
1

Robust Interactive Image Segmentation Using

Convex Active Contours
Thi Nhat Anh Nguyen, Jianfei Cai, Senior Member, IEEE, Juyong Zhang, and Jianmin Zheng

Abstract—The state-of-the-art interactive image segmentation
algorithms are sensitive to the user inputs and often unable to
produce an accurate boundary with a small amount of user
interaction. They frequently rely on laborious user editing to
refine the segmentation boundary. In this paper, we propose a
robust and accurate interactive method based on the recently
developed continuous-domain convex active contour model. The
proposed method exhibits many desirable properties of an
effective interactive image segmentation algorithm, including
robustness to user inputs and different initializations, the ability
to produce a smooth and accurate boundary contour, and the
ability to handle topology changes. Experimental results on
a benchmark data set show that the proposed tool is highly
effective and outperforms the state-of-the-art interactive image
segmentation algorithms.

Index Terms—Interactive image segmentation, convex active
contour, digital image editing.

I. INTRODUCTION

Interactive image segmentation, which incorporates small

amount of user interaction to define the desired content to

be extracted, has received much attention in the recent years.

Many interactive image segmentation algorithms have been

proposed in the literature. In general, interactive image seg-

mentation algorithms can be classified into two categories:

boundary-based approaches and region-based approaches.

In boundary-based approaches, the user is often asked to

specify an initial area that is close to the desirable boundary.

The active contours/Snake method [1] attempts to evolve an

initial contour toward the object boundary. Methods based

upon intelligent scissors [2], [3] apply Dijkstras shortest path

algorithm to find a path between boundary seed points speci-

fied by the user.

Considering that the boundary-based approaches require

great care to specify the boundary area or the boundary points,

especially for complex shapes, most recent interactive image

segmentation algorithms take the regional information as the

input. In particular, in region-based approaches, the user is

often asked to draw two types of strokes to label some pixels
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as foreground or background, after which the algorithm com-

pletes the labelling of all other pixels. State-of-the-art region-

based interactive segmentation algorithms include Graph Cut

based methods [4], [5], Random Walks based methods [6],

[7], [8], and Geodesic methods [9], [10]. All these methods

basically treat an image as a weighted graph with nodes

corresponding to pixels in the image and edges being placed

between neighboring pixels, and minimize a certain energy

function on this graph to produce a segmentation.

In this paper, we consider the problem of interactive image

segmentation with the input of foreground and background

strokes, which requires only a small amount of interaction

from the user. By carefully examining the state-of-the-art

region-based approaches, we find that their performance is

limited in terms of robustness and accuracy. First, many of

the state-of-the-art region-based methods are overly sensitive

to small variations in the interactions provided by the user

(see Fig. 1). As pointed out in [11], the Graph Cut algorithm

is sensitive to the number of seeds, while the Random Walks

and Geodesic algorithms are sensitive to locations of seeds.

This is mainly due to the different behaviors of the different

energy functions. For example, Graph Cut tries to minimize

the total edge weights along the cut. Thus, it may return very

small segmentations (known as the “small cut” problem) in

the case with small number of seeds provided. Random Walks

based approaches minimize a Dirichlet energy functional with

respect to the boundary conditions (locations of seeds), and

variations in the boundary conditions result in different har-

monic functions.

Second, the boundaries generated by the region-based ap-

proaches, especially those generated by Random Walks and

Geodesics based approaches, are often jaggy and do not

adhere to the geometric features in the image (see Fig. 1). An

additional refinement step is often needed to improve the seg-

mentation performance of the existing region-based methods.

