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Abstract— This paper addresses robust estimation of the
uncalibrated visual-motor Jacobian for an image-based visual
servoing (IBVS) system. The proposed method does not require
knowledge of model or system parameters and is robust to
outliers caused by various visual tracking errors, such as
occlusion or mis-tracking. Previous uncalibrated methods are
not robust to outliers and assume that the visual-motor data
belong to the underlying model. In unstructured environments,
this assumption may not hold. Outliers to the visual-motor
model may deteriorate the Jacobian, which can make the system
unstable or drive the arm in the wrong direction. We propose
to apply a statistically robust M-estimator to reject the outliers.
We compare the quality of the robust Jacobian estimation with
the least squares-based estimation. The effect of outliers on
the estimation quality is studied through MATLAB simulations
and eye-in-hand visual servoing experiments using a WAM
arm. Experimental results show that the Jacobian estimated by
robust M-estimation is robust when up to 40% of the visual-
motor data are outliers.

I. INTRODUCTION

In unstructured environments, the motion control of

vision-based robotic systems must be independent from geo-

metric structure, model, and calibration parameters. Vision-

based motion control has been long studied in visual servo-

ing, where visual information is used to control a robot to a

desired configuration by minimizing an error norm associated

with a task [1]. Visual tracking errors often play a key role in

the failure of a visual servo, therefore, robustness to tracking

errors should also be considered.

In this paper, we propose to apply a robust M-estimator

to numerically estimate the visual-motor Jacobian from raw

visual-motor data and statistically reject the outliers due to

different visual tracking errors. Our proposed method does

not require any prior knowledge on neither camera/robot

calibration, nor the geometric model of features. The block

diagram of our proposed system is depicted in Figure 1.

Classical approaches to visual servoing use some knowl-

edge about the model and/or the system parameters [2]. For

example, position-based visual servoing (PBVS) [3] uses

a calibrated camera and known geometric model of the

3D features to reconstruct the relative pose of the camera

with respect to the desired object. In this sense, PBVS is

model-based and not suitable for unstructured settings. The

classical image-based visual servoing (IBVS) [4] does not

require the geometric model, but the analytic form of the

image Jacobian is often used in the control loop. This image
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Fig. 1. System block diagram. The main contribution of this paper
is the robust Jacobian estimation for the uncalibrated IBVS system (see
Section III). A WAM with eye-in-hand configuration is considered.

Jacobian contains the intrinsic camera parameters and often

a 3D parameter expressed in the camera frame (e.g., for point

features, this 3D parameter is the depth). In this sense, IBVS

depends on a parametric model of the image Jacobian which

must be derived analytically in advance for each feature type.

Therefore, we consider classical IBVS as a model-based

approach 1. An issue with the classical IBVS approach is

that the 3D parameter(s) cannot be directly measured and

must be estimated from images. In addition, implementation

of the traditional PBVS and IBVS requires the knowledge

of the extrinsic calibration of the camera with respect to the

end-effector.

Advanced visual servoing approaches have been proposed

to address some of the above issues [6]. One of these

advanced methods is called uncalibrated visual servoing,

which is an IBVS approach without the need for the scene

model or camera/robot calibration [7]–[9]. The uncalibrated

image Jacobian relates the joint velocity directly to image-

space velocities, which can be estimated from previous

measurements of visual-motor data. This sets the system free

from any models or parameters. In this sense, uncalibrated

visual servoing in [7]–[9] is model-free and nonparametric .

Such uncalibrated methods are particularly important when

the analytic form of the Jacobian is not available or tedious

to derive. Throughout this paper, we use the uncalibrated

Jacobian in this nonparametric model-free sense.

Robustness in visual servoing has been studied from

different perspectives: robust visual tracking, statistically

robust IBVS, and control-theoretic stability analysis using

adaptive robust control. Many authors discuss robust visual

tracking for a visual servoing system. Kragic and Chris-

tensen [10], [11] propose robust visual tracking using a

1Some authors refer to IBVS as model-free in the sense that it does not
depend on the geometric model of the object (e.g., [5]). This should not
be confused with our usage of model-based which refers to a parametric
Jacobian model.
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voting scheme and visual cue integration to achieve ro-

bustness in unstructured settings. Preisig and Kragic [12]

use robust M-estimation and RANSAC for 3D tracking.

