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ABSTRACT Magnetic Levitation System or Maglev system is a modern and future technology that has

many advantages and applications. Its characteristic is highly nonlinear, fast dynamics, and unstable, so it

is challenging to make a suitable controller. The model of the Maglev system is in nonlinear state-space

representation, and then feedback linearization is implemented to obtain the linear model system. Then, the

integral state feedback control that tuned by the coefficient diagram method is implemented. The robustness

of the controller is determined using the coefficient diagram method. The result of the standard coefficient

diagram parameter will be compared with the robustness parameter. The open-loop test simulation showed

that the maglev system has a nonlinear characteristic. Among all of the uncertainties, the uncertainty of

resistance provides the highest nonlinearity, even by the small value of uncertainty. The examination of the

mass, inductance, and resistance uncertainties showed that the robustness parameter is able to handle them

and to provide a robust controller.

INDEX TERMS State feedback, robust control, coefficient diagram method, magnetic levitation, integral

control.

I. INTRODUCTION

The Maglev (the short of Magnetic Levitation) System is a

modern and future technology that levitates an object using

electromagnetic force. The simplest maglev system is shown

in Fig. 1. It consists of an object from an iron or steel ball, the

inductor to generate electromagnet force, a driver to generate

a voltage, a controller (Microprocessor or something else),

and a sensor to measure the object’s height from the inductor.

It has a contactless and frictionless characteristic. Thus, it can

give high efficiency (almost one hundred percent) [1].

The application of maglev is the maglev train [2] [3], bear-

ing [4], wind turbine [5], suspension [6], [7], and vehicles [8].

Maglev can give high efficiency so that amaglev train that can

reach 600 km/hour speed, and maglev wind turbine produces

power ten times bigger than a standard wind turbine.

In a maglev system, the electromagnetic force from the

inductor must greater than or equal with the gravity force

of its object weight. It should be generated fast so that the

object does not fall down. Therefore, a maglev system has

fast dynamic characteristics.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hao Luo .

FIGURE 1. The simplest magnetic levitation ball systems.

Another challenge comes from the uncertainty parameter

of the inductor when its temperature increases. Besides, it still

has some amount of electromagnetic force even though it is

not supplied by electrical power. This made a maglev system

has uncertainty and highly nonlinear characteristics.

Based on its natural characteristics, a maglev system needs

a highly robust controller. It is beneficial to design a suit-

able controller to control the object’s height position, which

can accommodate the uncertainty of the maglev system’s
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parameters and its fast dynamic characteristics. The tuning

of parameter controllers also plays an important role in the

effectiveness and efficiency of the controller; hence a trial and

error method should be avoided. A standard method to tune

the controller’s parameters is needed to guarantee the high

performance of the augmented system.

There are some proposed methods to control the maglev

system such as PID controller [9], the fuzzy logic controller

[10], [11], LQR [12], Fault-tolerant control and state observer

[13], nonlinear power shaping [14], sliding mode control

[15], Global Sliding Mode Control [16], Modified Sliding

Mode Control [17], feedback linearization [18] and back-

stepping [19]. Each of them has its own advantages and

disadvantages. A linear control is not suitable for a maglev

system, while nonlinear controllers need complex mathemat-

ical analysis to match the system model.

Therefore, it is best to combine both nonlinear controllers

with linear control to provide a simple controller yet robust

and effective to control themaglev system. In the research, the

simplest nonlinear control feedback linearization was used to

convert the nonlinear model to a linear model. Hence, a linear

controller, state feedback control [20], can be implemented.

A modification of state feedback control is then proposed by

adding integral control to eliminate the steady-state error of

the system.

The state feedback controller is a controller in the modern

control system that supports multiple inputs and multiple

outputs (MIMO) and uses state-space model representation.

Based on the previous work [21], a process to determine the

controller’s parameters always become a problem. It is very

important to choose the correct parameter value because it

will affect the augmented system performance. Because of

that, the coefficient diagram method (CDM) [22], [23] was

used to solve the problem. The CDM, which was proposed

by Manabe, could avoid the trial and error [24]. It has

a standard parameter, and the system performance can be

chosen based on it. The standard parameter of CDM is enough

to give the best performance from the side of transient-

response and steady-state error specifications, but not for the

robustness [25].