Most of the state-of-the-art interactive image segmentation

methods [5], [6], [9], [8] rely on additional user inputs to either

globally or locally refine the boundary. However, when dealing

with complex images, the user is often required to provide a

lot of additional strokes or boundary points and thus struggles

with laborious refinement/editing. Another way for boundary

refinement is to use the active contours/Snakes model [1] to

refine the initial boundary contour produced by a region-based

segmentation approach as in [12]. However, the refinement

based on Snakes is only able to change the contour locally

for smoothness but incapable of evolving the entire contour

to snap to geometry features/edges and incapable of handling

topology changes of the evolving contour.
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(a) Input (b) Random Walks (c) Geodesic (d) GrabCut (e) Our method

Fig. 1. The segmentation results of different algorithms, including Random Walks [6], Geodesic [9] and GrabCut [5], and our proposed method. Note that
GrabCut is an advanced version of Graph Cut. The three state-of-the-art algorithms are overly sensitive to different user inputs while our method is quite
robust. In addition, the existing methods produce jaggy boundary contours while our constrained active contour method is able to smooth out the contours
and make them snap to geometric edges without additional user input.

The above observations motivate us to design a new method

for interactive image segmentation. The mathematical tool

at the heart of the new method is the continuous-domain

convex active contour model [13], which makes use of both

the boundary and the regional information to find a global

“optimal” solution. Continuous-domain convex methods have

started to receive attention since they avoid the inherent grid

bias in all discrete graph-based methods and also have fast and

global numerical solvers through convex optimization [13],

[14]. However, the convex active contour model so far has

mainly been applied for automatic image segmentation, which

often results in over-segmentation with trivial solutions for

complex images [13], [15]. On the other hand, it is not

clear how to apply the convex active contour model [13] for

interactive image segmentation. Directly incorporating user

inputs as hard constraints into the model does not lead to better

performance. The major contributions of this paper include

• We propose to marry the powerful continuous-domain

convex active contour with one of the state-of-the-art

region-based methods, either Geodesic or Random Walks

(Geodesic is chosen due to its fast processing speed),

where the region-based method is used in the first step

to generate an initial contour and the convex active

contour is then applied in the second step to optimize the

contour. Note that here we not only use the region-based

method to generate an initial contour, but also incorporate

the information obtained in the pre-segmentation into

the convex active contour model, which is non-trivial.

Such an integration utilizes the seed propagation and

the location features introduced by Geodesic / Random

Walks to reduce the possible “small cut” problem in

the convex active contour, and also the powerful contour

evolving capability provided by the convex active contour

model to absorb the non-robustness of the region-based

approaches. It ensures that the contour evolving does not

drift too far away from the initial contour, complies with

the user input, reflects the user intention and snaps the

contour to geometry features.

• In addition, considering that the convergence speed for

solving the convex active contour model is generally slow,

we make use of the Split Bregman method, as in [16],

to solve the proposed constrained convex active contour

model rapidly.

Experimental results show that the proposed method is fast,

robust to different user inputs and different initializations, and

capable of producing good results reflecting user intention and

geometric features.

The rest of the paper is organized as follows. Section II

reviews the general convex active contour model designed

for automatic image segmentation and the use of the Split

Bregman method to solve the model. Section III presents our

proposed constrained active contour model, which incorporates

the user input and the initial segmentation result into the

convex active contour model. Section IV shows the experi-

mental results to demonstrate the effectiveness of our proposed

method. Finally, Section V concludes the paper.

II. RELATED WORK

As previously noted, the classical active contour model [1]

is primarily used to perform local contour adjustment to

improve the smoothness. The geodesic active contour model

proposed in [17] is capable of evolving the entire boundary

contour to snap to geometry edges, but it heavily depends

on the edge detection function. The active contour without

edges model [18] adds in regional information and removes

the dependency on edge detection, but it is often trapped in

local minimum due to non-convex modelling. In this section,

we briefly review the convex active contour model recently

introduced in [13], which is able to find the global minimum

solution, and its application on automatic image segmentation.

Furthermore, we also summarize the use of the Split Bregman

method for solving the convex active contour model rapidly,

which has been discussed in [16].

A. Convex Active Contour Model

The convex active contour model introduced in [13] can

be generally expressed as

min
0≤u≤1

(

∫
Ω

gb|∇u| dx+ λ

∫
Ω

hru dx), (1)
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with the following symbol definitions:

• u is a function on image domain Ω, which receives a

value between 0 and 1 at each pixel location x in the

image. The segmented region is obtained by thresholding

the function u.

