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Abstract—This paper proposes a new robust Kalman filtering
framework for a linear system with non-Gaussian heavy-tailed
and/or skewed state and measurement noises, where the Gaussian
scale mixture (GSM) distributions are utilized to model the
one-step prediction and likelihood probability density functions.
The state vector, mixing parameters, scale matrices and shape
parameters are simultaneously inferred utilizing the standard
variational Bayesian approach. As the implementations of the
proposed method, several solutions corresponding to some special
GSM distributions are derived. The proposed robust Kalman
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I. INTRODUCTION

F ILTERING in the context of state-space models is es-

timating the current state vector based on the noisy

measurements from the initial time to the current time. The

Kalman filter is an optimal state estimator and provides

an unbiased minimum-variance estimate for a linear system

with Gaussian state and measurement noises, which has been
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widely applied in many fields, such as robotics, target tracking,

navigation, positioning, control and signal processing [1]–[5].

However, in some engineering applications, the state and mea-

surement noises may have heavy-tailed and/or skewed non-

Gaussian distributions. For example, for the problem of track-

ing an agile target which is observed in clutter, the heavy-tailed

state noise and skewed measurement noise may be respectively

induced by severe manoeuvering and measurement outliers

from unreliable sensors [6]–[11]. The conventional Kalman

filter and its some improved variants [12]–[14] suffer from

performance degradation for such engineering applications

with heavy-tailed and/or skewed state and measurement noises

[9]–[11].

To solve the state estimation problem given a state-space

model with heavy-tailed or skewed measurement noise, many

robust Kalman filters have been proposed by employing the

Student’s t or skew-t distribution to model the measurement

noise, such as the Student’s t mixture filter [15], the Student’s

t based outlier robust Kalman filter [16]–[21], and the skew-

t Kalman filter [8], [9]. However, the performance of these

robust Kalman filters degrades dramatically for the state-space

models with heavy-tailed state noise since they are all based

on a Gaussian state noise model.

To solve the state estimation problem given a state-

space model with heavy-tailed state and measurement noises,

the Huber-based Kalman filter (HKF) and the maximum-

correntropy-based Kalman filter (MCKF) have been present-

ed, which are essentially generalized maximum likelihood

estimators [22], [25]. The HKF is derived by minimizing a

weighted combination of l1 and l2 norms of the prediction

error and residual [22], [23], [24], and the MCKF is developed

by maximizing the correntropy of the prediction error and

residual [25]. Both the HKF and MCKF are able to suppress

the increased estimation errors which are induced by heavy-

tailed noises so that the negative effects are mitigated. Unfor-

tunately, the characteristic of heavy tail inherent in state and

measurement noises is not exploited in the designs of HKF

and MCKF, which leads to limited estimation accuracy. To

achieve better estimation performance, a reasonable scheme

is to improve the modelling of the heavy-tailed non-Gaussian

probability density function (PDF). The Student’s t distribution

has a heavier tail than the Gaussian distribution when the

degrees of freedom (dof) parameter is less than infinity so

that it can better model a heavy-tailed non-Gaussian PDF

as compared with the Gaussian distribution. Based on this
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idea, both the Student’s t based filter (STF) and the robust

Student’s t based Kalman filter (RSTKF) have been proposed,

in which the Student’s t distributions are employed to model

the heavy-tailed one-step prediction and likelihood PDFs [6],

[11], [26]–[30]. For the STF, the posterior PDF is directly

approximated as Student’s t based on Bayes’ rule, and the

moment matching approach is utilized to prevent the growth

of the dof parameters so that the one-step prediction PDF of

state and measurement is jointly Student’s t with a common

dof parameter [6]. On the other hand, for the RSTKF, both

the one-step prediction and likelihood PDFs are formulated as

the hierarchical Gaussian forms, based on which a Gaussian

approximation to the posterior PDF is achieved using the

standard variational Bayesian (VB) approach [11].

In engineering practice, skewed state noise or skewed

measurement noise may be induced by impulsive interference

or outliers [8], [9], [31]. Unfortunately, the existing STF

and RSTKF suffer from performance degradation for a non-

Gaussian system with skewed noises due to the use of the

symmetric Student’s t distribution. Furthermore, for some

engineering applications, there may be some non-Gaussian

distributions that can better model the heavy-tailed PDF as

compared with the Student’s t distribution. As a result, the

estimation performance can be further improved. Therefore,

it is necessary to propose a new robust Kalman filtering

framework which is able to deal with both skewed noises and

heavy-tailed noises and thereby being suitable for more non-

Gaussian distributions.

This paper proposes a new robust Kalman filtering frame-

work for a linear system with non-Gaussian heavy-tailed

and/or skewed state and measurement noises, in which the one-

step prediction and likelihood PDFs are modelled as Gaussian

scale mixture (GSM) distributions. The GSM distributions

are formulated as hierarchical Gaussian forms given the prior

PDFs of mixing parameters, and the prior distributions of the

scale matrices and shape parameters are respectively selected

as inverse-Wishart and Gaussian PDFs, based on which the

state vector, mixing parameters, scale matrices and shape

parameters are simultaneously inferred using the standard VB

approach. As the implementations of the proposed method,

several solutions corresponding to some special GSM distribu-

tions are derived, including the Pearson type VII distribution,

the slash distribution, the variance gamma distribution, the

generalized hyperbolic (GH) skew Student’s t distribution, and

the GH variance gamma distribution. Simulation results show

that the proposed robust Kalman filters have better estimation

accuracy and smaller biases but higher computational com-

plexities than the existing state-of-the-art Kalman filters for

the case of heavy-tailed state noise and skewed measurement

noise.

The remainder of this paper is organized as follows. In

Section II, notations and a brief description about GSM distri-

bution are given. In Section III, a new robust Kalman filtering

framework is proposed by employing the GSM distributions

to model the one-step prediction and likelihood PDFs, and

several particular solutions for some special GSM distributions

are derived. In Section IV, the proposed robust Kalman filters

are tested in a manoeuvring target tracking example and

simulation results are given. Concluding remarks are provided

in Section V.

II. PRELIMINARIES

A. Notations

Throughout this paper, we denote zi:j , {zk|i ≤ k ≤ j};

N(µ,Σ) and N(·;µ,Σ) denote respectively the multivariate

Gaussian distribution and Gaussian PDF with mean vector µ

and covariance matrix Σ; Be(·; a, b) denotes the Beta PDF

with shape parameters a and b; G(·; a, b) and IG(·; a, b) denote

respectively the Gamma PDF and inverse-Gamma PDF with

shape parameter a and scale parameter b; IW(·;µ,Σ) denotes

the inverse-Wishart PDF with dof parameter µ and inverse

scale matrix Σ; N+(µ,Σ) denotes the truncated Gaussian

distribution with the closed positive orthant as support, lo-

cation parameter µ and squared-scale matrix Σ; Ex[·] is the

expectation operator with respect to the PDF of x; δ(·) denotes

the Dirac delta function; In denotes the n×n identity matrix;

log denotes the natural logarithm; the superscript “−1” denotes

the inverse operation of a matrix; the superscript “T” denotes

the transpose operation of a vector or matrix;
∪

denotes the

union operation, and | · | and tr(·) denote the determinant and

trace operations of a matrix respectively.