In the research, uncertainty and disturbance will be used

to evaluate the robustness of the proposed controller. The

controller is based on a combination of nonlinear and linear

control. The nonlinear control used in the proposed con-

trollers is feedback linearization, while the linear control

used is state feedback with integral control. Both types of

CDM parameters (robust and standard parameter) are used

for tuning the controller. The achieved simulation results will

then be compared and analyzed.

The paper will be arranged as follows. Section one is the

introduction. Section two will discuss the proposed method.

Section three will discuss the methodology of the research,

which consists of Maglev system modeling, feedback lin-

earization method, integral control with state feedback,

Coefficient Diagram Method, and Ackermann’s Formula.

Section four will provide a result and discussions. The last

FIGURE 2. The proposed controller system.

section will consist of conclusions and future work of the

research.

II. PROPOSED METHOD

The proposed method in the research is shown in Fig. 2.

The Maglev system block is the nonlinear model. The set

point is used to give the object reference position, and the

proposedmethodmust follow it. Comparing the set point with

the feedback will be obtained the difference value or the error

value that becomes an input for integral control.

The input of the state feedback block is all of the states,

while the feedback only sends one state, the position. The

proposed controller consists of the nonlinear control signal

from feedback linearization and the linear control signal from

state feedback with integral control. The parameter gains of

state feedback and integral control will be tuned by using a

coefficient diagram with the robustness criteria. The output

system is the object position.

III. MODEL OF MAGLEV SYSTEM

There are somemethods to determine themodel of themaglev

system. It can use Newton or Lagrange equations. Generally,

it can be generated from a mechanical and electrical analyt-

ical point of view. The maglev system model is a nonlinear

system. The diagram of the simplest maglev system is shown

in Fig. 3.

FIGURE 3. The simplest maglev system.

Based on Fig. 3, The inductor produces electromagnetic

force, and the object mass produces the gravity force. To

levitate the object, the electromagnetic force and the gravity

force needs to be equal. If the electromagnetic force is larger
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than the gravity force, the object will hit the inductor. Vice

versa, if the gravity force is larger than the electromagnetic

force, the object will fall.

Based on the mechanical approach using the Newton sec-

ond law, the dynamic equation of the maglev system in Fig. 3

is,

m
d2x

dt2
= mg− k

(
i

x

)2

(1)

wherem is mass of the object, g is the gravity constant, k is the

electromagnetic constant, i is current, x is the object position.

Meanwhile, based on the electrical analysis using

Kirchhoff’s voltage law, the equation is

di

dt
= −

R

L
i−

2k

L

i

x2
dx

dt
+

1

L
e (2)

where R is the resistance, L is the inductance, e is the supply

voltage.

The state variables must be determined to get a nonlinear

state-space model. It could be written as x1 = x (position),

x2 = ẋ (velocity), x3 = i (current), u = e (applied voltage).

Thus, the input model for the maglev system is



ẋ1
ẋ2
ẋ3


 =




x2

−
kx23

mx21
+ g

−
R

L
x3 +

2k

L

(
x2x3

x21

)




+




0

0
1

L


 u. (3)

The output model is the position, and it could be written as

y = x1. (4)

Based on the input model, it can be known that the maglev

system has a nonlinear part, which is shown by the quadratic

part of the equation. The nonlinear method was used to elim-

inate the quadratic part. It was because that the suitable con-

troller to handle nonlinear systems is the nonlinear method.

Because of that, the feedback linearization was used.

IV. FEEDBACK LINEARIZATION

The applied feedback linearization in the research is based

on Slotine and Li [26] and Khalil [27]. It is used to get the

linear model. The idea of Feedback Linearization is to cancel

the nonlinearity using a control signal that contains a similar

nonlinear part. Thus the model will become an equivalent

linear model.