• Function gb is a boundary function, which is often an

edge detection function such as

gb(x) =
1

1 + |∇I(x)|2
(2)

where I(x) is the intensity of image pixel x.

• Function hr is a region function that measures the inside

and outside regions. Particularly, hr = hin
r −hout

r , where

hin
r and hout

r are the inside and outside region functions,

respectively. They are often defined as

hin
r (Cin, x) = (µin − I(x))2, µin =

∫
Cin

I(x) dx∫
Cin

dx

hout
r (Cout, x) = (µout − I(x))2, µout =

∫
Cout

I(x) dx∫
Cout

dx
,

where µin and µout are the mean intensities for inside

and outside regions, Cin and Cout, respectively.

Basically, Eq. (1) consists of two terms balanced by a tradeoff

factor λ, where the first term is a boundary term and the second

term is a region term.The boundary term favors segmentations

with boundaries along areas where the gradient is small, and

also favors segmentations which have a smooth boundary. The

second term ensures the segmentation complying with some

region coherence criteria defined in function hr.

Once the optimization problem of (1) is solved, the seg-

mented region is found by thresholding the function u, i.e.

Cin = {x|u(x) > T}, (3)

where typically T = 0.5.

The automatic segmentation problem based on the convex

active contour model of (1) is usually solved by an alternate

iterative approach depicted as follows.

1) Fix the segmentation, i.e. Cin and Cout, and update hr.

2) Fix hr to find the solution u for (1).

3) Update Cin and Cout according to (3)

The above three steps are repeated until convergence (i.e.

when Cin and Cout no longer change). It can be seen that

the computation bottleneck of this iterative approach lies in

step 2, i.e. solving the optimization problem of (1).

B. Split Bregman Solver

Several methods have been proposed to solve (1) for a given

hr. Chan et al. [15] proposed to either enforce the inequality

constraint of (0 ≤ u ≤ 1) using an exact penalty function,

which is non-differentiable, or regularize the penalty function,

which does not exactly enforce the inequality constraint.

Bresson et al. [13] used a splitting/regularization approach

to minimize (1). Their method “smears” the values of u

near the object boundaries, and thus makes the segmentation

results more dependent on the cutoff parameter T , which could

eliminate the segmentation details.

Recently, Goldstein et al. [16] proposed to use the Split

Bregman method to solve (1). The Split Bregman method is

not only able to solve the convex active contour model but

also a much more efficient solver. In the following, we briefly

summarize the use of this Split Bregman solver as introduced

in [16].

In particular, instead of solving (1) directly, Bregman intro-

duced a new vectorial function d into the model as

min
u∈[0,1]

∫
Ω

gb|d|+ λhru dx, (4)

with the constraint of d = ∇u. This constraint is enforced

using the efficient Bregman iteration approach defined as

(uk+1, dk+1) = arg min
u∈[0,1],d

∫
Ω

gb|d|+ λhru

+
µ

2
|d−∇u− bk|2 dx (5)

bk+1 = bk +∇uk+1 − dk+1, (6)

where k is the iteration index, k ≥ 0. The computations of (5)

and (6) are repeated until convergence.

Since (5) is differentiable, it can be solved using a simple

alternating method. Specifically, the function is first differen-

tiated with respect to u using the Euler-Lagrange Differential

Equation, which results in the following optimality condition

for u:

µ∆u = λhr + µ div(dk − bk), u ∈ [0, 1]. (7)

where ∆u is the Laplacian of u and div(dk− bk) is the diver-

gence of (dk − bk). Based on (7), uk+1 can be approximately

obtained by a Gauss-Seidel iterative method [16]. After that,

(5) is solved with respect to d. It has been shown in [19] that

the minimizing solution dk+1 is given by soft-thresholding:

dk+1 =
∇uk+1 + bk

|∇uk+1 + bk|
max(|∇uk+1 + bk| − µ−1gb, 0). (8)

III. OUR METHOD

In this section, we describe the proposed constrained active

contour method, which extends the convex active contour

model of (1) (originally designed for automatic image seg-

mentation) for interactive image segmentation.