Comport et al. [13] compare statistically robust real-time

visual tracking algorithms. Tran and Marchand [14] propose

a fast and efficient feature descriptor for tracking and use

RANSAC to reject matching outliers between two views.

Robust M-estimation has been proposed for articulated object

tracking with applications to virtual reality by Comport et

al. [15]. Another set of papers discuss statistical robustness

within the image-based control law [16], [17]. More closely

related to the proposed method is the work of Comport et

al. [16], which proposes a statistically robust IBVS control

law. Nonetheless, they use a parametric Jacobian, where ro-

bustness is achieved by down-weighting the rows of the para-

metric Jacobian associated with corrupted features. Thus, our

proposed method differs from the work of Comport et al. [16]

in that we directly exploit the statistics of the visual-motor

data to estimate the robust Jacobian (see Figure 1).

Other approaches to robust visual servoing are either

model-based [5], [18], [19], or model-free but paramet-

ric [20], [21]. The latter, study the problem from an adap-

tive control-theoretic point of view and estimate the lin-

earized camera/robot calibration parameters using a depth-

independent Jacobian without estimating the depth directly.

Wang et al. [20] propose a depth-independent Jacobian to

estimate the linearized camera parameters on line. They

use this depth-independent Jacobian for eye-in-hand visual

servoing of point and line features without knowledge of

3D coordinates. Hu et al. [21] propose a homography-

based robust adaptive controller to control translation and

orientation of an eye-in-hand system in the presence of

uncertainty in the intrinsic camera parameters as well as

uncertainty in the depth information. These methods do not

study robustness to visual-motor outliers.

II. BACKGROUND

A. Uncalibrated IBVS

The control law in uncalibrated visual servoing is defined

entirely in the image space without the need to reconstruct

the depth or other 3D parameters.

Formally, let F : R
N → R

M be the mapping from

configuration q ∈ R
N of a robot with N joints, to the

visual feature vector s ∈ R
M with M visual features,

i.e., s = F (q) is the visual-motor function of the robotic

hand/eye system (see Figure 1). The time derivative of the

visual-motor function leads to the visual-motor Jacobian Ju:

∂s

∂t
=

∂F (q)

∂q

∂q

∂t
, (1)

ṡ = Ju(q)q̇. (2)

If an estimate Ĵu(q) for Ju(q) is available, the discrete-time

form of (2) becomes

∆s ≃ Ĵu(q)∆q. (3)

Fig. 2. (Left) Illustration of the Local Least-Squares (LLS) method. (Right)
Error caused in hyperplane estimation due to outliers.

To reach a visual goal s∗, the estimated Jacobian Ĵu is used

in a control law, e.g.,

q̇ = −λĴ†
u(s− s∗), (4)

where Ĵ
†
u

is the MoorePenrose pseudoinverse of Ĵu. In the

remainder of this section, we review a background to the

estimation of the uncalibrated Jacobian.

B. Visual-Motor Jacobian Estimation

A Broyden rank-one secant update has been proposed by

Jägersand et al. [8] and Hosoda and Asada [7] to estimate

the visual-motor Jacobian. For critical tasks, a good initial

guess is essential. Usually, methods based on [7], [8] use a

forgetting factor to lessen the weight of old data during the

estimation process. However, old data are useful. Neverthe-

less, methods do not incorporate nearby points which have

been visited in the past.

Farahmand et al. [9] propose local least-squares (LLS)

estimation to utilize the memory of visual-motor data. They

estimate the visual-motor Jacobian in simulated 3 degrees-

of-freedom (DOF) eye-to-hand experiments. This method

is general and estimates the Jacobian of any point in the

workspace directly from raw visual-motor data in a close

neighborhood of the point under consideration. We compare

our method to theirs.

For a memory with P visual-motor data pairs and a new

visual-motor query point dc = (sc, qc), the uncalibrated

Jacobian estimation problem is posed as the following opti-

mization problem [9]:

Ĵu(q)
∣∣∣
q=qc

= arg min
Ju

∑

k: qk∈Br(qc)

(∆sk − Ju∆qk)2, (5)

where Br(qc) = {qp : ‖qc − qp‖ < r , p = 1, · · · , P} is

an open ball with radius r centered at qc which contains

joint-space neighbors of query joint qc, ∆sk = sc − sk,

and ∆qk = qc − qk. This method fits the best hyperplane

to the visual-motor data around qc. An illustration of this

method is given in Figure 2 (Left), where a hyperplane is

fitted to 2×1-dimensional data (2 DOF for joints and a single

image feature). Outliers can cause errors in estimation. The

erroneous fitted model is shown by a biased plane in Figure 2

(Right). We will present a statistically robust method to

deal with outliers in Section III. The LLS method [9] is

similar to the work of Lapresté et al. [22], where the least

squares problem is solved directly for the pseudoinverse
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Jacobian. However, while LLS [9] is on-line, off-line training

by random perturbations around the desired pose are used

in [22].