B. GSM Distribution

In engineering practice, many types of non-Gaussian noise

are induced by impulsive interferences or outliers, which

often have heavy-tailed and/or skewed distributions. Such non-

Gaussian noises can be modelled by a GSM distribution [32],

[33]. To the best our knowledge, many popular non-Gaussian

distributions are special cases of the GSM distribution, such

as the Cauchy distribution, Student’s t distribution, Pearson

type-VII distribution, slash distribution, Laplace distribution,

variance gamma distribution, GH skew Student’s t distribution,

and GH variance gamma distribution [31].

A random vector x has a GSM distribution if its PDF can

be expressed as follows [33]

p(x) =

∫ +∞

0

N(x;µ+ yβ,Σ/κ(y))π(y)dy, (1)

where µ is a mean vector, Σ is a scale matrix, y > 0 is a

mixing parameter, κ(·) is a positive scale function, π(·) is a

mixing density defined on R
+, and β is a shape parameter.

The shape parameter β dominates the symmetry of a

GSM distribution, and a GSM distribution is symmetric when

β = 0 and non-symmetric when β ̸= 0. Exemplary GSM

distributions and their parameters are listed in Table I. As an

example, we provide the specific form for Pearson type-VII

distribution. According to (1) and Table I, the PDF of Pearson

type-VII distribution can be formulated as

PV(x;µ,Σ, ν, δ) =

∫ +∞

0

N(x;µ,Σ/y)G(y;
ν

2
,
δ

2
)dy,

s.t. y > 0, ν > 0, δ > 0, (2)

where PV(·;µ,Σ, ν, δ) denotes the Pearson type-VII PDF

with mean vector µ, scale matrix Σ, and dof parameters ν
and δ. Note that, the Pearson type-VII distribution becomes a
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TABLE I: Exemplary GSM distributions and their parameters.

GSM distributions Shape parameter Scale function Mixing density Constraints

Pearson type-VII distribution β = 0 κ(y) = y π(y) = G(y; ν

2
, δ

2
) y > 0, ν > 0, δ > 0

Slash distribution β = 0 κ(y) = y π(y) = Be(y; ν, 1) 0 < y < 1, ν > 0

Variance gamma distribution β = 0 κ(y) = y π(y) = IG(y; ν

2
, ν

2
) y > 0, ν > 0

GH skew Student’s t distribution β ̸= 0 κ(y) = 1/y π(y) = IG(y; ν

2
, ν

2
) y > 0, ν > 0

GH variance gamma distribution β ̸= 0 κ(y) = 1/y π(y) = G(y; ν

2
, ν

2
) y > 0, ν > 0

Student’s t distribution when ν = δ and a Cauchy distribution

when ν = δ = 1 respectively, and the variance gamma

distribution degrades into a Laplace distribution when ν = 2.

III. ROBUST KALMAN FILTERING FRAMEWORK BASED

ON GSM DISTRIBUTION

A. Problem Statement

Consider a linear system that is represented by a discrete-

time linear state-space model as follows

xk = Fkxk−1 +wk−1, (3)

zk = Hkxk + vk, (4)

where (3) and (4) are respectively state and measurement

equations, k represents the discrete time index, xk ∈ R
n

is the state vector, zk ∈ R
m is the measurement vector,

Fk ∈ R
n×n and Hk ∈ R

m×n are respectively known

state transition and measurement matrices, and wk ∈ R
n

and vk ∈ R
m are respectively state and measurement noise

vectors. The initial state vector x0 has a Gaussian distribution,

i.e., x0 ∼ N(x̂0|0,P0|0), where x̂0|0 and P0|0 denote the

initial state estimate and the initial estimate error covariance

matrix respectively. Moreover, x0, wk and vj are assumed to

be mutually independent for any k and j.

Kalman filter is a minimum mean square error (MMSE)

state estimator for linear state-space model (3)-(4) with Gaus-

sian state and measurement noises. Unfortunately, in many en-

gineering applications, the state and measurement noises may

have heavy-tailed and/or skewed non-Gaussian distributions,

which are often induced by impulsive interferences or out-

liers. The conventional Kalman filter exhibits poor estimation

performance for such linear state-space model with heavy-

tailed and/or skewed non-Gaussian state and measurement

noises. Next, to solve this problem, a new robust Kalman

filtering framework will be proposed by employing the GSM

distributions to model the heavy-tailed and/or skewed non-

Gaussian state and measurement noises.

B. A New Hierarchical Gaussian State-space Model based on

GSM Distribution

The state and measurement noises have heavy-tailed and/or

skewed distributions and are modelled as GSM distributed as

follows

p(wk−1) =

∫ +∞

0

N(wk−1; ξkβ1,Qk−1/κ1(ξk))π1(ξk)dξk,

(5)

p(vk) =

∫ +∞

0

N(vk;λkβ2,Rk/κ2(λk))π2(λk)dλk, (6)

where ξk, κ1(·), π1(·), β1 and Qk−1 are respectively the

mixing parameter, positive scale function, mixing density,

shape parameter and scale matrix of state noise, and λk,

κ2(·), π2(·), β2 and Rk are respectively the mixing parameter,

positive scale function, mixing density, shape parameter and

scale matrix of measurement noise.

According to (3)-(6), the one-step prediction PDF

p(xk|z1:k−1) and likelihood PDF p(zk|xk) are formulated as

p(xk|z1:k−1) =

∫ +∞

0

N
(

xk;Fkx̂k−1|k−1 + ξkβ1,

FkPk−1|k−1F
T
k +Qk−1/κ1(ξk)

)

π1(ξk)dξk, (7)

p(zk|xk) =

∫ +∞

0

N(zk;Hkxk + λkβ2,Rk/κ2(λk))×

π2(λk)dλk, (8)

where the derivation of (7) is given in Appendix B.

It can be seen from (7) that the one-step prediction PDF

p(xk|z1:k−1) is not a GSM distribution, which makes an

analytical estimate of mixing parameter ξk unavailable. In this

paper, to address this problem, the one-step prediction PDF

p(xk|z1:k−1) is modelled as a GSM distribution, i.e.,

p(xk|z1:k−1) =

∫ +∞

0

N
(

xk;Fkx̂k−1|k−1 + ξkβ1,

Σk/κ1(ξk))π1(ξk)dξk, (9)

where Σk denotes the scale matrix of the one-step prediction

PDF.

According to (8)-(9), the one-step prediction PDF

p(xk|z1:k−1) and likelihood PDF p(zk|xk) can be written as

hierarchical Gaussian forms as follows

p(xk|z1:k−1, ξk,Σk,β1) = N(xk;Fkx̂k−1|k−1 + ξkβ1,

Σk/κ1(ξk)), (10)

p(zk|xk, λk,Rk,β2) = N(zk;Hkxk + λkβ2,Rk/κ2(λk)),
(11)
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where the prior PDFs of mixing parameters ξk and λk are

given by

p(ξk) = π1(ξk), p(λk) = π2(λk). (12)

The scale matrices Σk and Rk and shape parameters β1 and

β2 are assumed to be inaccurate, and will be jointly inferred

utilizing the standard VB approach in this paper. The prior

distributions of the scale matrices and shape parameters are

chosen as inverse-Wishart and Gaussian PDFs respectively,

i.e.,

p(Σk) = IW(Σk; tk,Tk), p(Rk) = IW(Rk;uk,Uk), (13)

p(β1) = N(β1; β̄1, σ1In), p(β2) = N(β2; β̄2, σ2Im), (14)

where tk, uk, Tk and Uk are the dof parameters and inverse

scale matrices of prior distributions p(Σk) and p(Rk) respec-

tively, and β̄1 and β̄2 are the nominal shape parameters of

the state and measurement noises respectively, and σ1 and σ2

are instrumental parameters that are employed to dominate the

confidence values for nominal shape parameters.