A. Contour Initialization

For any active contour method, the contour needs to be

initialized before the contour evolution process. Here, we use

the segmentation result of the Geodesic method [9] for contour

initialization due to its fast processing speed and the ability to

avoid the “small-cut” problem.

In particular, we represent the result of the Geodesic algo-

rithm by a probability map P (x), whose value is within the

range of [0,1] indicating the probability that pixel x belongs

to the foreground region. In the Geodesic algorithm, for a

pixel x, its geodesic distances to the foreground or background

seed regions are computed, which are denoted as DF (x) and

DB(x) respectively. Then, an estimate of the probability that

the pixel x belongs to the foreground is calculated as

P (x) =
DB(x)

DF (x) +DB(x)
.
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Once the probability map is available, we initialize the contour

evolution by assigning P (x) to the function u(x) in (1).

It is worth mentioning that other region-based image seg-

mentation algorithms such as Random Walks [6] can also be

used for contour initialization. For example, the segmentation

result of the Random Walk algorithm can be directly used as

the probability map P (x). The second column of Fig. 3 shows

the probability maps of Geodesic and Random Walks.

B. Constrained Active Contour Model

As shown in (1), the convex active contour model consists

of two terms: a regional term and a boundary term. Next,

we discuss how to modify these two terms to incorporate the

information from the user input and the initial segmentation

result so as to ensure the refined contour complying with the

user input.

1) Regional term formulation: The foreground and back-

ground seeds give an excellent description about the color

distributions of the foreground and background regions.

Foreground/background GMMs introduced in [20] are esti-

mated from foreground/background seeds and used to rep-

resent the color distributions of the foreground and back-

ground regions. Specifically, let Pr(x|F ) and Pr(x|B)
denote the probabilities that pixel x fits the foreground

and background GMMs, respectively. The normalized log

likelihood that x belongs to foreground and background

are PF (x) = − logPr(x|F )
− logPr(x|F )−logPr(x|B) and PB(x) =

− logPr(x|B)
− logPr(x|F )−logPr(x|B) . We incorporate this regional infor-

mation derived from foreground/background strokes into the

regional term of the convex active contour model as

hr(x) = PB(x)− PF (x) (9)

This definition of hr ensures that the active contour evolves

towards the one complying with the known GMM models.

For instance, for a pixel x, if PB(x) > PF (x) (resp. PB(x) <
PF (x)) and PB(x)− PF (x) is positive (resp. negative), u(x)
tends to decrease (resp. increase) during the contour evolution

in order to minimize (1), which can lead to u(x) ≤ T (resp.

u(x) > T ) and the classification of the pixel belonging to the

background (resp. the foreground).

The hr definition of (9) fails in the case that the foreground

and background color models are not well separated. Thus, to

avoid this problem and also to make use of the segmentation

result obtained by the Geodesic algorithm in step 1, we further

propose to incorporate the probability map P (x) into the

region term hr as

hr(x) = α(PB(x)− PF (x)) + (1− α)(1− 2P (x)) (10)

where α, α ∈ [0, 1], is a tradeoff factor. The second term

(1−2P (x)) in (10) prevents the refined contour drifting too far

apart from the initial segmentation. Specifically, when P (x) >
0.5 and (1 − 2P (x)) is negative, u(x) tends to increase in

order to minimize (1), which favors classifying the pixel as a

foreground pixel, and vice versa.

It is important to properly set the tradeoff factor α in (10).

When the foreground and background colors are well separa-

ble, it is desired that the first term in (10) becomes dominating;

otherwise, the second term in (10) should dominate. Thus,

similar to the one suggested in [8], we set α to be the distance

between the foreground and the background GMMs, which is

defined as

α =
1

n

n∑
i=1

|
logPr(xi|F )− logPr(xi|B)

logPr(xi|F ) + logPr(xi|B)
| (11)

where n is the total number of pixels in the image.