As to implement feedback linearization, the new variables

are stated as,

z1 = x1, (5)

z2 = x2, (6)

z3 = g−
kx23

mx21
. (7)

Thus, the new differential equations are,

ż1 = z2, (8)

ż2 = z3, (9)

ż3 = −
2k

m

(
x3ẋ3

x21

)
+

2k

m

(
x23 ẋ1

x31

)
, (10)

ż3 = α (x) + β (x) u, (11)

where

α (x) = −
4k2x2x

2
3

mLix
4
1

+
2kRx23

mLix
2
1

+
2kx23x2

mx21
, (12)

β (x) = −
2kx3u

mx21Li
. (13)

The new state equations are,

ż1 = z2, (14)

ż2 = z3, (15)

ż3 = α (x) + β (x) u, (16)

The nonlinearity part can be canceled by using the control

input u as

u =
1

β (x)
(v− a (x)) , β (x) 6= 0, (17)

where v is the new input signal from other controllers. There-

fore, the linear state equations become,

ż = Az+ Bu (18)

y = Cz (19)

where

A =



0 1 0

0 0 1

0 0 0


 B =



0

0

1


 C =

[
1 0 0

]
(20)

The system is categorized as a 3rd order of the integrator

system, which can be written in transfer function representa-

tion as

1

s3
(21)

Hence, the system (21) cannot be controlled by a PID con-

troller as the system has a higher order than a second-order

system [28].

V. INTEGRAL STATE FEEDBACK CONTROL

The state feedback is a controller in the modern control sys-

tem that uses state-space representation. The block diagram

of the proposed controller is shown in Fig. 4. The proposed

controller consists of state feedback and integral control. The

integral control could be known as feed-forward or r-scale

technique (another servo state feedback). It is used to elimi-

nate the steady-state error. Meanwhile, state feedback is used

to make the system have a good response performance, such

as fast rise time, quick settling time, a minimum overshoot

without undershooting response. The FL block is the Feed-

back Linearization (FL), and the MLS block is the Magnetic

Levitation System (MLS).
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FIGURE 4. Integral state feedback.

Based on Fig. 4, the equations for the system are

ẋ = Ax + Bu (22)

y = Cx (23)

u = −Kx + kI ξ (24)

ξ̇ = r − y, (25)

ξ̇ = r−Cx, (26)

where x is state vector of the plant (n-vector), u is control

signal (scalar), y is the output (scalar), r is the reference input

signal (step function, scalar), A is n× n constant matrix, B is

n × 1 constant matrix, C is 1 × n constant matrix, kI is the

integral gain, K is the state feedback gain, ξ is the output the

integrator.

Assume the reference signal is step unit,
[
ẋ

ξ̇

]
=

[
A

−C

0

0

] [
x

ξ

]
+

[
B

0

]
u+

[
1

0

]
r, (27)

For t > 0, the state equation is

ė = Âe+ B̂ue, (28)

where

e =

[
x

ξ

]
Â =

[
A

−C

0

0

]
B̂ =

[
B

0

]
(29)

and the overall control signal is

ue = −K̂e (30)

where

K̂ =
[
K | −kI

]

=
[
k1 k2 k3 | −kI

]
(31)

The state error equation is

ė = (Â − B̂K̂)e (32)

The system must be examined first to implement the pro-

posed controller. It is to investigate the system, whether it

fulfills the controllability matrix criterion and states control-

lability or not. The controllability matrix is written as

M =
[
B AB A

2
B
]

(33)

and the state controllable matrix is

P =

[
A B

−C 0

]
(34)

The rank of the controllability matrix and state controllable

matrix will determine the possible arbitrary pole placement.

The rank value of the state controllable matrix must be rank

> 0 in order to be able to implement the integral state feed-

back controller.

VI. COEFFICIENT DIAGRAM METHOD

The CDM is proposed by Manabe [29]. It uses a polynomial

approach to design a controller. It belongs to the third method

in control system design after the classical control system and

a modern control system. It is similar to the pole placement

method [30] but has standardized parameters.

In pole placement, the pole location can be determined

anywhere in s-plane. If the pole is too far from the imagi-

nary axis, the control signal will be too big and unrealistic

for real implementation. In CDM, target pole locations are

determined based on the specific performance specifications

that we want to achieve, for example, settling time less than 5

seconds and no overshoot in response. The desired pole loca-

tions are described by the closed-loop polynomial. Hence, the

CDMwill provide better system response and amore realistic

control signal.