Since the nominal prediction error and measurement noise

covariance matrices P̄k|k−1 and R̄k contain a large amount of

prior information about Σk and Rk, the mean values of Σk

and Rk are selected as P̄k|k−1 and R̄k respectively, i.e.,

Tk

tk − n− 1
= P̄k|k−1,

Uk

uk −m− 1
= R̄k, (15)

where the nominal prediction error covariance matrix P̄k|k−1

is given by

P̄k|k−1 = FkPk−1|k−1F
T
k + Q̄k−1, (16)

and Q̄k−1 denotes the nominal state noise covariance matrix.

Equations (10)-(16) form a new hierarchical Gaussian state-

space model based on GSM distribution. Next, a new robust

Kalman filtering framework will be proposed, in which the

state vector, mixing parameters, scale matrices and shape

parameters, i.e., Θk , {xk, ξk, λk,β1,β2,Σk,Rk}, will be

jointly estimated based on the constructed hierarchical Gaus-

sian state-space model exploiting the standard VB approach.

C. The Proposed Robust Kalman Filtering Framework

In order to estimate the state vector, mixing parameters,

scale matrices and shape parameters simultaneously, the joint

posterior PDF p(Θk|z1:k) needs to be calculated. Unfortu-

nately, the optimal solution of the joint posterior PDF is

unavailable for the hierarchical Gaussian state-space model

(10)-(16) because the Gamma and inverse-Wishart PDFs are

not closed [34]. In this paper, the standard VB approach is

employed to achieve an approximate solution for p(Θk|z1:k)
as follows [35], [36]

p(Θk|z1:k)≈q(xk)q(ξk)q(λk)q(β1)q(β2)q(Σk)q(Rk), (17)

where q(·) denotes a free form factored approximation of

true posterior PDF p(·), and the approximate posterior PDF

satisfies the equation as follows [36]

log q(φ) = E
Θ

(−φ)
k

[log p(Θk, z1:k)] + cφ, (18)

where φ ∈ Θk is an arbitrary element of the set Θk, and

Θ
(−φ)
k is a subset of Θk, which has all elements in Θk except

for φ, i.e., {φ}
∪

Θ
(−φ)
k = Θk, and cφ denotes a constant

value relative to the variable φ.

However, it is not possible to solve (18) analytically due to

mutually dependent and coupled variational parameters. The

fixed-point iteration is often employed to solve (18) and a local

optimum solution can be achieved, in which the posterior PDF

of φ is approximated as q(i+1)(φ) by using q(i)(Θ
(−φ)
k ) to

calculate the required expectations in (18) [36].

1) Variational Approximations of Posterior PDFs: Using

(10)-(14), the joint PDF p(Θk, z1:k) can be formulated as

p(Θk, z1:k) = N(zk;Hkxk + λkβ2,Rk/κ2(λk))×

N(xk;Fkx̂k−1|k−1 + ξkβ1,Σk/κ1(ξk))π1(ξk)π2(λk)×

IW(Σk; tk,Tk)IW(Rk;uk,Uk)N(β1; β̄1, σ1In)×

N(β2; β̄2, σ2Im)p(z1:k−1). (19)

Let φ = xk and using (19) in (18), q(i+1)(xk) is updated

as Gaussian, i.e.,

q(i+1)(xk) = N(xk; x̂
(i+1)
k|k ,P

(i+1)
k|k ), (20)

where x̂
(i+1)
k|k and P

(i+1)
k|k are given by

x̂
(i+1)
k|k−1 = Fkx̂k−1|k−1 + q̃

(i)
k−1, (21)

K
(i+1)
k = P̃

(i)
k|k−1H

T
k

(

HkP̃
(i)
k|k−1H

T
k + R̃

(i)
k

)−1

, (22)

x̂
(i+1)
k|k = x̂

(i+1)
k|k−1 +K

(i+1)
k

(

zk −Hkx̂
(i+1)
k|k−1 − r̃

(i)
k

)

, (23)

P
(i+1)
k|k =

(

In −K
(i+1)
k Hk

)

P̃
(i)
k|k−1, (24)

where q̃
(i)
k−1 and r̃

(i)
k denote the modified mean vectors of the

state and measurement noises respectively, and P̃
(i)
k|k−1 and

R̃
(i)
k denote the modified prediction error and measurement

noise covariance matrices respectively, which are given by

q̃
(i)
k−1 = E(i)[ξk]E

(i)[β1], r̃
(i)
k = E(i)[λk]E

(i)[β2], (25)

P̃
(i)
k|k−1 =

{

E(i)[Σ−1
k ]

}−1

E(i)[κ1(ξk)]
, R̃

(i)
k =

{

E(i)[R−1
k ]

}−1

E(i)[κ2(λk)]
, (26)

where the derivations of (20)-(26) are given in Appendix C.

Let φ = ξk and φ = λk and utilizing (19) in (18),

log q(i+1)(ξk) and log q(i+1)(λk) can be calculated as

log q(i+1)(ξk) = −
1

2
κ1(ξk)tr

{

Ai+1
k E(i)[Σ−1

k ]
}

+

ξkκ1(ξk)
{

E(i)[β1]
}T

E(i)[Σ−1
k ]ai+1

k −
1

2
ξ2kκ1(ξk)×

tr
{

E(i)[β1β
T
1 ]E

(i)[Σ−1
k ]

}

+
n

2
log κ1(ξk) + log π1(ξk),

(27)

log q(i+1)(λk) = −
1

2
κ2(λk)tr

{

Bi+1
k E(i)[R−1

k ]
}

+

λkκ2(λk)
{

E(i)[β2]
}T

E(i)[R−1
k ]bi+1

k −
1

2
λ2
kκ2(λk)×

tr
{

E(i)[β2β
T
2 ]E

(i)[R−1
k ]

}

+
m

2
log κ2(λk) + log π2(λk),

(28)



5

where the auxiliary parameters Ai+1
k , ai+1

k , Bi+1
k and bi+1

k

are respectively given by

Ai+1
k = E(i+1)

[

(xk − Fkx̂k−1|k−1)(xk − Fkx̂k−1|k−1)
T
]

,
(29)

ai+1
k = E(i+1)

[

xk − Fkx̂k−1|k−1

]

, (30)

Bi+1
k = E(i+1)

[

(zk −Hkxk)(zk −Hkxk)
T
]

, (31)

bi+1
k = E(i+1) [zk −Hkxk] . (32)

It can be seen from (27)-(28) that both q(i+1)(ξk) and

q(i+1)(λk) can’t be analytically updated for a general case. In

this paper, to address this problem, q(i+1)(ξk) and q(i+1)(λk)
are approximated as point distributions, i.e.,

q(i+1)(ξk) ≈ δ(ξk − ξ
(i+1)
k ), q(i+1)(λk) ≈ δ(λk − λ

(i+1)
k ),

(33)

where ξ
(i+1)
k and λ

(i+1)
k are respectively the maximum a

posterior (MAP) estimates of q(i+1)(ξk) and q(i+1)(λk), i.e.,

ξ
(i+1)
k = argmax

ξk>0
log q(i+1)(ξk), (34)