In addition, it can be observed that when hr(x) → +∞
(resp. hr(x) → −∞), the regional term forces u(x) = 0
(resp. u(x) = 1) to minimize Eq. (1). This observation

allows us to enforce some hard constraints in the contour

evolution process. In particular, for those pixels that have

no ambiguity in classification, including the pixels lying on

the foreground/background strokes and the pixels having very

large or very small P (x) values (P (x) > 0.9 or P (x) < 0.1),

we treat them as hard constraints in the contour evolution

process. We directly assign a negative hr value and a positive

hr value, both with extremely large magnitude, to these

confirmed foreground and background pixels, respectively. In

this way, we guarantee that the refined result complies with the

user input and also exploit more information from the initial

segmentation result.

Note that unlike the hr definition in section II-A, our

proposed hr model is fixed given the user input and the

initial segmentation. Thus, there is no need for the three-step

alternate iteration described in section II-A. Instead, only step

2 is needed, which can be solved by the Split Bregman method

discussed in section II-B.

2) Boundary term formulation: The boundary term of∫
Ω
gb(x)|∇u| dx in (1) is essentially a weighed total variation

of function u, where the weight gb plays an important role.

The definition of gb in (2) is effective in the sense that

it encourages the segmentation along the curves where the

edge detection function is minimal. The problem with (2)

is that at locations with weak edges the boundary is likely

to be smoothed out. Thus, in this paper, we propose to

incorporate the GMM probability map PF (x) to enhance the

edge detection. Particularly, we define gb as

gb = β · gc + (1− β) · ge (12)

where gc and ge are the results of applying the edge detection

to the GMM probability map PF (x) and the original image,

respectively, and β, β ∈ [0, 1], is a tradeoff factor computed in

a similar way as α given in (11). Note that the edge detection

function returns values between 0 to 1 and a small value of

gb corresponds to a likely edge.

Fig. 2 compares the results with and without incorporating

the edge detection of the GMM probability map. It can be seen

that incorporating gc enhances the conventional edge detection

result ge, especially at the weak edges, which leads to a more

accurate boundary contour.

IV. EXPERIMENTAL RESULTS

A. Parameter Setting

Our proposed method has a few parameters, including

{λ, T, µ, α, β}. The settings of α in (10) and β in (12) have
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(a) Original image (b) GMM map (c) Result using (2) (d) Result using (12)

(e) ge (f) gc (g) gb using (12)

Fig. 2. Comparisons of the results using the two different gb definitions in (2) and (12), respectively. Note that some boundary problems due to using (2)
are marked in (c).

been discussed in Sections III-B1 and III-B2, respectively. The

parameter λ in (1) allows the user to control the scale and the

smoothness of the segmentation. A smaller value of λ results

in a smoother contour. We empirically set λ to be 100 in our

experiments. The parameter T in (3) is set to 0.5, although

the results are quite robust to different values of T . This is

because the converged u values are typically close to either

0 or 1. The parameter µ in (5) is set to 10000 empirically.

Note that all the parameters are set in the same way for all

the experiments.

B. Test on The Benchmark Data Set

The commonly used MSRC ground truth data set [5] is

chosen for testing and comparison. The MSRC data set con-

tains 50 test images, each of which are provided with trimaps

and ground truth. Table I summarizes the achieved error rates

(percentage of mislabelled pixels) by different state-of-the-art

interactive image segmentation algorithms and our proposed

method. We also test several variants of our method, where

we replace the Geodesic method by the Random Walks or the

Yang’s method [8]. For fair comparison, we use exactly the

same trimaps provided by the MSRC data set as the user inputs

for all the algorithms. The error rates for other state-of-the-

art algorithms are either directly quoted from the best results

reported in literature or obtained through our implementation.

Note that the MSRC data set is somewhat biased because

the provided trimaps only contain small unknown regions, for

which Geodesic and Random Walks perform well. We still

choose it since it is the only publicly available data set with

trimaps provided.

From Table I, it can be seen that our proposed method

achieves very low error rate, outperforming the state-of-

the-art interactive image segmentation algorithms, including

Geodesic [9], Random Walks [6], GrabCut [5] and Yang’s

approach [8]. In addition, the table suggests that our method

is insensitive to the initial contour since the initializations

using different methods lead to almost the same error rate

(also illustrated in Fig. 3).

