ X∞ be the set of data sequences for
whichPnN → µ0 uniformly and note that the class of functions

Gk ≡
{
Y (t)eβ ′Z(t)

(
Ġγ {Hψ(V )} − δ

G̈γ {Hψ(V )}
Ġγ {Hψ(V )}

)
:

t ∈ [0, τ ],ψ ∈ � andA(τ) ≤ k

}

is P0-Glivenko–Cantelli for eachk < ∞. To see this, arguments given in the
proof of Proposition 8 verify that the classes{Y (t)eβ ′Z(t) : t ∈ [0, τ ], β ∈ B0} and
{Hψ(V ) :ψ ∈ �,A(τ) ≤ k} are Donsker; conditions (C) and (D1) imply that
the maps(γ, t) 
→ Ġγ (t), (γ, t) 
→ G̈γ (t) and (γ, t) 
→ [Ġγ (t)]−1 are bounded
and Lipschitz over the domain[−ε0(u),m] × [0, u] for any u ∈ (0,∞); and
�(τ) ≤ k implies thatHψ(V ) ≤ kK0 for all ψ ∈ � almost surely. Thus, the
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classes{Ġγ {Hψ(V )} :ψ ∈ �,A(τ) ≤ k}, {G̈γ {Hψ(V )} :ψ ∈ �,A(τ) ≤ k} and
{[Ġγ {Hψ(V )}]−1 :ψ ∈ �,A(τ) ≤ k} are all Donsker by Theorem 2.10.6 of VW.
Since products of bounded Donsker classes are Donsker, the classGk is Donsker
and hence also Glivenko–Cantelli.

For eachM < ∞, let WM ⊂ W be the subset of data sequences for which the
limit points of{Âθ : θ ∈ �} are inKM and also for whichPn → P0 in �∞(GM). For
anyθ ∈ �, let Ãθ (t) ≡ ∫ t

0[Jψθ

0 (s)+ρ0(ψθ )]−1
Pn{dN(s)}, whereJψ

0 ≡ P0J
ψ
n and

ρ0(ψ) ≡ P0δ − ∫ τ
0 J

ψ
0 (s) dA(s)

A(τ )
.

Also let ψ̂θ = (θ, Âθ ) andψ̃θ ≡ (θ, Ãθ ). We will first show that

sup
θ∈�

∣∣L̃n(ψ̂θ ) − L̃n(ψ̃θ )
∣∣ → 0(9.7)

outer almost surely and then show that

sup
θ1,θ2∈�

∣∣L̃n

(
ψ̃θ1

)− L̃n

(
ψ̃θ2

)− I0
(
ψθ1,ψθ2

)∣∣ → 0(9.8)

outer almost surely, and the proof will be complete.
Fix M < ∞, choose aw ∈ WM and let {n} index the corresponding data

sequence. Let{θn} be any parallel sequence of parameters in� and let {nk}
be any convergent subsequence withθnk

→ θ∗, ψ̂θnk
→ ψ∗ = (θ∗,A∗) and

ψ̃θnk
→ ψ∗∗ = (θ∗,Aθ∗). The last convergence statement follows from the defi-

nitions ofÃθ andAθ . Since

dÂnk
(t)

dÃnk
(t)

= J
ψ̃θnk

0 (t) + ρ0(ψ̃θnk
)

J
ψ̂θnk
n (t) + ρn(ψ̂θnk

)
(9.9)

→ J
ψ∗∗
0 (t) + ρ0(ψ

∗∗)
J

ψ∗
0 (t) + ρ0(ψ

∗)
,

uniformly overt ∈ [0, τ ], where the limit of (9.9)= dA∗(t)/dAθ∗(t) is bounded
below and in total variation, we have that

Pn

∫ τ

0
log

{
dÂθnk

(t)
/
dÃθnk

(t)
}
dN(t) →

∫ τ

0
log

{
dA∗(t)/dAθ∗(t)

}
dµ0(t).

Hence, it follows that

0 ≤ L̃nk

(
ψ̂θnk

)
− L̃nk

(
ψ̃θnk

)
→ P0 log

pψ∗

pψ∗∗
≤ 0.