λ
(i+1)
k = argmax

λk>0
log q(i+1)(λk). (35)

Let φ = β1 and φ = β2 and exploiting (19) in (18),

q(i+1)(β1) and q(i+1)(β2) are updated as Gaussian, i.e.,

q(i+1)(β1) = N(β1;β
(i+1)
1 ,P

(i+1)
β1

), (36)

q(i+1)(β2) = N(β2;β
(i+1)
2 ,P

(i+1)
β2

), (37)

where the mean vectors β
(i+1)
1 and β

(i+1)
2 and covariance

matrices P
(i+1)
β1

and P
(i+1)
β2

are respectively given by

W
(i+1)
β1

= σ1E
(i+1)[ξk]

[

σ1

(

E(i+1)[ξk]
)2

In + P̄
(i+1)
k|k−1

]−1

,

(38)

β
(i+1)
1 = β̄1 +W

(i+1)
β1

(

a
(i+1)
k − E(i+1)[ξk]β̄1

)

, (39)

P
(i+1)
β1

= σ1In − σ1E
(i+1)[ξk]W

(i+1)
β1

, (40)

W
(i+1)
β2

= σ2E
(i+1)[λk]

[

σ2

(

E(i+1)[λk]
)2

Im + R̄
(i+1)
k

]−1

,

(41)

β
(i+1)
2 = β̄2 +W

(i+1)
β2

(

b
(i+1)
k − E(i+1)[λk]β̄2

)

, (42)

P
(i+1)
β2

= σ2Im − σ2E
(i+1)[λk]W

(i+1)
β2

, (43)

where the modified prediction error and measurement noise

covariance matrices P̄
(i+1)
k|k−1 and R̄

(i+1)
k are given by

P̄
(i+1)
k|k−1 =

{

E(i)[Σ−1
k ]

}−1

E(i+1)[κ1(ξk)]
, R̄

(i+1)
k =

{

E(i)[R−1
k ]

}−1

E(i+1)[κ2(λk)]
,

(44)

where the derivations of (36)-(44) are given in Appendix D.

Let φ = Σk and φ = Rk and employing (19) in (18),

q(i+1)(Σk) and q(i+1)(Rk) are updated as inverse-Wishart,

i.e.,

q(i+1)(Σk) = IW(Σk; t
(i+1)
k ,T

(i+1)
k ), (45)

q(i+1)(Rk) = IW(Rk;u
(i+1)
k ,U

(i+1)
k ), (46)

where the dof parameters t
(i+1)
k and u

(i+1)
k and inverse scale

matrices T
(i+1)
k and U

(i+1)
k are respectively given by

t
(i+1)
k = tk + 1, u

(i+1)
k = uk + 1, (47)

T
(i+1)
k = Tk +C

(i+1)
k , U

(i+1)
k = Uk +D

(i+1)
k , (48)

C
(i+1)
k = E(i+1)[κ1(ξk)(xk − Fkx̂k−1|k−1 − ξkβ1)×

(xk − Fkx̂k−1|k−1 − ξkβ1)
T], (49)

D
(i+1)
k = E(i+1)[κ2(λk)(zk −Hkxk − λkβ2)×

(zk −Hkxk − λkβ2)
T], (50)

where the derivations of (45)-(50) are given in Appendix E.

After fixed-point iteration N , the approximate posterior

PDFs of the state vector, mixing parameters, shape parameters

and scale matrices are respectively updated as

q(xk) ≈ N(xk; x̂
(N)
k|k ,P

(N)
k|k ) = N(xk; x̂k|k,Pk|k), (51)

q(ξk) ≈ δ(ξk − ξNk ), q(λk) ≈ δ(λk − λN
k ), (52)

q(β1) ≈ N(β1;β
(N)
1 ,P

(N)
β1

), (53)

q(β2) ≈ N(β2;β
(N)
2 ,P

(N)
β2

), (54)

q(Σk) ≈ IW(Σk; t
(N)
k ,T

(N)
k ), (55)

q(Rk) ≈ IW(Rk;u
(N)
k ,U

(N)
k ). (56)

2) Calculation of Expectations: Exploiting (33), (36)-(37)

and (45)-(46), the required expectations can be given by

E(i+1)[ξk] = ξ
(i+1)
k , E(i+1)[κ1(ξk)] = κ1(ξ

(i+1)
k ), (57)

E(i+1)[λk] = λ
(i+1)
k , E(i+1)[κ2(λk)] = κ2(λ

(i+1)
k ), (58)

E(i+1)[β1] = β
(i+1)
1 , E(i+1)[β2] = β

(i+1)
2 , (59)

E(i+1)[β1β
T
1 ] = P

(i+1)
β1

+ β
(i+1)
1

(

β
(i+1)
1

)T

, (60)

E(i+1)[β2β
T
2 ] = P

(i+1)
β2

+ β
(i+1)
2

(

β
(i+1)
2

)T

, (61)

E(i+1)[Σ−1
k ] =

(

t
(i+1)
k − n− 1

)(

T
(i+1)
k

)−1

, (62)

E(i+1)[R−1
k ] =

(

u
(i+1)
k −m− 1

)(

U
(i+1)
k

)−1

. (63)

Utilizing (20), (33) and (36)-(37), we can calculate the

auxiliary parameters Ai+1
k , ai+1

k , Bi+1
k , bi+1

k , Ci+1
k and Di+1

k

as follows

Ai+1
k =P

(i+1)
k|k +

(

x̂
(i+1)
k|k − Fkx̂k−1|k−1

)

×
(

x̂
(i+1)
k|k − Fkx̂k−1|k−1

)T

, (64)

ai+1
k = x̂

(i+1)
k|k − Fkx̂k−1|k−1, (65)

Bi+1
k =

(

zk −Hkx̂
(i+1)
k|k

)(

zk −Hkx̂
(i+1)
k|k

)T

+

HkP
(i+1)
k|k HT

k , (66)
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TABLE II: The implementation pseudo-code for the proposed

PTV-GHSST-KF at one time step.

Inputs: zk , x̂k−1|k−1, Pk−1|k−1, Fk , Hk , Q̄k−1, R̄k , β̄1, β̄2,

σ1, σ2, tk , uk , ν1, δ1, ν2, N .

1. Calculate P̄k|k−1 using (16).

2. Calculate Tk and Uk using (15).

3. Initialization: E(0)[ξk] = 1, E(0)[λk] = 1, E(0)[κ1(ξk)] = 1,

E(0)[κ2(λk)] = 1, E(0)[β1] = β̄1, E(0)[β2] = β̄2,

E(0)[β1β
T
1 ] = σ1In + β̄1β̄

T
1 , E(0)[β2β

T
2 ] = σ2Im + β̄2β̄

T
2 ,

E(0)[Σ−1
k

] = (tk − n− 1)T−1
k

, E(0)[R−1
k

] = (uk −m− 1)U−1
k

.

for i = 0 : N − 1

4. Calculate q̃
(i)
k−1, r̃

(i)
k

, P̃
(i)
k|k−1

, R̃
(i)
k

using (25)-(26).