III. ROBUST JACOBIAN ESTIMATION

The least squares methods are sensitive to outliers in the

visual-motor data. Examples of outliers are occlusion of vi-

sual features being tracked, visual tracking mismatches (mis-

tracking), or large visual tracking errors. In the presence of

such visual tracking discrepancies, the corresponding visual-

motor pair (s, q) are outliers and do not belong to the model

being fit. Therefore, the performance of least squares-based

methods deteriorates. The influence of outliers needs to be

removed during the estimation. Robust regression provides

a proper mathematical framework to deal with outliers.

Here, we apply some widely accepted robust statistics and

estimators to estimate the uncalibrated Jacobian.

A. Problem Formulation

Denote a memory of P visual-motor data pairs (sp, qp)
by set D = {(sp, qp)}P

p=1. Given a visual-motor query point

dc = (sc, qc) /∈ D, consider estimating the Jacobian in (3) at

dc by minimizing the sum of a robust norm of the residuals:

Ĵu(q)
∣∣
q=qc

= argmin
Ju

∑

k: qk∈Br(qc)

ρ(∆sk − Ju∆qk), (6)

where Br(qc), ∆sk, and ∆qk are the same as in (5) and ρ(e)
is an M-estimator. The main difference between (5) and (6)

is in the choice of the estimator.

The least-squares (LS) estimator ρ(e) = e2 is used in

(5), but the LS estimator is not robust to outliers. Another

choice for the estimator is the L1-norm ρ(e) = |e|, which is

more robust than LS estimator. However, both have the least

possible breakdown point [23]. The breakdown point (BDP)

of an estimator is a measure of its resistance to outliers. It

refers to the smallest proportion of incorrect samples that the

estimator can tolerate before they arbitrarily affect the model

fitting [24]. The maximum BDP possible is 50%, because if

the number of outliers is larger than the number of inliers,

the estimator captures the statistics of the outliers.

The approach based on the influence function [24] charac-

terizes an estimator based on its influence function, ψ(e) =
dρ
de

(e), and its weight function, w(e) = 1
e

dρ
de

(e). The data

concentrated at the tail of the distribution should not in-

fluence the estimation result. In other words, the weight

function should assign smaller weights to such data. The

LS estimator has a constant weight function and outliers

receive the same constant weight as data. M-estimators with a

redescending influence function, outperform bounded estima-

tors that are not redescending (for example, L1-norm) [24],

[25].

Several redescending M-estimators have been used in

computer vision and robotics literature. Tukey’s Biweight

(BW) function is popular among the image-based visual

tracking and servoing [14]–[17], [26] because of high Gaus-

sian efficiency. The Geman-McClure (GM) estimator has

been successfully used in the computer vision community

for pattern matching and optical flow estimation [27]. Here,

we motivate using the GM robust M-estimator as the robust

M-estimator in (6):

ρGM (e;σ) =
e2

e2 + σ2
,

where σ is a measure of scale explained in Section III-B. The

influence of the outliers starts to decrease when the residual

error is larger than the inflection point of the estimator.

For the GM estimator, this happens when |e| > σ/
√

3 ≃
0.577σ. For BW estimator, the inflection point is larger

|e| > c√
5
σ ≃ 2.0952σ. Parameter c is a constant of the BW

estimator which is set to 4.6851 to achieve 95% Gaussian

efficiency [25]. Figure 3 illustrates the discussed estimators

and their corresponding influence and weight functions. The

BW estimator assigns relatively large weights to residual

errors in [2σ, 3σ]. For our visual-motor data set, the outliers

tend to be not too far from the inliers and stricter outlier-

rejection criteria is desired. The GM estimator does a better

job of rejecting the visual-motor outliers. This has been

experimentally validated in Section IV (see Figure 5).
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Fig. 3. L1-norm (L1), Least-squares (LS), Tukey’s Biweight (BW),
and Geman-McClure (GM) estimators. (Left) Influence functions, (Right)
Normalized weight functions, for σ = 1.