Since this is true for every such convergent subsequence, and sinceM < ∞ can be
increased so thatP∗(WM) is arbitrarily close to 1, we have established (9.7).
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Since by Lemma 1

dAθ1(t)

dAθ2(t)
= J

ψθ2
0 (t) + ρ0(ψθ2)

J
ψθ1
0 (t) + ρ0(ψθ1)

is bounded below and in total variation, uniformly overθ1, θ2 ∈ �, we have that

Pn

∫ τ

0
log

{
dAθ1(t)

/
dAθ2(t)

}
dN(t) →

∫ τ

0
log

{
dAθ1(t)

/
dAθ2(t)

}
dµ0(t),

uniformly overθ1, θ2 ∈ �. Hence, it follows that (9.8) holds.�

PROOF OF LEMMA 2. By the smoothness assumed in (D1) of the involved
derivatives,

lim
t↓0

sup
ψ : ‖ψ‖(r)≤1

sup
h∈Hr

∣∣∣∣
∫ 1

0
ψ
(
σψ1+stψ (h) − σψ1(h)

)
ds

∣∣∣∣= 0.

Thus, suph∈Hr
|Uτ

0 (ψ1 + ψ)(h) − Uτ
0 (ψ1)(h) + ψ(σψ1(h))| = o(‖ψ‖(r)) as

‖ψ‖(r) → 0. �

PROOF OFTHEOREM 3. Recall thatÂn ≡ Â
θ̂n

andψ̂n = (θ̂n, Ân), whereθ̂n

is the profile MLE. Theorem 1 implies that the setW ⊂ X∞ of data sequences for
which the limit points ofÂn are inKM , for someM < ∞, has inner probability 1.
Accordingly, fix the data sequencew ∈ W and take a subsequence{nk} for
which ψ̂nk

converges uniformly to someψ = (θ,A) ∈ �, with A ∈ KM for
someM < ∞. Let ψn = (θ∗, Ãθ∗), whereθ∗ ≡ (γ∗, β∗) and Ãθ is as defined in
the proof of Theorem 2. By Theorem 2 we have

0 ≤ L̃nk

(
ψ̂nk

)− L̃nk

(
ψnk

) → P0 log
pψ

pψ∗
≤ 0,

and hence condition (F) implies thatψ = ψ∗. Since this is true for every convergent
subsequence,̂ψn → ψ∗ with inner probability 1. SinceÂn is a piecewise
constant function with mass�Ân only at observed failure timest1, . . . , tmn , ψ̂n is
a functional of a maximum taken overmn + d + 1 real variables. This structure
implies that supt∈[0,τ ] |Ân(t) − A∗(t)| is a measurable random variable, and hence

the uniform distance between̂ψn andψ∗ is also measurable. Thus, the convergence
with inner probability 1 can be strengthened to outer almost sure convergence.�

PROOF OF PROPOSITION 3. Sincef0 does not depend on covariates, there
exists anA0 ∈ A0 so thatS0(t) = exp(−A0(t)) for all t ∈ [0, τ ]. Hence, the
parameter valueψ0 = (γ0 = 0, β0 = 0,A0) for the posited model describes the
true distribution of the failure times. Arguments in Theorem 3 now yield that,
with inner probability 1, all limit points of the maximum likelihood estimatorψ̂n
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lie in a compact set̃� for which P0 log(pψ/p0) = 0. SinceP0 log(pψ/p0) ≤
− ∫

X(p
1/2
ψ − p

1/2
0 )2p0 dν and p0 = pψ0, we now know that all Kullback–

Leibler maximizersψ = (γ,β,A) ∈ �̃ must satisfyGγ (Hψ(t)) = G0(H
ψ0(t))

for all t ∈ [0, τ ]. This implies thatβ = β0 by arguments given in Proposition 4.
The desired result now follows.�

PROOF OF THEOREM 4. From Section 3.3, we haveσ 13
ψ∗(h3) = ∫ τ

0 f1(s) ×
h3(s) dA∗(s), σ 23

ψ∗(h3) = ∫ τ
0 f2(s)h3(s) dA∗(s) and σ 33

ψ∗(h3) = g1(·) ∫ τ
0 f3(s) ×

h3(s) dA∗(s)+g2(·)h3(·), wheref1, f3, g1 :R 
→ R andf2 :R 
→ R
d are bounded

and where g2(s) ≡ P0{ξ̂ (0)
ψ∗ Y (s)eβ ′∗Z(s)}. From the proof of Theorem 1,

0 < g2(s) < ∞ for all s ∈ [0, τ ]. Thus,σψ∗ = σ
(1)
ψ∗ + σ

(2)
ψ∗ , where

σ
(1)
ψ∗ (h) ≡


1 0 0

0 I 0
0 0 g2(·)




h1

h2
h3




is continuously invertible and onto,σ
(2)
ψ∗ = σψ∗ −σ

(1)
ψ∗ is compact andI denotes the

identity. Sinceσψ∗ is one-to-one by condition (G),σψ∗ is continuously invertible
and onto, with inverseσ−1