5. Update q(i+1)(xk) using (20)-(24).

6. Calculate A
i+1
k

, ai+1
k

, Bi+1
k

and b
i+1
k

using (64)-(67).

7. Calculate η1 and η3 using (114)-(115).

8. Calculate ξ
(i+1)
k

and λ
(i+1)
k

using (124) and (137).

9. Update q(i+1)(ξk) and q(i+1)(λk) using (33).

10. Calculate E(i+1)[ξk], E
(i+1)[κ1(ξk)], E

(i+1)[λk] and

E(i+1)[κ2(λk)] using (57)-(58).

11. Calculate P̄
(i+1)
k|k−1

and R̄
(i+1)
k

using (44).

12. Update q(i+1)(β1) and q(i+1)(β2) using (36)-(43).

13. Calculate E(i+1)[β1], E(i+1)[β2], E(i+1)[β1β
T
1 ], E(i+1)[β2β

T
2 ],

C
i+1
k

and D
i+1
k

using (59)-(61) and (68)-(69).

14. Update q(i+1)(Σk) and q(i+1)(Rk) using (45)-(48).

15. Calculate E(i+1)[Σ−1
k

] and E(i+1)[R−1
k

] using (62)-(63).

end

16. x̂k|k = x̂
(N)
k|k

, Pk|k = P
(N)
k|k

.

Outputs: x̂k|k and Pk|k .

bi+1
k = zk −Hkx̂

(i+1)
k|k , (67)

C
(i+1)
k = κ1(ξ

(i+1)
k )

[

P
(i+1)
k|k +

(

ai+1
k − ξ

(i+1)
k β

(i+1)
1

)

×

(

ai+1
k − ξ

(i+1)
k β

(i+1)
1

)T

+
(

ξ
(i+1)
k

)2

P
(i+1)
β1

]

, (68)

D
(i+1)
k = κ2(λ

(i+1)
k )

[

HkP
(i+1)
k|k HT

k +
(

bi+1
k − λ

(i+1)
k

β
(i+1)
2

)(

bi+1
k − λ

(i+1)
k β

(i+1)
2

)T

+
(

λ
(i+1)
k

)2

P
(i+1)
β2

]

,

(69)

where the derivations of (64)-(69) are given in Appendix F.

The proposed robust Kalman filtering framework is com-

posed of the variational approximations of posterior PDFs in

(20)-(56) and the calculations of expectations in (57)-(69). It

is seen from (27)-(28) and (33)-(35) that the proposed robust

Kalman filtering framework depends on the scale functions

κ1(·) and κ2(·) and mixing densities π1(·) and π2(·). Different

robust Kalman filters can be obtained when different scale

functions and mixing densities are utilized. Thus, the explicit

expressions for the scale functions and mixing densities are

essential to implement the proposed robust Kalman filtering

framework. To this end, several particular solutions corre-

sponding to some particular GSM distributions are derived

in Appendix G. In order to illustrate how to implement the

proposed robust Kalman filtering framework, an implementa-

tion example is presented. The Pearson type-VII distribution

and GH skew Student’s t distribution are respectively utilized

to model the one-step prediction and likelihood PDFs, and the

Pearson type-VII and GH skew Student’s t based Kalman filter

(PTV-GHSST-KF) is obtained. The implementation pseudo-

code for the proposed PTV-GHSST-KF at one time step is

given in Table II, where ν1 and δ1 are the dof parameters of

the Pearson type-VII distribution, and ν2 is the dof parameter

for the GH skew Student’s t distribution, and κ1(y) = y and

κ2(y) = 1/y. Note that, for Pearson type-VII distribution, the

prior parameters β̄1 = 0 and σ1 = 0.

To implement the proposed robust Kalman filtering frame-

work, the dof parameters tk and uk, the nominal state and

measurement noise covariance matrices Q̄k−1 and R̄k, the

nominal shape parameters β̄1 and β̄2, and the confidence

parameters σ1 and σ2 require to be selected. Generally, in prac-

tical applications, the nominal parameters Q̄k−1, R̄k, β̄1 and

β̄2 are respectively selected as normal noise covariance matri-

ces and shape parameters that can be approximately obtained

based on engineering experience and simulation/experiment

study. Next, we discuss how to choose the dof parameters tk
and uk and confidence parameters σ1 and σ2.

Firstly, we derive the specific forms of the modified predic-

tion error and measurement noise covariance matrices P̃
(i+1)
k|k−1

and R̃
(i+1)
k and the estimated shape parameters β

(i+1)
1 and

β
(i+1)
2 at the i + 1th iteration. Substituting (15)-(16), (47)-

(48), (57) and (62)-(63) in (26) yields

P̃
(i+1)
k|k−1 =

{[

(tk − n− 1)
(

FkPk−1|k−1F
T
k + Q̄k−1

)

+

C
(i+1)
k

]

/κ1(ξ
(i+1)
k )

}

/[(tk − n− 1) + 1] , (70)

R̃
(i+1)
k =

[

(uk −m− 1)R̄k +D
(i+1)
k

]

/κ2(λ
(i+1)
k )

(uk −m− 1) + 1
. (71)

Utilizing (38)-(39), (41)-(42) and (57)-(58), β
(i+1)
1 and

β
(i+1)
2 can be rewritten as

β
(i+1)
1 =

[

(

ξ
(i+1)
k

)2 (

P̄
(i+1)
k|k−1

)−1

+
1

σ1
In

]−1

×

[

1

σ1
Inβ̄1 +

(

ξ
(i+1)
k

)2 (

P̄
(i+1)
k|k−1

)−1 a
(i+1)
k

ξ
(i+1)
k

]

, (72)

β
(i+1)
2 =

[

(

λ
(i+1)
k

)2 (

R̄
(i+1)
k

)−1

+
1

σ2
Im

]−1

×

[

1

σ2
Imβ̄2 +

(

λ
(i+1)
k

)2 (

R̄
(i+1)
k

)−1 b
(i+1)
k

λ
(i+1)
k

]

. (73)

It is observed from (70)-(73) that the modified prediction

error covariance matrix P̃
(i+1)
k|k−1 is a weighted sum of priori

information
(FkPk−1|k−1F

T
k
+Q̄k−1)

κ1(ξ
(i+1)
k

)
and innovation

C
(i+1)
k

κ1(ξ
(i+1)
k

)

with weights (tk − n − 1) and 1 respectively; the modified
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measurement noise covariance matrix R̃
(i+1)
k is a weighted

sum of priori information R̄k

κ2(λ
(i+1)
k

)
and innovation

D
(i+1)
k

κ2(λ
(i+1)
k

)

with weights (uk −m− 1) and 1 respectively; the estimated

shape parameter β
(i+1)
1 is a weighted sum of priori informa-

tion β̄1 and innovation
a
(i+1)
k

ξ
(i+1)
k

with weight matrices 1
σ1
In and

(

ξ
(i+1)
k

)2 (

P̄
(i+1)
k|k−1

)−1

respectively; and the estimated shape

parameter β
(i+1)
2 is a weighted sum of priori information

β̄2 and innovation
b

(i+1)
k

λ
(i+1)
k

with weight matrices 1
σ2
Im and

(

λ
(i+1)
k

)2 (

R̄
(i+1)
k

)−1

respectively. The dof parameters tk
and uk and confidence parameters σ1 and σ2 can be respec-

tively used to adjust the effects of the nominal parameters

Q̄k−1, R̄k, β̄1 and β̄2 on the modified prediction error and

measurement noise covariance matrices P̃
(i+1)
k|k−1 and R̃

(i+1)
k

and the estimated shape parameters β
(i+1)
1 and β

(i+1)
2 . In

general, if the nominal noise covariance matrices Q̄k−1 and

R̄k are close to true noise covariance matrices and the state

and measurement noises have slightly heavy-tailed and/or

skewed distributions, the values of dof parameters tk and

uk will need to increase properly and vice versa; and if the

nominal shape parameters β̄1 and β̄2 near the true shape

parameters, the confidence parameters σ1 and σ2 will require

to reduce properly and vice versa. The explicit selections of

parameters tk, uk, σ1 and σ2 depend on practical application

scenarios.