B. Measure of Scale

Scale σ is a parameter that quantifies how the probability

distribution is spread. For example, variance is a measure

of scale for the normal distribution. Robust measures of

scale are needed to estimate the scale parameter in the M-

estimator. The Median Absolute Deviation (MAD) is one of

the most common estimators of scale, which has the highest

possible BDP of 50% and a bounded influence function [24].

Although its Gaussian efficiency is rather low at 37%, it

is computationally very efficient [24]. Thus, we use it as a

computationally-efficient measure of scale. In essence, MAD

estimates the variance of the inlier samples:

σ = Bmed
i

{∣∣∣∣xi − med
j

{xj}
∣∣∣∣

}
, (7)

where B is a constant chosen to make MAD consistent

with the normal distribution using the cumulative normal

distribution function Φ(·): B = 1/Φ−1(3/4) = 1.4826.

Samples {xk}k=K
k=1 should be scalar because of median,

but our visual-motor space is multi-dimensional. We use

xk = ||∆sk||, where (sk, qk) are the K-nearest neighbors

of the query (sc, qc) in the joint space.
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C. Algorithm

Solving the robust M-estimation problem in (6) can be

challenging. A common practice is to solve (6) by iteratively

recomputing the weights of a weighted least squares prob-

lem [25]. This method is known as the Iteratively Reweighted

Least Squares (IRLS) algorithm. The IRLS algorithm is

widely used as an efficient implementation of robust M-

estimation in many practical nonlinear optimization domains.

Examples include robust visual tracking and visual servo-

ing [14]–[17], [26], [27]. Our algorithm can be summarized

as follows:

A.1 Initialize visual-motor memory: Start by an offline

memory initialization for the visual-motor data pairs

similar to [9]. This will generate visual-motor memory

{(sp, qp)}P
p=1.

A.2 Determine neighbors: For the visual-motor query

(sc, qc), determine the neighboring visual-motor pairs

in {(sk, qk)}K
k=1, which contains the K-nearest neigh-

bors of qc.

A.3 Estimate initial scale: Use MAD as in (7) to find the

initial measure of scale σ.

A.4 Find initial weights: Initialize weight matrix W0

according to the norm and scale found in (7). We assign

binary weights [16], [23] to the K-nearest neighbors

of query point (sc, qc) according to:

wk =

{
1 : |xk| ≤ 2.5σ
0 : otherwise

, (8)

where W0 = diag [w(e1) · · ·w(eK)].
A.5 Estimate the Jacobian: Given a query point

(sc, qc), its K-nearest neighbors from the memory

{(sk, qk)}K
k=1, scale σ, robust estimator ρ(e;σ), and

the initial weight matrix W0, JACOBIANESTIRLS is

called to estimate the Jacobian. The details of the IRLS

algorithm are outlined in Figure 4.

A.6 Update control signal: The Jacobian estimated in the

previous step is used in (4) to generate the control

signal.

A.7 Update memory: The new visual-motor pair is added

to the memory for later use P = P + 1.

A.8 Return: Goto step A.2.

JACOBIANESTIRLS((sc, qc), {(sk, qk)}K
k=1, σ, ρ(e; σ), W0)

1 W←W0, t← 1, Ĵu(0)← 0

2 for k = 1 to K: (∆sk,∆qk)← (sc, qc)− (sk, qk)
3 ∆S[K×M] ← [∆s1 · · ·∆sK ]⊤

4 ∆Q[K×N] ← [∆q1 · · ·∆qK ]⊤

5 while ||Ĵu(t) − Ĵu(t − 1)|| > ǫ
6 [U, Σ, V ]← SV D(W∆Q)

7 Ĵu(t)← [(U ΣV ⊤)⊤ W ∆S]⊤

8 [e1 · · · eK ]⊤ ← ‖W∆Q Ĵu(t) −W∆S‖

9 for k = 1 to K: w(ek)← 1
e

∂

∂e
ρ(e; σ)

∣∣
e=ek

10 W← diag [w(e1) · · ·w(eK)]
11 t← t + 1
12 end

13 return Ĵu(t)

Fig. 4. Jacobian Estimation by Iteratively Reweighted Least Squares.