ψ∗ . This now implies that, for eachr > 0, there is ans > 0

with σ−1(Hs) ⊂ Hr . Fix r > 0. Continuous invertibility of−U̇ψ∗ on lin�, where
lin denotes linear span, now follows by Proposition A.1.7 of BKRW since

inf
ψ∈lin�

‖U̇ψ∗(ψ)‖(r)

‖ψ‖(r)

≥ inf
ψ∈lin�

sup
h∈σ−1

ψ∗ (Hq)
|ψ(σψ∗(h))|

‖ψ‖(r)

= inf
ψ∈�

‖ψ‖(q)

‖ψ‖(r)

≥ q

3r
.

This proposition also implies that−U̇ψ∗ is onto. By Proposition 8,
√

n
(
Uτ

n (ψ̂n)(h) − Uτ
0 (ψ̂n)(h)

)− √
n
(
Uτ

n (ψ∗)(h) − Uτ
0 (ψ∗)(h)

)
(9.10)

= oP

(
1+ √

n‖ψ̂n − ψ∗‖),
uniformly overh ∈ Hr , where‖ · ‖ is the uniform metric.

Applying the Z-estimator master theorem (Theorem 3.3.1 of VW) now
gives the desired weak convergence of

√
n(ψ̂n − ψ∗), providedUτ

0 (ψ∗)(·) = 0,
Uτ

n (ψ̂n)(·) = 0 asymptotically andUτ(ψ∗)(·) is P0-Donsker. The first two
conditions follow from condition (F) and the fact thatψ̂n is asymptotically an
interior point in� by consistency and condition (C). Because products of bounded
Donsker classes are Donsker, showingδh3(V ) and

∫ τ
0 Y (s)eβ ′∗Z(s)h3(s) dA∗(s)

are Donsker, as processes indexed byh3 : (h1, h2, h3) ∈ Hr , is sufficient, since
β∗ and A∗ are fixed. First, since all functions inHr are bounded in total
variation, δh3(V ) is Donsker, as a class indexed byh3, since it is the product
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of bounded Donsker classes. Next,{β ′∗Z(t) : t ∈ [0, τ ]} is Donsker since the total
variation ofZ is less than or equal tom0 with probability 1 by condition (A3).
Since exp(·) is Lipschitz on compacts and{Y (t), t ∈ [0, τ ]} is monotone and
bounded,{Y (t)eβ ′∗Z(t)} is Donsker. Finally, since the map fromY (·)eβ ′∗Z(·) to∫ τ
0 Y (s)eβ ′∗Z(s)h3(s) dA∗(s), as a map from an element in�∞([0, τ ]) to �∞(Hr),

is continuous and linear, the continuous mapping theorem yields the desired
Donsker property. These results now imply thatψ̂n(h) is asymptotically linear
with influence function �̃(h) ≡ Uτ(ψ∗)(σ−1

ψ∗ (h)) and covarianceV∗(g,h) =
E[�̃(g)�̃(h)] for g,h ∈ Hr . Takingr ≥ 1 yields weak convergence in the uniform
metric, sinceH1 is sufficiently rich as noted earlier.�

PROPOSITION8. Expression (9.10)holds.