Parameters of CDM, such as equivalent time constant and

stability index are used to build the target polynomial. These

parameters have recommended based on specific functions,

i.e. standard and robust parameters.

In CDM, there are open-loop polynomial, the target poly-

nomial, and the closed-loop polynomial. The open-loop poly-

nomial (POL (s)) is the system characteristic before the con-

troller is implemented, it can be obtained as follow,

POL (s) = |sI − A| (35)

= ans
n + an−1s

n−1 + . . . + a1s + a0, (36)

Meanwhile, the target polynomial (PT (s)) is the desired

characteristic built of CDM parameters and specific per-

formance specifications that we want to achieve. Later, it

is equivalent to the closed-loop polynomial PCL (s). The

closed-loop polynomial contains the target pole locations.

PT (s) = a0







n∑

i=2



i−1∏

j=1

1

γ
j
i−j


 (τ s)i



+ τ s+ 1


 (37)

PCL (s) = αns
n + αn−1s

n−1 + . . . + α1s + α0, (38)

where τ is the equivalent time constant, γ is the stability

index, αn is the coefficient, and

α0 =

∏n−1
j=1 γ

j
n−j

τ n
. (39)

Its parameters (stability index and equivalent time con-

stant) affect the system performances. It can determine the

robustness (disturbance rejection) and performance specifi-

cations (such as fast settling time). For the best response

performances, the standard parameter of CDM can be used.

Based on the Manabe criterion [22], the recommended

standard parameter of stability index for (37) to obtain the

best system response performance is,

γi =
[
2.5 2 2 . . .

]
, (40)
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While the robust stability index parameter for (37) is

γi =
[
4 4 4 . . .

]
, (41)

for i equal to integer numbers, i.e., 1, 2, 3, and etc. Moreover,

the stability index value must not be greater than 4, or it will

result in an unrealistic value of control signal.

Furthermore, another parameter is the equivalent time con-

stant τ , which affects the settling time. Smaller values of

equivalent time constant provide faster settling time as can

be shown as follow,

τ =
ts

2.5
∼
ts

3
. (42)

The chosen τ then is also used to determine the characteristic

of target polynomial in (37). This polynomial then is applied

for Ackermann Formula to get the controller gains value.

In CDM, there is a specific graph called a coefficient dia-

gram that provides information about the stability and system

response in the logarithmic value. The effect of the stability

index and the response is shown in Figure 5. Meanwhile, the

effect of the equivalent time constant is shown in Figure 6.

Based on the Figure, the x-axis is the i-th coefficient, and

the y-axis is the coefficient value based on the closed-loop

polynomial in (35).

FIGURE 5. The effect of the stability index value.

VII. ACKERMANN’S FORMULA

Consider a system in state-space representation as follows,

ẋ = Ax − Bu (43)

and the state feedback control signal is

u = −Kx. (44)

Hence, the equation of system (43) with state feedback

control (44) becomes

ẋ = (A − BK) x. (45)

Assume that

Ã = A − BK, (46)

FIGURE 6. The effect of the equivalent time constant.

so that the desired characteristic equation is

|sI − A + BK| = |sI − Ã| (47)

= sn+α1s
n−1+. . .+αn−1s+αn=0. (48)

Based on the Cayley-Hamilton theorem, Ã satisfied its own

characteristic equation as

φ
(
Ã
)

= Ã
n + α1Ã

n−1 + · · · + αn−1Ã + αnI = 0 (49)

Consider the following identities

I = I (50)

Ã = A − BK (51)

Ã
2 = (A − BK)2 = A

2−ABK − BKÃ (52)

Ã
3 = (A − BK)3 = A

3−A
2
BK − BKÃ−BKÃ

2 (53)

Using n = 3, the characteristic equation (49) as

α3I + α2Ã + α3Ã
2
+ Ã

3

= α3I + α2A + α1A
2 + A

3 (54)

−α2BK − α1ABK−α1BKÃ

−A
2
BK − ABKÃ−BKÃ

2 (55)

Based on (46), the equation is

α3I + α2Ã + α1Ã
2
+ Ã

3 = φ
(
Ã
)