IV. EXPERIMENTS

In this section, we experimentally evaluate the perfor-

mance of our proposed method (Section III) and compare

it with the LLS method [9] (Section II-B) and the actual

Jacobian. The results for the quality of Jacobian estimation,

as well as the control trajectories with and without outliers,

are presented.

A. System Description

An uncalibrated eye-in-hand IBVS system with 4-DOF

WAM is considered. Simulations are implemented in MAT-

LAB using the Robotics Toolbox [28] and the Epipolar

Geometry Toolbox [29]. The WAM arm runs on RTAI-

Linux and controlled with openman [30]. The vision system

consists of a Point Grey Grasshopper camera that captures

640 × 480 MONO8 images at 60 Hz. The Visual Servoing

Platform (ViSP) [31] is used for visual tracking. To evaluate

the algorithm, we use eight fiducial markers. Therefore, we

have 16 visual features (two coordinates for each point in

image space) and four joints, i.e., Ĵu ∈ R
16×4.

B. Jacobian Estimation Error

Jacobian estimation error is measured by the Frobenius

norm of the estimated Jacobian to a reference Jacobian, Jref .

In simulations, the exact value of Jref is known. In real

experiments, the reference is found by orthogonal motions

around the desired point [8]. This measure makes comparison

quantifiable.

The initialization process includes selection of visual

features followed by arm motions to store the visual-motor

observations into memory. This process takes only a few

minutes and is very straightforward. Once a significant

number of points are recorded in the memory (approximately

2,000 visual-motor pairs to start), reference Jacobians at 50

random points are estimated using orthogonal motions for

ground-truth comparison. Two types of outliers are consid-

ered:

1) Type-1 outliers: : Type-1 outliers represent lost features

due to occlusion. Lost features are replaced with zero in the

visual feature vector. This is done to keep the Jacobian di-

mension consistent in the the control law in (4). We consider

losing only one of the fiducial markers, which associates

with two zeros in the visual feature vector. The norm of the

corresponding visual-motor outlier is not arbitrarily large,

because other visual features are correct.

2) Type-2 outliers: : Type-2 outliers are caused by mis-

tracking due to a variety of reasons. The most common is

due to confusion of tracking template to nearby templates

with a similar appearance. Because of the real-time servoing

constraint, descriptive features cannot usually be used. This

increases the mis-tracking problem, especially when the

robot moves quickly. To model this type of outliers, the

corrupted feature is translated by 100 pixels. Other authors

have used a similar model [16].

The quality of estimated Jacobian is summarized in Fig-

ures 5-6. The performance of the proposed robust estimation

with two different M-estimators, Tukey’s Biweight (BW) and
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Fig. 5. Simulation results of Jacobian estimation error. The reference
Jacobian is found from orthogonal motions. The graph legend corresponds
to K = 200 and dotted lines to K = 100. In practice (see Figure 6), the
IRLS method handles outliers up to 40%.

Geman-McClure’s (GM), are compared to the least-squares

(LLS) performance. In Figure 5, MATLAB simulations are

presented. The error norm is averaged over 1,000 random

visual-motor points in the workspace for several amounts

of outlier/inlier percentage. The outlier/inlier percentage lin-

early affects the least-squares method. The robust method

rejects the outliers up to a certain point, after which the

performance breaks down. The GM estimator outperforms

the BW estimator in this experiment. This is, in part, due

to relatively small norm of the outliers, i.e., the outliers sta-

tistically lie between the inflection points of the estimators:

0.577σ ≤ |e| ≤ 2.095σ (see the discussion at the end of

Section III-A). Figure 5 also compares the performance w.r.t.

different number of neighbors, K . Two values considered

here are K = 100 and K = 200. With the same size of

memory, more neighbors provide a better estimate. However,

the neighborhood should satisfy the local-linearity constraint

and this number cannot be chosen arbitrarily large. Model

selection algorithms such as cross-validation can be used to

find the optimal K (see [32], for example).

Figure 6 shows the Jacobian estimation results for the real

experimental setup for both types of outliers (K = 200).

The results of K = 100 were similar and have not been

overlayed to avoid clutter. The practical breakdown point

of the estimators were smaller than their theoretical and

simulated values. This is attributed to the non-Gaussian data

and the small number of points in the memory. For Type-

2 outliers, the BW estimator does not provide a strong

robustness. Using the exact same measure of scale (see

Section III-B), the GM rejects up to 40% of the outliers with

both types of outliers. However, with the increase of outliers,

the performance of LLS starts to degrade considerably and

robust estimation should be considered.