TABLE I
ERROR RATE COMPARISON USING THE MSRC DATASET WITH EXACTLY

THE PROVIDED TRIMAPS.

Method Error rate (%)

GMMRF [21] 7.9 (reported in [21])
Geodesic [9] 5.21 (our implementation)
Random Walks [6] 5.4 (reported in [22])
Segmentation by transduction [22] 5.4 (reported in [22])
GrabCut [5] 5.66 (reported in [8])
Yang et al. [8] 4.08 (reported in [8])
Our method 3.768
Our method with Random Walks 3.77
Our method with Yang et al. 3.765
Random Walks with AT [22] 3.3 (reported in [22])
Segmentation by transduction with AT [22] 3.3 (reported in [22])

We would like to point out that a lower error rate of

3.3% on MSRC data set has been reported in [22], where

a segmentation by transduction (SBT) method was proposed.

In fact, the SBT itself produces a high error rate of 5.4%,

the same as Random Walks, for the MSRC dataset. When

testing the MSRC dataset with the provided trimaps, the

authors of [22] further proposed a simple adaptive threshold

method (AT) as a post-processing step for Random Walks or

SBT, which subsequently reduces the error rates of Random

Walks and SBT from 5.4% to 3.3%, for the given trimaps.

As explained in [22] itself, this large reduction in the error

rate is due to the particular form of the seeds in this data

set. As the unlabelled points only cover a small band along

the object boundary, any naive segmentation approach such

as AT that tracks the skeleton of the unlabelled points might

perform quite well on this data set. There, the AT method is

very specific to the MSRC data set or a boundary brush tool

where the unseeded region only covers a small band along the

object boundary. It does not work well for images with large

and unregulated unknown regions, as shown in Fig 4.

In contrast, our approach is general and works well on

images with large unknown regions. This is evident by all

the figures shown in this paper, where the strokes are sparsely
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(a) Input

(b) Probability Map (c) Initial contour (d) Final result

Fig. 3. The segmentation results of our methods initialized by either Geodesic [9] or Random Walks [6]. First row: our method (initialized by Geodesic);
second row: our method initialized by Random Walks.

(a) Input image (b) Trimap (c) Result by RW with AT (d) Our result

(e) Input strokes (f) Result by RW with AT (g) Our result

Fig. 4. Comparison between our method and Random Walks (RW) with the adaptive thresholding (AT) method [22]. The RW with AT method works well
with the provided trimap but fails with the input of sparse strokes.

drawn, leaving large unknown areas in the images. The good

visual results (see Section IV-C) indicate that the performance

of our method does not rely on a carefully designed trimap,

as in the MSRC data set. Moreover, our segmentation tool

implemented in C++ using the Geodesic method [9] for pre-

segmentation runs very fast, taking less than three seconds in

total to segment an image with a resolution of 640×480 on a

PC with Intel 2.67 GHz CPU and 2 GB RAM, where the speed

of convergence of our constrained active contour optimization

costs less than half a second.

C. More Visual Results

Fig. 5 shows the segmentation results of different algorithms

for three different images. It can be seen that in these cases

with large unknown regions, Geodesic and Random Walks

perform poorly, producing inaccurate and jaggy boundary

contours. Although the performance of GrabCut is much

better, its results still contain some clearly visible artifacts, e.g.

around the neck of the man, the right elbow of the boy, and

the bottom of the boat. On the contrary, our method produces

accurate and smooth contours that snap to geometry edges.

As we previously mentioned, the Random Walks and

Geodesic algorithms are sensitive to the seed locations. Fig. 6

compares the segmentation results with different user inputs.

It can be seen that, for Random Walks and Geodesic, different

users inputs result in different segmentations. In contrast, our

constrained active contour is able to fix the problem and

generate stable results insensitive to the user input, as shown

in Fig. 6.