= 0 (56)

Also

α3I + α2A + α1A
2 + A

3 = φ (A) 6= 0 (57)

Substitute (56) and (57) in α3 obtained

φ
(
Ã
)

= φ (A) −α2BK−α1ABK

−BKÃ
2−α1BKÃ

−ABKÃ−A
2
BK (58)

Since φ
(
Ã
)

= 0 obtained

φ (A) = B

(
α2K−α1KÃ−KÃ

2

)

+AB
(
α1K − KÃ

)
+ A

2
BK (59)
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= [ B | AB | A2
B]

×




α2K−α1KÃ−KÃ
2

α1K − KÃ

K


 (60)

Multiplying both sides of (60) by the inverse of the con-

trollability matrix, obtained

[B | AB | A2
B]

−1
φ (A)=




α2K−α1KÃ−KÃ
2

α1K − KÃ

K


 (61)

Multiplying both sides of (58) by
[
0 0 1

]
, obtained

[
0 0 1

] [
B | AB | A

2
B
]−1

φ (A)

=
[
0 0 1

]



α2K + α1KÃ + KÃ
2

α1K + KÃ

K


 (62)

Which can be written as

K =
[
0 0 1

] [
B | AB | A

2
B
]−1

φ (A) . (63)

For an arbitrary positive integer n, the state feedback gain

is,

K =
[
0 0 · · · 0 1

]
[
B | AB | · · · | B

n−1
B
]−1

φ(A) (64)

where

φ (A) = A
n + α1A

n−1 + · · · + αn−1A + anI. (65)

where, α1 is the coefficient closed-loop polynomial. In MAT-

LAB, the function of Ackermann formula can be applied by

using the acker command.

VIII. RESULT AND DISCUSSION

There are six examinations that will be simulated. The first

examination is coefficient diagram method examination. The

next examination is the open-loop stimulation of the maglev

system. The next examination is conducted to analyze the

proposed controller under the uncertainty of mass, the uncer-

tainty of inductance, the uncertainty of resistance, and distur-

bance.

The parameters of the Maglev system are as follows. The

mass is 0.36kg, the inductance is 0.12H , the resistance is

9�, the inductor constant is 0.00013Nm2/A∧2, the equilib-

rium position is 0.01m, and the equilibrium current is 3.2A.

The maximum height of an object is 0.02 meters from the

inductor. If the height exceeds the maximum limit, then the

examination is considered to fail.

Based on the (34), the rank of the system in (28) is 3, which

is rank > 1. Thus, the system completely states controllable.

Therefore, the state feedback with integral control is applica-

ble to the system.

TABLE 1. Integral state feedback gains parameter.

A. COEFFICIENT DIAGRAM METHOD EXAMINATION

Based on the CDM, using the standard stability index and

the robustness stability index, target closed-loop polynomial

in (38), also using the Ackermann’s formula in (64), the

integral state feedback gains can be obtained. The result of

the target closed-loop polynomial and integral state feedback

gains is shown in Table 1. The coefficient diagram of the

target closed-loop polynomial is shown in Fig. 7.

FIGURE 7. Coefficient diagram method.

Fig. 7 is the relation between the stability index to the

coefficient value of the closed-loop polynomial. The bigger

the stability index, then the coefficients of the closed-loop

polynomial are also bigger. Bigger coefficients mean bigger

pole values. Bigger poles mean the pole locations are located

farther than the imaginary axis, or closer to the infinity value.

Meanwhile, it is known that pole locations that provide more

stability are the ones located farther from the imaginary axis

on the half-left plane. Hence, the bigger value of stability

index improves the system’s stability better.

The robustness of the system also can be inferred from

Fig. 7. The convexity curve of the graph line contains infor-

mation about stability and robustness. The coefficient curve

shape sensibility due to plant parameter variation is a measure

of system robustness. The larger and the higher the position of

the coefficient curve, the system is more robust to disturbance

and more immune to the change of parameters. The blue-

colored line is higher and has larger curvature based on the
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coefficient diagram so that the system will be more robust to

disturbance and uncertainties.