IV. SIMULATION STUDY

The proposed robust Kalman filters and existing state-of-

the-art Kalman filters are tested and compared in a ma-

noeuvring target tracking example. The target moves with a

constant velocity in a plane, whose positions are observed in

clutter. The target is tracked using a constant velocity model,

and the noise corrupted positions are used for measurement

vectors. The cartesian coordinates and corresponding veloci-

ties are selected as a state vector, i.e., xk , [xk yk ẋk ẏk],
where xk, yk, ẋk and ẏk denote the cartesian coordinates and

corresponding velocities respectively. The discrete-time linear

state-space model is given by (3)-(4), and the state transition

matrix Fk and measurement matrix Hk are given by [11]

Fk =

[

I2 ∆tI2
0 I2

]

, Hk =
[

I2 0
]

, (74)

where the sampling interval ∆t = 1s.
In this simulation, an agile target is tracked using the noise

corrupted positions observed in clutter. For such problem of

maneuvering target tracking, the target may be lost due to

severe manoeuvering, which may induce heavy-tailed state

noise [6]. Moreover, the significant variations of radar reflec-

tions may result in position outliers when the target maneuvers

severely, which may induce heavy-tailed or skewed measure-

ment noise [37]. Outlier contaminated state and measurement

noises are produced according to [8], [11]

wk ∼

{

N(0, Q̄) w.p. 0.9
N(0, 100Q̄) w.p. 0.1

, (75)
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Fig. 1: Probability density curves of state noises.
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Fig. 2: Probability density curves of measurement noises.







vk ∼ N(Ωuk,Λ
−1
k R̄)

uk ∼ N+(0,Λ
−1
k )

[Λk]ii ∼ G(η2 ,
η
2 )

, (76)

where w.p. denotes “with probability”, and Q̄ = q
[

∆t3

3 I2
∆t2

2 I2
∆t2

2 I2 ∆tI2

]

and R̄ = 10I2 denote the nominal state and

measurement noise covariance matrices respectively, and noise

parameter q = 0.1m2/s3, and Ω = 5I2 with shape parameters

as diagonal elements, and Λk is a 2 × 2 diagonal matrix

whose random diagonal elements [Λk]ii are independent and

identically distributed, and uk is an auxiliary random vector,

and η = 5 is a dof parameter. Equation (75) indicates that the

state noises are most frequently generated from a Gaussian

distribution with the nominal state noise covariance matrix Q̄,

and ten percent of state noise values are drawn from a Gaus-

sian distribution with severely increased covariance matrix.

The probability density curves of the state and measurement

noises, which are generated in terms of (75)-(76), are shown

in Fig. 1–Fig. 2 respectively. It is seen from Fig. 1–Fig. 2 that

the state noise has a heavy-tailed and symmetric distribution

and the measurement noise has a skewed distribution.



8

TABLE III: Implementation times in a single step run, ARMSEs and AAVBs when N = 10.

Filters Standard KF HKF RSTKF ST-GHSST-KF SL-GHSST-KF

Time (ms) 0.021 0.420 0.072 0.159 0.158

ARMSEpos (m) 5.020 6.204 4.213 2.659 2.794

ARMSEvel (m/s) 2.730 2.897 2.640 2.316 2.394

AAVBpos (m) 3.831 3.743 3.722 0.801 0.589

AAVBvel (m/s) 0.115 0.101 0.113 0.078 0.089

Filters VG-GHSST-KF ST-GHVG-KF SL-GHVG-KF VG-GHVG-KF

Time (ms) 0.162 0.159 0.159 0.163

ARMSEpos (m) 3.098 2.695 2.808 3.189

ARMSEvel (m/s) 2.369 2.298 2.374 2.384

AAVBpos (m) 0.981 1.169 0.884 1.481

AAVBvel (m/s) 0.081 0.080 0.096 0.085
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Fig. 3: RMSEs of the position when N = 10.

To handle the heavy-tailed state noise, we utilize the S-

tudent’s t distribution (a special case of the Pearson type

VII distribution when dof parameters ν1 = δ1), slash dis-

tribution and variance gamma distribution to model the one-

step prediction PDF, and the dof parameters of these GSM

distributions are respectively selected as ν1 = 5, ν1 = 1
and ν1 = 0.5. On the other hand, to address the skewed

measurement noise, the GH skew Student’s t distribution

and GH variance gamma distribution are employed to model

measurement noise, and corresponding dof parameters are both

set as ν2 = 5. Exploiting the five GSM distributions, six

robust Kalman filters can be derived based on the proposed

robust Kalman filtering framework, including the Student’s t

and GH skew Student’s t based Kalman filter (ST-GHSST-

KF), the slash and GH skew Student’s t based Kalman filter

(SL-GHSST-KF), the variance gamma and GH skew Student’s

t based Kalman filter (VG-GHSST-KF), the Student’s t and

GH variance gamma based Kalman filter (ST-GHVG-KF),

the slash and GH variance gamma based Kalman filter (SL-

GHVG-KF), and the variance gamma and GH variance gamma

based Kalman filter (VG-GHVG-KF).

In this simulation, the existing standard Kalman filter (KF),
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Fig. 4: RMSEs of the velocity when N = 10.
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Fig. 5: NEEs when N = 10.

the existing HKF [23], [24], the existing RSTKF [11], and

the proposed robust Kalman filters are tested and compared.

In the existing RSTKF, both the one-step prediction and

likelihood PDFs are modelled as Student’s t distributions, and
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the state vector, auxiliary parameters and scale matrices are

jointly inferred based on the constructed hierarchical Gaussian

state-space model using the VB approach, from which the

posterior PDF of state vector is approximated as Gaussian

[11]. The existing RSTKF is a filtering estimation reference

for a linear system with non-Gaussian heavy-tailed state and

measurement noises since it can achieve the best estimation

performance as compared with existing robust Kalman filters

[11]. In the existing HKF, the tuning parameter is select-

ed as γ = 1.345 [22]. In the existing RSTKF, the prior

parameters are chosen as: ω = ν = 5 and τ = 5 [11].

In the proposed robust Kalman filters, the prior parameters

are set as: β̄1 = [0, 0, 0, 0]T, β̄2 = [2, 2]T, σ1 = 0,

σ2 = 0.01, tk = 10, and uk = 8. The true initial state vector

x0 = [0, 0, 10, 10]T, and the initial estimation error covariance

matrix P0|0 = diag([100 100 100 100]), and the initial

state estimate x̂0|0 is chosen from N(x0,P0|0) randomly. The

number of measurements is 100, and the number of iteration

is set as N = 10, and 1000 independent Monte Carlo runs are

performed. All Kalman filters are coded with MATLAB and

the used computer has an Intel Core i7-6500U CPU at 2.50

GHz.