PROOF. If for someε > 0 {Uτ(ψ)(h) − Uτ(ψ∗)(h) :‖ψ − ψ∗‖ < ε,h ∈ Hr}
is P0-Donsker and limψ→ψ∗ suph∈Hr

P0{Uτ(ψ)(h) − Uτ (ψ∗)(h)}2 = 0,
then (9.10) holds by Lemma 3.3.5 of VW. The latter condition follows from con-
dition (D1). The Donsker condition requires more work. Let�ε ≡ {ψ :‖ψ −
ψ∗‖ ≤ ε}. Takeε small enough so that�ε ⊂ �: such anε always exists by (C)
and the fact thatγ∗ ≥ 0. BecauseZ has bounded total variation and the class
{β,β ∈ B0} is trivially a bounded Donsker class,{β ′Z(t), β ∈ B0, t ∈ [0, τ ]} is
Donsker. Since exp(·) is Lipschitz on compacts and{Y (t), t ∈ [0, τ ]} is monotone
and bounded, the class{Y (t)eβ ′Z(t), β ∈ B0, t ∈ [0, τ ]} is Donsker. Because
Aε ≡ {A : (γ,β,A) ∈ �ε} is uniformly bounded in total variation, the map
Y (t)eβ ′Z(t) 
→ ∫ τ

0 Y (s)eβ ′Z(s) dA(s), as a map from an element in�∞(B0 × [0, τ ])
to an element in�∞(B0 × Aε), is continuous and linear, and the continuous map-
ping theorem yields that

∫ τ
0 Y (s)eβ ′Z(s) dA(s) is Donsker as a process in�∞(�ε).

By conditions (C) and (D1),Ġγ (t), G̈γ (t), G
(1)
γ (t), Ġ

(1)
γ (t) and [Ġγ (t)]−1 are

Lipschitz inγ andt over the appropriate range. Thus,
[
δ
Ġ

(1)
γ (Hψ(V ))

Ġγ (Hψ(V ))
− G(1)

γ (Hψ(V ))

]
and

[
δ
G̈γ (Hψ(V ))

Ġγ (Hψ(V ))
− Ġγ (Hψ(V ))

]

are also Donsker as processes in�∞(�ε). Similar results and the fact that both
sums of Donsker classes and products of bounded Donsker classes are Donsker
give the result. �

PROOF OF COROLLARY 1. We first prove (ii). Using arguments from the
proof of Theorem 4 and applying theZ-estimator master theorem (Theorem 3.3.1
of VW) gives that

√
n(ψ̂◦

n − ψ∗) = √
nP

◦
nU

τ (ψ∗)(σ−1(·)) + oP (1) uncondi-
tionally, whereoP denotes a quantity approaching 0 in outer probability. Since√

n(ψ̂◦
n − ψ̂n) = √

n(P◦
n − Pn)U

τ (ψ∗)(σ−1(·)) + oP (1) unconditionally, (ii) fol-
lows by the multiplier central limit theorem (Theorem 2.9.6 of VW) since
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Uτ (ψ∗)(σ−1
ψ∗ (·)) is P0-Donsker and, over this Donsker class,

√
n(P◦

n − Pn) = ζ̄−1
n

√
n

n∑
i=1

(ζi − ζ̄n)
(
�Xi

− P0
)

= √
n

n∑
i=1

(ζi − 1)
(
�Xi

− P0
)+ op(1),

where ζ̄n = n−1∑n
i=1 ζi and �X is the point mass atX. Similar arguments

establish (i), but the nonparametric bootstrap central limit theorem (Theorem 3.6.1
of VW) is used in place of Theorem 2.9.6.�

PROOF OFPROPOSITION 4. SinceP0 log(pψ/p0) ≤ − ∫
X(p

1/2
ψ − p

1/2
0 )2 ×

p0 dν andp0 = pψ0, we are done if we can show that, for anyψ ∈ �,

Gγ (Hψ(t)) = Gγ0(H
ψ0(t))(9.11)

for all t ∈ [0, τ ] impliesψ = ψ0 almost surely. Note that this requirement is valid
even forγ ≤ 0, since by (C) and (D1) an appropriate extension ofGγ and its
corresponding densitypψ exist. Taking the derivative of both sides of (9.11) with
respect tot yields

Ġγ (Hψ(t))eβ ′Z(t)b(t) = Ġγ0(H
ψ0(t))eβ ′

0Z(t),(9.12)

where b ≡ a/a0. Letting t ↓ 0 in (9.12) givesb(0+)eβ ′Z(0+) = eβ ′
0Z(0+) by

condition (D1). This impliesβ = β0 since var[Z(0+)] is positive definite.
Hence,b(0+) = 1 by condition (H). Settingβ = β0 and dividing both sides
of (9.12) by eβ ′