B. OPEN LOOP SIMULATION

The first examination is an open-loop simulation. It is used

to determine the characteristics and behavior of the maglev

system. It can be shown in Fig. 8. The y-axis is time in second,

and the x-axis is the position in the meter.

FIGURE 8. Open loop response simulation.

It can be seen in Fig. 8 that the natural characteristics of

the system are highly unstable with fast dynamic nonlinear

behavior. The system is highly unstable because the response

is unbounded while the given input is bounded. Fast dynamic

nonlinear can be known from the time needed for the output

to get to a certain amplitude; the system can reach 100 meters

in position in less than 1 second of simulation time.

C. RESPONSE OF MASS UNCERTAINTY

The examination is done by replacing the ball’s mass in a

maglev system with varying mass values. The default mass

is 0.36kg, and the examination uses 1kg of object mass. The

response is shown in Fig. 9. The red line is the response from a

standard parameter of CDM, and the blue line is the response

from a robust parameter of CDM. The x-axis is the time value,

and the y-axis is the object height from the inductor.

Based on Fig. 9, it can be seen that a good system

response performance with better disturbance rejection can

be achieved from a controller with a stability index parameter

as [4 4 4]. Meanwhile, an oscillated response is obtained from

the standard parameter of the stability index as [2.5 2 2].

D. RESPONSE OF INDUCTANCE UNCERTAINTY

In this experiment, the test is done by changing the inductance

value at specific seconds. The experimental results are shown

in Fig. 10, and the changes in the inductance value are set at

the third second. The default inductance value is 9H, and the

examination uses 9.1H of inductance. Based on the test in Fig.

10, the stability index with a value of [4 4 4] is more robust

against changes in the value of resistance. Meanwhile, the

FIGURE 9. The response of mass uncertainty.

FIGURE 10. The response of inductance uncertainty.

stability index with a value of [2.5 2 2] is highly affected by

changes in the resistance value, giving overshoot in response.

However, it is able to stabilize the change of the value and

to return to its preferred position with a longer time than the

use of [4 4 4] parameters. Moreover, these results can still

be tolerated because they do not exceed the maglev system

height limit of 0.02 meters.

E. RESPONSE OF RESISTANCE UNCERTAINTY

In this experiment, the test is done by changing the resistance

value at specific seconds. The experimental results are shown

in Fig. 11. and the changes in the resistance value are set at

the third second. The default resistance value is 0.12�, and

the examination uses 0.15� of resistance. Based on the test

in Fig. 11, the stability index with a value of [4 4 4] is more

robust against changes in the value of resistance. It even looks

like the augmented system did not get affected at all with the

uncertainty. Meanwhile, the stability index with a value of

[2.5 2 2] makes the augmented system affected by changes in

the resistance value. However, it is still able to return to the

preferred position. These results can still be tolerated because

VOLUME 8, 2020 57009



I. Iswanto, A. Ma’arif: Robust Integral State Feedback Using Coefficient Diagram in MLS

FIGURE 11. The response of resistance uncertainty.

FIGURE 12. The response of disturbance.

they do not exceed the maglev system height limit of 0.02

meters.

F. RESPONSE OF DISTURBANCE

In the test, a disturbance is given to the system in the third

second of the simulation time. The test result is shown in

Fig. 12. The blue-colored line represents the system response

when the robust parameters are implemented to the controller.

Meanwhile, the red-colored line shows the system response

when a standard parameter is used in the controller. Based on

the test result, the implementation of robust parameters to the

controller provides a faster and smaller undershoot response

in stabilizing the system back to the reference target after

the disturbance is given. However, the standard parameter

provides a faster rise time before the disturbance is given

while the robust parameter makes the system respond a bit

slower.

IX. CONCLUSION

Based on the simulation results, it can be concluded that the

coefficient diagram method can provide parameter gains that

fulfill robustness criteria from disturbance and uncertainties

without compromising the object position of the maglev sys-

tem.Moreover, the standard parameter of CDM is not suitable

for a system with high disturbance and uncertainties. The

best parameter of stability index for robustness criterion is

[4 4 4] which guarantees both zero steady-state error and best

disturbance and uncertainties rejection.
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