The root mean square errors (RMSEs), the averaged root

mean square errors (ARMSEs) and the averaged absolute

value of biases (AAVBs) of position and velocity and the

normalized estimation error (NEE) are utilized to evaluate the

performance. We define the RMSE, ARMSE and AAVB of

position and the NEE as follows [9], [11]

RMSEpos =

√

√

√

√

1

M

M
∑

j=1

(

(xj
k − x̂j

k|k)
2 + (yjk − ŷj

k|k)
2
)

,

(77)

ARMSEpos =

√

√

√

√

1

MT

T
∑

k=1

M
∑

j=1

(

(xj
k − x̂j

k|k)
2 + (yjk − ŷj

k|k)
2
)

,

(78)

AAVBpos=
1

T

T
∑

k=1

∣

∣

∣

∣

∣

∣

1

M

M
∑

j=1

(xj
k − x̂j

k|k)

∣

∣

∣

∣

∣

∣

+

1

T

T
∑

k=1

∣

∣

∣

∣

∣

∣

1

M

M
∑

j=1

(yjk − ŷj
k|k)

∣

∣

∣

∣

∣

∣

, (79)

NEE =

√

√

√

√

1

M

M
∑

j=1

(

x
j
k − x̂

j

k|k

)T (

P
j

k|k

)−1 (

x
j
k − x̂

j

k|k

)

,

(80)

where (xj
k, y

j
k) and (x̂j

k|k, ŷ
j

k|k) are respectively the true po-

sition and the filtering estimate of position at the j-th Monte

Carlo run, x
j
k, x̂

j

k|k and P
j

k|k are respectively the true state

vector, the filtering estimate of state vector and corresponding

estimation error covariance matrix at the j-th Monte Carlo

run, T = 100s denotes the simulation time, and M = 1000
denotes the total number of Monte Carlo run. We can also

formulate the RMSE, ARMSE and AAVB of velocity in a

similar manner. The performance metrics AAVB and NEE

are often employed to evaluate the bias of state estimate and

the approximation accuracy of the posterior covariance matrix
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Fig. 6: ARMSEs of the position when N = 1, 2, . . . , 20.
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Fig. 7: ARMSEs of the velocity when N = 1, 2, . . . , 20.

respectively. That is to say, if the AAVB is 0, then the state

estimate is unbiased, and if the NEE is the square root of the

state dimensionality 2, then the posterior covariance matrix is

accurate [9].

Fig. 3–Fig. 5 respectively show the RMSEs of position and

velocity and NEEs from different Kalman filters when the

number of iteration N = 10. Also, the implementation times

in a single step run, ARMSEs and AAVBs of different Kalman

filters are given in Table III. We can observe from Fig. 3–Fig.

4 and Table III that the proposed robust Kalman filters have

smaller RMSEs than the existing Kalman filters but greater

implementation times as compared with the existing standard

Kalman filter and RSTKF. We can also observe from Table III

that the estimates of position and velocity from the existing

Kalman filters and the proposed robust Kalman filters are all

biased, especially the estimates of position, which is induced

by the heavy-tailed state noises and skewed measurement

noises. Fortunately, the AAVBs of position and velocity from

the proposed robust Kalman filters are smaller than that from

the existing Kalman filters. Furthermore, it is observed from

Fig. 5 that the NEEs of the proposed robust Kalman filters
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are closer to the reference value as compared with that of

the existing Kalman filters. Thus, the proposed robust Kalman

filters have better estimation accuracy and smaller biases but

greater implementation times than the existing Kalman filters.

The ARMSEs of position and velocity from different

Kalman filters when the number of iteration N = 1, 2, . . . , 20
are respectively shown in Fig. 6–Fig. 7. It can be observed

from Fig. 6–Fig. 7 that the proposed robust Kalman filters

have better estimation accuracy than the existing Kalman

filters when the number of iteration N ≥ 2. We can also

observe from Fig. 6–Fig. 7 that the ARMSEs from the existing

HKF and RSTKF and the proposed robust Kalman filters are

all convergent when N ≥ 9. Thus, the number of iteration

N = 10 is sufficient to achieve a local optimum.

The existing standard Kalman filter has poor estimation

performance because it is based on Gaussian state and mea-

surement noise models so that it is sensitive to state and

measurement outliers. The HKF exhibits poor estimation per-

formance since the characteristics of heavy tail and skewness

inherent in state and measurement noises are not exploited

in the designs of HKF. The RSTKF suffers from perfor-

mance degradation since it is specially designed for symmetric

heavy-tailed state and measurement noises and unsuitable

for skewed measurement noise. The proposed robust Kalman

filters achieve better estimation accuracy and smaller biases as

compared with the existing Kalman filters, which is induced

by the fact that the symmetric heavy-tailed GSM distributions

and skewed GSM distributions are respectively employed to

model the heavy-tailed one-step prediction PDF and skewed

measurement noise in the proposed robust Kalman filters.

V. CONCLUSIONS

A new robust Kalman filtering framework for a linear

system with non-Gaussian heavy-tailed and/or skewed state

and measurement noises was proposed in this paper, where

the GSM distributions are employed to model the one-step

prediction and likelihood PDFs. The GSM distributions were

formulated as hierarchical Gaussian forms given the prior

PDFs of mixing parameters, and the prior distributions of

the scale matrices and shape parameters were respectively

selected as inverse-Wishart and Gaussian PDFs, based on

which the state vector, mixing parameters, scale matrices and

shape parameters were jointly inferred using the standard VB

approach. As the implementations of the proposed method,

several solutions corresponding to some special GSM distri-

butions were derived. Simulation results have shown that the

proposed robust Kalman filters have better estimation accuracy

and smaller biases but higher computational complexities than

the existing state-of-the-art Kalman filters.

APPENDICES

A. Gaussian Integral Formula

If Φ, d, Σ, µ and P have appropriate dimensions and Σ

and P are positive definite, it can be obtained that [38]
∫

N(x;Φλ+ d,Σ)N(λ;µ,P)dλ = N(x;Φµ+ d,

ΦPΦT +Σ). (81)

B. Derivation of (7)

According to the Chapman-Kolmogorov equation, the one-

step prediction PDF p(xk|z1:k−1) is formulated as

p(xk|z1:k−1) =

∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1, (82)

where p(xk−1|z1:k−1) denotes the posterior filtering PDF at

time k − 1 given by

p(xk−1|z1:k−1) = N(xk−1; x̂k−1|k−1,Pk−1|k−1), (83)

where x̂k−1|k−1 and Pk−1|k−1 are state estimate and cor-

responding estimate error covariance matrix at time k − 1
respectively.