0Z(t), differentiating with respect tot and letting t ↓ 0 gives
G̈γ (0+)eβ ′

0Z(0+) + ḃ(0+) = G̈γ0(0+)eβ ′
0Z(0+), where ḃ = db/dA0. Since

var[β ′
0Z(0+)] > 0, ḃ(0+) = 0. This now provesγ = γ0 since G̈γ (0+) is

monotone and bounded inγ . Now A = A0 follows trivially. �

PROOF OF THEOREM 5. With any h ∈ Hr such thatσψ0(h) = 0, de-
fine the regular parametric one-dimensional submodelψ0t (h) ≡ ψ0 + t{h1, h2,∫ (·)
0 h3(s) dA0(s)}. Note thatσψ0(h) = 0 implies

P0

{
∂2

(∂t)2
Ln(ψ0t )

∣∣∣∣
t=0

}
= P0{Uτ(ψ0)(h)}2 = 0,

where the score operatorUτ is given by (3.4). But this impliesP0{Uτ(ψ0)(h)|G(n,

y, t)}2 = 0, where the random setG(n, y, t) ≡ {N,Y :N(s) = n(s), Y (s) =
y(s), s ∈ [t, τ ]}, has nonzero probability. This then implies thatUt(ψ0)(h) = 0
almost surely for allt ∈ [0, τ ] (here is where we need the dependence onτ
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mentioned above in Section 3.3). Assuming that[{N(s),Y (s),Z(s)}, s ≥ 0] is
censored atV ∈ (0, τ ],

0 = G(1)
γ0

(Hψ0(t))h1
(9.13)

+ Ġγ0(H
ψ0(t))

∫ t

0
Y (s)eβ ′

0Z(s){h′
2Z(s) + h3(s)}dA0(s).

Taking the derivative with respect tot and letting t ↓ 0 yields h′
2Z(0+) +

h3(0+) = 0 sinceĠ
(1)
γ0 (0+) = 0 andĠγ0(0+) = 1 by assumption (D1). But this

impliesh2 = 0 by condition (A3). Dividing (9.13) bẏGγ0(H
ψ0(t)), differentiating

with respect tot and takingh2 = 0 yields

0 = [
Ġ(1)

γ0
(Hψ0(t))Ġγ0(H

ψ0(t)) − G(1)
γ0

(Hψ0(t))G̈γ0(H
ψ0(t))

]
h1

+ [
Ġγ0(H

ψ0(t))
]2

h3(t).

Differentiating again with respect tot and lettingt ↓ 0 gives 0= G̈
(1)
γ0 (0+) ×

eβ0Z(0+)h1 + ḣ3(0+), whereḣ3 ≡ a−1
0 dh3/dt . Now (H) and (D1) yieldh1 = 0.

Thus, (9.13) impliesh3(t) = 0 for all t ∈ [0, τ ], and the desired result follows.�

PROOF OFTHEOREM 6. Define

�M = {
ψ = (γ,β,A) :γ ∈ [−ε0(K0A(τ)),m1],

β ∈ B0,A ∈ A(γ ),1/M ≤ a ≤ M
}
.

For h = (h1, h2, h3), with h1 ∈ R, h2 ∈ R
d andh3 ∈ L2([0, τ ]), also define the

metric ‖h‖{2} ≡ |h1| +
√

hT
2 h2 + (

∫ τ
0 h2

3(s) ds)1/2 and let the space of all suchh
with ‖h‖{2} < ∞ be denotedH{2}. Let Pψg = ∫

X gpψ dν and denotẽσψ = Pψσ̂ψ .
Arguments in the proofs of Theorems 4 and 5 can be readily reworked to yield
that σ̃ψ is one-to-one and continuously invertible as an operator inH{2}. Thus,
by the uniform compactness of�M , by continuity and by Proposition 4 and
Theorem 5, there exist constantsb1, b2 > 0 and k1, k2, k3 < ∞ such that, for
all ψ ∈ �M ,

ψh(σ̃ψ(h)) ≥ b1‖h‖2{2} and ψh(σ̂ψ(h)) ≤ k1‖h‖2{2}
ν-almost surely∀h ∈ H{2},

‖σ̃ψ(h)‖v ≥ b2‖h‖v and ‖σ̂ψ(h)‖v ≤ k2‖h‖v,

ν-almost surely∀h ∈ H∞,

and
1/k3 ≤ |pψ(X)| ≤ k3, ν-almost surely.