Although the GrabCut algorithm is insensitive to the seed lo-

cations, it is sensitive to the number of seeds and has the “small

cut” problem (see Fig. 1). Fig. 7 gives another example, where

we want to cut out the fireman on the left. GrabCut tends to

include the other fireman into the foreground region due to

similar appearance. Even when more background strokes are

drawn over the fireman on the right (Fig. 7(c)), Grabcut still

chooses the minimum cut around the added strokes (Fig. 7(d)).
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(a) Input (b) Random Walks (c) Geodesic (d) GrabCut (e) Our method

Fig. 5. The segmentation results of different algorithms, including Random Walks [6], Geodesic [9] and GrabCut [5], and our proposed method, for three
different images.

(a) Input (b) Random Walks (c) Geodesic (d) Our method

Fig. 6. The segmentation results with different user inputs.
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Grabcut eventually produces the expected result after a large

number of strokes. On the contrary, our method can produce

the good segmentation result with only two input strokes.

This is mainly because in our method the combination with

the Geodesic / Random Walks helps propagate the seeds and

introduces the spatial or location information into the active

contour model, which significantly mitigates the small cut

problem. Moveover, GrabCut heavily relies on the global color

model, which often results in disjointed parts or noisy parts in

the cases that the foreground and the background have similar

color (see Figures 1, 5 and 7).

One important property of our constrained active contour

model is the ability to handle topology changes of the bound-

ary contour, which can not be achieved using the classical

Snakes model. As shown in Fig. 8, while the Random Walks

method produces two initial boundary contours that separate

the object into two halves, our constrained active contour can

evolve the boundary contours to one outer contour around

the object and one inner contour at the object’s left hand.

Similarly, the geodesic method produces only one initial closed

boundary contour while our method further produces the

additional inner contour.

D. Limitations

The proposed method is essentially a hard segmentation

method. It cannot handle transparent or semi-transparent

boundaries such as semi-lucent hair. Another inherent limita-

tion of the proposed method lies in its underlying assumption

that the shape of the object is smooth and can be well described

by the weighed shortest boundary length. It cannot handle very

sophisticated shapes such as bush branches or hair. Fig. 9 gives

two failure examples, where our method is unable to cut the

deer antlers and the tree branches in a clean way.

V. CONCLUSIONS

In this paper, we have proposed a robust and accurate inter-

active image segmentation method based on the continuous-

domain convex active contour model. We have demonstrated

that our method outperforms the state-of-the-art interactive

segmentation methods. It exhibits many desirable properties

for a good segmentation tool, including the robustness to user

inputs and different initializations, the ability to produce a

smooth and accurate boundary contour, and the ability to

handle topology changes. Our method runs very fast due to

the fact that the proposed constrained active contour model

can be solved quickly by a fast Split Bregman Method and

the adoption of the Geodesic algorithm for initialization. We

would like to point out that although the proposed constrained

active contour model is able to automatically optimize an

initial contour, it can also take additional user inputs for further

user-guided contour evolving. This is especially necessary in

either the case that the initial contour is very poor or the case

that a highly accurate result is sought.

This work can be extended in a few ways. For example,

it might be beneficial to apply the continuous-domain convex

active contour model for other segmentation problems such as

image matting or video segmentation. Also, it is interesting

to adopt some advanced evaluation method such as the user

simulation based approach proposed in [23] to fully evaluate

the performance of different interactive image segmentation

methods.
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(a) GrabCut input1 (b) GrabCut output1 (c) GrabCut input2 (d) GrabCut output2

(e) GrabCut input3 (f) GrabCut output3 (g) GrabCut input4 (h) GrabCut output4

(i) Our input (j) Our output

Fig. 7. Comparision bewteen GrabCut and our method. It can be seen that Grabcut [5] suffers the “small cut” problem while our method can quickly produce
a good segmentation result.

(a) Input (b) Random Walks (c) Our method with Ran-
dom Walks

(d) Geodesic (e) Our method

Fig. 8. An example to show the ability of our method on handling topology changes.

Fig. 9. Failure examples, where our method is unable to well handle very sophisticated shapes.
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