For the visual servoing experiments in the next sections,

we use the GM estimator, because it provides a more robust

estimation than BW (see Figures 5-6).

C. Visual Servoing without Outliers

We have used the estimated visual-motor Jacobian using

both LLS and IRLS (with GM estimator) in uncalibrated

IBVS control law expressed in (4). Figure 7 (a) depicts

the end-effector positioning error and Figure 7 (b) shows

the norm of image-space error. The goal of this experiment
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Fig. 6. Real experimental results of Jacobian estimation error for an eye-
in-hand WAM. (a) Type-1 outlier, and (b) Type-2 outlier. The GM estimator
outperforms others. K = 200. (see Section IV-B).

0 20 40 60 80
0

0.1

0.2

0.3

0.4

time

[m
]

 

 

IRLS
LLS

0 20 40 60 80
0

10

20

30

40

time

|e
(s

)|
 [
p
ix

]

 

 

IRLS
LLS

Fig. 7. Error measures for LLS and IRLS without outliers. (a) End-
effector positioning error. (b) Visual space error. IRLS control converges
faster with the initial memory t ≤ 40. For t > 40 the memory is richer
and performance is similar.

is to show that LLS and IRLS perform similarly when

there is an adequate visual-motor memory. Without a dense

memory, the K-nearest neighbors of the query point may

not conform to the local-linearity constraint. This is due to

the highly non-linear visual-motor function. That is, some

of the K neighbors will have a relatively large distance to

the query point. The robust method downweights such points

and reduces their influence on the estimation result. To show

this point, we started with a relatively small memory, and let

the visual servo drive the arm from an initial position to

a desired position. During servoing, new data are added to

memory. The LLS method converges to the desired position

but at a slower rate than IRLS. At time t = 40, the arm

is moved back close to the initial point. With more relevant

data available in the memory at t = 40, both LLS and IRLS

converge at the same rate and with similar accuracy. This

result is consistent with Figures 5-6.

D. Visual Servoing with Outliers

Finally, we study the effect of outliers on visual servoing

performance. We use the same initial starting and desired

points as the last section, but add 30% outliers (Type-1) to the

data. Figure 8 shows a sample visual servoing performance

with outliers introduced at time t = 60. The IRLS algorithm

manages to estimate a meaningful Jacobian to drive the arm

towards the goal. However, LLS gives a wrong estimate,

which drives the robot in a wrong direction, where the robot

gets stuck in a local minimum. Both LLS and IRLS perform

similarly without outliers (t < 60). This is in agreement with

Figure 6 (a), where a similar type-1 outlier is used. For the

purpose of this experiment, GM estimator is used because

of its overall robustness to a larger range of outliers. These
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Fig. 8. Error measures for LLS and IRLS with outliers introduced at
t > 60. (a) End-effector positioning error. (b) Visual space error. The IRLS
Jacobian estimates are robust to outliers and drive the arm to the desired
point. The LLS estimates are erroneous and drive the robot in the wrong
direction. The LLS experiment ends up in a local minimum.

results show that LLS is not robust to outliers, however, IRLS

tolerated the outliers and could still reach the desired goal.

V. CONCLUSIONS

We proposed a visual-motor Jacobian estimation method

using statistically robust M-estimation in the presence of

visual-motor outliers. This makes the system less sensitive

to outliers as opposed to methods like LLS [9], which show

a deteriorating performance in the presence of outliers. In

contrast to methods like Broyden rank-one update [7], [8],

which cannot exploit the visual-motor memory, our proposed

method uses visual-motor memory to gradually increase the

quality of the Jacobian estimate.

We compared two M-estimators (Tukey’s Biweight and

Geman-McClure) with the proposed robust Jacobian estima-

tion against LLS. We used both simulation data and real data

from an eye-in-hand 4-DOF WAM robot. The robust methods

outperformed LLS in the presence of outliers. Moreover,

the Geman-McClure’s estimator was superior to the Tukey’s

Biweight estimator.

Designing a visual-servoing system that uses our robust

Jacobian estimation, in conjunction with the robust control

signal [16] and/or visual cue integration [10] is left for future

work.
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