Chooseε1 = (2/3)({b1/k1} ∧ {b2/k2}) and, for anyf ∈ D(ν) [where D(ν) is
defined in Section 6.1] andψ ∈ �, denoteσ

(f )
ψ ≡ ∫

X σ̂ψp(f ) dν. Then, for
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all pairs (f,ψ) with f ∈ D(ν), ψ ∈ �M and
∫
X |f − fψ |dν ≤ ε1, we have

ψh(σ
(f )
ψ (h)) ≥ (2/3)b2‖h‖2{2} for all h ∈ H{2} and‖σ (f )

ψ (h)‖v ≥ (2/3)b2‖h‖v for
all h ∈ H∞.

For the chosenQ, let ε = {ε2
1/[20k3Q(Q + k3)]} ∧ {ε1/3}. Then, for all

pairs (f,ψ) with f ∈ D(ν), ψ ∈ �M and
∫
X |f − fψ |dν ≤ ε, we have a

unique maximizer

ψ1 = arg max
ψ∗∈�M

∫
X

log
(
pψ∗

/
p(f )

)
p(f ) dν

such that‖σ (f )
ψ1

(h)‖v ≥ (2/3)b2‖h‖v for all h ∈ H∞. To see this, note that,
for (f,ψ) and all ψ∗ with

∫
X |pψ∗ − pψ |dν ≤ (2/3)ε1, we have

∫
X |p(f ) −

pψ∗ |dν ≤ ∫
X |f − fψ |dν + ∫

X |pψ − pψ∗ |dν ≤ ε1. Thus, ψh∗ (σ
(f )
ψ∗ (h)) ≥

ψh∗ (σ̃ψ∗(h)) − k1‖h‖2{2}
∫
X |p(f ) − pψ∗ |dν ≥ (1/3)b1‖h‖2{2} for all h ∈ H{2} and,

arguing in a similar manner,‖σ (f )
ψ∗ (h)‖v ≥ (1/3)b2‖h‖v for all h ∈ H∞. Thus,∫

X log(pψ∗/p(f ))p(f ) dν is a convex function inψ∗ with a continuously invertible
second derivative, provided

∫
X |pψ∗ − pψ |dν ≤ (2/3)ε1.

Furthermore, wheneverψ∗ satisfies
∫
X |pψ − pψ∗ |dν ≤ ε/10, we have∫

X log(pψ∗/p(f ))p(f ) dν ≥ −k3Q
∫
X |pψ∗ − p(f )|dν ≥ −k3Q(11/10)ε, but

wheneverψ∗ satisfies
∫
X |pψ − pψ∗ |dν ≥ (2/3)ε1, we have

∫
X log(pψ∗/p(f )) ×

p(f ) dν ≤ −[2(Q + k3)]−1(
∫
X |p(f ) − pψ∗ |dν)2 ≤ −ε2

1/[18(Q + k3)] <

−k3Q(11/10)ε. Hence, any Kullback–Leibler maximizerψ(f ) must satisfy∫
X |pψ − pψ(f )

|dν ≤ (2/3)ε1. The desired existence and uniqueness ofψ(f ) now
follow, andP(f )σ̂ψ(f )

is one-to-one since‖P(f )σ̂ψ(f )
(h)‖v ≥ b‖h‖v for all h ∈ H∞

and someb > 0 by arguments given above.�

PROOF OFTHEOREM 7. Assume without loss of generality that E[Z1] = 0.
Note thatA∗ is uniformly bounded and equicontinuous by Lemma 1. Define
K̃γ (e, t) ≡ Ġγ (t) − eG̈γ (t)/Ġγ (t), K̇γ (e, t) ≡ ∂K̃γ (e, t)/(∂t) and Ũ (x;ψ) ≡
z1{e − Hψ(v)K̃γ (e,Hψ(v))}, wherex = (v, e, z) ∈ X, z = (z1, z2) and z1 is
a possible value ofZ1. For eachψ = (γ,β = (β1, β2),A) ∈ �, defineψ(0) =
(γ, (0, β2),A).

Assume first thatFz1
0 (·) is constant inz1. It is clear that E[Ũ (X;ψ

(0)∗ )] = 0.
If β∗1 > 0, then conditions (A1′), (A3′) and (E1) imply

E
[
Z1H

ψ∗(V )K̃γ∗
(
δ,Hψ∗(V )

)]
> E

[
Z1H

ψ
(0)∗ (V )K̃γ

(
δ,Hψ

(0)∗ (V )
)]= 0,

and thus E[Ũ (X;ψ∗)] < 0, but this is a contradiction. Similar arguments show
that if β∗1 < 0, E[Ũ (X;ψ∗)] > 0, also yielding a contradiction. Hence,β∗1 = 0
and (i) follows.

Now assumeFz1
0 is strictly increasing inz1. If β∗1 ≤ 0, then by condition (E1)

E
[
Z1H

ψ∗(V )K̃γ∗
(
δ,Hψ∗(V )

)]≤ E
[
Z1H

ψ
(0)∗ (V )K̃γ∗

(
δ,Hψ

(0)∗ (V )
)]

,
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but

E
[
Z1

{
δ − Hψ

(0)∗ (V )K̃γ∗
(
δ,Hψ

(0)∗ (V )
)}]

= E
[−Z1H

ψ
(0)∗ (V )Ġγ∗

(
Hψ

(0)∗ (V )
)]

(9.14)

+ E
[
Z1δ

{
1+ Hψ

(0)∗ (V )G̈γ∗(H
ψ

(0)∗ (V ))

Ġγ∗(H
ψ

(0)∗ (V ))

}]
.

Now both δ and −V are stochastically increasing inZ1. By condition (E1),
−tĠγ∗(t) is strictly decreasing int and 1+ tG̈γ∗(t)/Ġγ∗(t) is nonincreasing int ;
thus (9.14) is positive. Hence E[Ũ (X;ψ∗)] > 0. This implies thatβ∗1 > 0 and (ii)
follows. A similar proof can be used to establish (iii).�

PROOF OF PROPOSITION 5. If γ0 = 0, the proof follows from standard
results for the Cox model. Hence, assumeγ0 > 0. Without loss of generality also
assume E[Z] = 0. The score forβ is

E
[∫ τ

0

{
Z − E[ZY(t)eβ ′Z]

E[Y (t)eβZ ]
}
Y (t)eβ ′

0ZĠ◦
γ0

(Hψ0(t)) dA0(t)

]
.(9.15)

Note that the derivative of this with respect toβ is negative definite; thus, a 0
of (9.15) would be the unique maximizer of the profile likelihood (profiling
overA). Note that

E[β ′
0ZY(t)]

E[Y (t)] <
E[β ′

0ZY(t)eβ ′
0ZĠ◦

γ0
(Hψ0(t))]

E[Y (t)eβ ′
0ZĠ◦

γ0
(Hψ0(t))] <

E[β ′
0ZY(t)eβ ′

0Z]
E[Y (t)eβ ′

0Z] ,

sinceĠ◦
γ0

(Hψ0(t)) is decreasing inβ ′
0Z buteβ ′

0ZĠ◦
γ0

(Hψ0(t)) is increasing inβ ′
0Z

by condition (E1). Thus,

E
[∫ τ

0
β ′∗

{
Z − E[ZY(t)eβ ′∗Z]

E[Y (t)eβ ′∗Z]
}
Y (t)eβ ′

0ZĠ◦
γ0

(Hψ0(t)) dA0(t)

]
= 0

for β∗ = α1β0, whereα1 ∈ (0,1).
To evaluate the score atβ = β∗ in directions orthogonal toβ0, let β1 = [I −

Rβ0(β
′
0Rβ0)

−1β ′
0]u, whereR = var[Z] andu ∈ R

d . Then E[β ′
1Z

∫ τ
0 Y (t)eβ ′

0Z ×
Ġ◦

γ0
(Hψ0(t)) dA0(t)|β ′

0Z] = 0 since E[β ′
1Z|β ′

0Z] = 0 by condition (A3′′). Simi-

larly, E[β ′
1ZY(t)eβ ′∗Z] = 0. Since this is true for anyu ∈ R

d , β∗ = α1β0 is indeed
the unique maximizer of the profile likelihood.�

PROOF OFPROPOSITION 6. Whenγ0 = 0, the result follows since the Cox
model is a valid submodel for any of the proportional hazards frailty models,
and consistency has been established in Proposition 4. Assumeγ0 > 0 and let
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K̃γ andK̇γ be as defined above in the proof of Theorem 7. The expected score
for β, profiling overA, now has the form

E
[∫ τ

0

{
Z − E[ZY(t)eβ ′ZK̃γ (δ,Hψ(V ))]

E[Y (t)eβ ′ZK̃γ (δ,Hψ(V ))]
}

(9.16)

× Y (t)eβ ′
0ZĠ◦

γ0
(Hψ0(t)) dA0(t)

]
,

whereA(t) solves

A(t) =
∫ t

0

E[Y (s)eβ ′
0ZĠ◦

γ0
(Hψ0(s))]

E[Y (s)eβ ′ZK̃γ (δ,Hψ(V ))] dA0(s)

and whereA(τ) < ∞ by Lemma 1. Letβ(α,c) = αβ0 + cβ1, where β1 =
[I − Rβ1(β

′
0Rβ0)

−1β ′
0]u, with R = var[Z] and u ∈ R

d , as in Proposition 5.
Denoteψ(α,c) = (γ,β(α,c),A). After multiplying byβ ′

1, the expected score (9.16)
becomes

−
∫ τ

0

E[β ′
1ZY(t)e

β ′
(α,c)ZK̃γ (δ,Hψ(α,c) (V ))]

E[Y (t)e
β ′

(α,c)ZK̃γ (δ,Hψ(α,c) (V ))]
(9.17)

× Y (t)eβ ′
0ZĠ◦

γ0
(Hψ0(t)) dA1(t).

We now evaluateg(α, c) = E[β ′
1ZY(t)e

β ′
(α,c)ZK̃γ (δ,Hψ(α,c) (V ))]. Note that

g(α,0) = 0 by previous arguments, and

∂g(α, c)

∂c
= E

[
(β ′

1Z)2Y (t)e
β ′

(α,c)Z
{
K̃γ

(
δ,Hψ(α,c) (V )

)
+ Hψ(α,c) (V )K̇γ

(
δ,Hψ(α,c) (V )

)}]
> 0,

since K̃γ (t) + tK̇γ (t) > 0 for all 0 ≤ t < ∞ by condition (E1). This now
implies (9.17)< 0, which means that the expected score (9.16) is positive in the
direction−β1.

Hence,β∗ = αβ0 for someα ∈ R. Note that ifα ≤ 0, then

E
[
β ′

0ZY(t)eαβ ′
0ZK̃γ∗

(
δ,Hψ∗(α,0) (V )

)]≤ E
[
β ′

0ZY(t)K̃γ∗
(
δ,Hψ∗(0,0) (V )

)]
by condition (E1). However, E[β ′

0Z{δ − A(V )K̃γ∗(δ,H
ψ∗(0,0) (V ))}] > 0 by

arguments used in the proof of Theorem 7. Thus, (9.16) is strictly positive
if β∗ = αβ0 andα ≤ 0. Henceα > 0. �

PROOF OFPROPOSITION7. By condition (E2),

lim
γ↓0

γ −1Ġγ (t) = lim
var[W ]↓0

E[We−Wt − e−Wt ]
E[e−Wt var[W ]]

= lim
var[W ]↓0

E[[W − 1](1− [W − 1]t)]
var[W ] = −t
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and, arguing similarly,

lim
γ↓0

γ −1Gγ (t) = lim
var[W ]↓0

E[− log(e−Wt/e−t )]
var[W ]

= lim
var[W ]↓0

− log(1+ var[W ]t2/2)

var[W ] = −t2

2
.

By Proposition 5, the score test forH0 :γ0 = 0 thus has limiting expectation

−E
[
δeα1β

′
0ZA∗(V ) − e2α1β

′
0ZA2∗(V )

2

]
,

where

A∗(t) =
∫ t

0

E[Y (s)eβ ′
0ZĠ◦

γ0
(Hψ∗(s))]

E[Y (s)eα1β
′
0Z] dA0(s).

SinceA2∗(V )/2 = ∫ τ
0 Y (s)A∗(s) dA∗(s), the score expectation becomes

E
[
−
∫ τ

0

{
eα1β

′
0Z − E[Y (t)e2α1β

′
0Z]

E[Y (t)eα1β
′
0Z]

}
(9.18)

× Y (t)eβ ′
0ZĠ◦

γ0
(Hψ0(t))A∗(t) dA0(t)

]
.

This clearly is equal to 0 whenγ0 = 0. Validity under contiguous alternatives
follows from the regularity of the estimators under the correct model as established
in Theorem 5. �
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