Using (3) and (5), the state transition PDF p(xk|xk−1) is

written as

p(xk|xk−1) =

∫ +∞

0

N(xk;Fkxk−1 + ξkβ1,Qk−1/κ1(ξk))

π1(ξk)dξk. (84)

Substituting (83)-(84) in (82) yields

p(xk|z1:k−1) =

∫ +∞

0

g(xk, ξk)π1(ξk)dξk, (85)

where g(xk, ξk) is given by

g(xk, ξk) =

∫

N(xk;Fkxk−1 + ξkβ1,Q/κ1(ξk))×

N(xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1. (86)

According to the Gaussian integral formula in Appendix A,

g(xk, ξk) is calculated as

g(xk, ξk) = N
(

xk;Fkx̂k−1|k−1 + ξkβ1,FkPk−1|k−1F
T
k+

Qk−1/κ1(ξk)) . (87)

Utilizing (87) in (85), we can obtain (7).

C. Derivations of (20)-(26)

Using φ = xk and (19) in (18), we obtain

log q(i+1)(xk) = −
1

2
E(i)[κ1(ξk)]tr{(xk − Fkx̂k−1|k−1 −

E(i)[ξk]E
(i)[β1])(xk − Fkx̂k−1|k−1 − E(i)[ξk]E

(i)[β1])
T ×

E(i)[Σ−1
k ]} −

1

2
E(i)[κ2(λk)]tr{(zk −Hkxk − E(i)[λk]×

E(i)[β2])(zk −Hkxk − E(i)[λk]E
(i)[β2])

TE(i)[R−1
k ]}+

cxk
. (88)

Substituting (25)-(26) in (88) yields

log q(i+1)(xk) = −
1

2
(xk − Fkx̂k−1|k−1 − q̃

(i)
k−1)

T ×
(

P̃
(i)
k|k−1

)−1

(xk − Fkx̂k−1|k−1 − q̃
(i)
k−1)−

1

2
(zk −

Hkxk − r̃
(i)
k )T

(

R̃
(i)
k

)−1

(zk −Hkxk − r̃
(i)
k ) + cxk

. (89)

Define the modified one-step prediction PDF p̃(xk|z1:k−1)
and the modified likelihood PDF p̃(zk|xk) as follows

p̃(xk|z1:k−1) = N(xk;Fkx̂k−1|k−1 + q̃
(i)
k−1, P̃

(i)
k|k−1), (90)
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p̃(zk|xk) = N(zk;Hkxk + r̃
(i)
k ; R̃

(i)
k ). (91)

Employing (90)-(91) in (89) gives

q(i+1)(xk) ∝ p̃(xk|z1:k−1)p̃(zk|xk). (92)

According to (90)-(92) and using Bayes’ rule [39], we can

obtain (20)-(24), where (21)-(24) are given by the measure-

ment update of the Kalman filter.

D. Derivations of (36)-(44)

Substituting φ = β1, φ = β2 and (19) in (18),

log q(i+1)(β1) and log q(i+1)(β2) can be calculated as

log q(i+1)(β1) = −
1

2
(β1 − β̄1)

T(σ1In)
−1(β1 − β̄1)−

1

2

[

a
(i+1)
k − E(i+1)[ξk]β1

]T

E(i+1)[κ1(ξk)]E
(i)[Σ−1

k ]×
[

a
(i+1)
k − E(i+1)[ξk]β1

]

+ cβ1 , (93)

log q(i+1)(β2) = −
1

2
(β2 − β̄2)

T(σ2Im)−1(β2 − β̄2)−

1

2

[

b
(i+1)
k − E(i+1)[λk]β2

]T

E(i+1)[κ2(λk)]E
(i)[R−1

k ]×
[

b
(i+1)
k − E(i+1)[λk]β2

]

+ cβ2 . (94)

Employing (44), (93)-(94) can be reformulated as

log q(i+1)(β1) = −
1

2
(β1 − β̄1)

T(σ1In)
−1(β1 − β̄1)−

1

2

[

a
(i+1)
k − E(i+1)[ξk]β1

]T (

P̄
(i+1)
k|k−1

)−1

×
[

a
(i+1)
k − E(i+1)[ξk]β1

]

+ cβ1 , (95)

log q(i+1)(β2) = −
1

2
(β2 − β̄2)

T(σ2Im)−1(β2 − β̄2)−

1

2

[

b
(i+1)
k − E(i+1)[λk]β2

]T (

R̄
(i+1)
k

)−1

×
[

b
(i+1)
k − E(i+1)[λk]β2

]

+ cβ2 . (96)

Define the modified likelihood PDFs of shape parameters

p̃(zk|β1) and p̃(zk|β2) as follows

p̃(a
(i+1)
k |β1) = N(a

(i+1)
k ; E(i+1)[ξk]β1, P̄

(i+1)
k|k−1), (97)

p̃(b
(i+1)
k |β2) = N(b

(i+1)
k ; E(i+1)[λk]β2, R̄

(i+1)
k ). (98)

Substituting (14) and (97)-(98) in (95)-(96) gives

q(i+1)(β1) ∝ p(β1)p̃(a
(i+1)
k |β1), (99)

q(i+1)(β2) ∝ p(β2)p̃(b
(i+1)
k |β2). (100)

According to (14) and (97)-(100) and using Bayes’ rule

[39], we can obtain (36)-(43), where (38)-(43) are given by

the measurement update of the Kalman filter.

E. Derivations of (45)-(50)

Substituting φ = Σk, φ = Rk and (19) in (18),

log q(i+1)(Σk) and log q(i+1)(Rk) can be formulated as

log q(i+1)(Σk) = −
1

2
(tk + n+ 2) log |Σk| −

1

2
tr
{

TkΣ
−1
k

}

−
1

2
tr
{

E(i+1)[κ1(ξk)(xk − Fkx̂k−1|k−1 − ξkβ1)×

(xk − Fkx̂k−1|k−1 − ξkβ1)
T]Σ−1

k

}

+ cΣk
, (101)

log q(i+1)(Rk) = −
1

2
(uk +m+ 2) log |Rk| −

1

2
tr{UkR

−1
k

} −
1

2
tr
{

E(i+1)[κ2(λk)(zk −Hkxk − λkβ2)(zk −Hkxk−

λkβ2)
T]R−1

k

}

+ cRk
. (102)

Utilizing (49)-(50) in (101)-(102) gives

log q(i+1)(Σk) = −
1

2
(tk + n+ 2) log |Σk| −

1

2
tr
{

[Tk +C
(i+1)
k ]Σ−1

k

}

+ cΣk
, (103)

log q(i+1)(Rk) = −
1

2
(uk +m+ 2) log |Rk| −

1

2
tr
{

[Uk +D
(i+1)
k ]R−1

k

}

+ cRk
. (104)

According to (103)-(104), we can obtain (45)-(48).

F. Derivations of (64)-(69)

Using (20) and (29)-(30), Ai+1
k and ai+1

k are calculated as

Ai+1
k =E(i+1)

[

(xk − x̂
(i+1)
k|k + x̂

(i+1)
k|k − Fkx̂k−1|k−1)×

(xk − x̂
(i+1)
k|k + x̂

(i+1)
k|k − Fkx̂k−1|k−1)

T
]

=E(i+1)
[

(xk − x̂
(i+1)
k|k )(xk − x̂

(i+1)
k|k )T

]

+
(

x̂
(i+1)
k|k − Fkx̂k−1|k−1

)(

x̂
(i+1)
k|k − Fkx̂k−1|k−1

)T

=P
(i+1)
k|k +

(

x̂
(i+1)
k|k − Fkx̂k−1|k−1

)

×
(

x̂
(i+1)
k|k − Fkx̂k−1|k−1

)T

, (105)

ai+1
k =E(i+1)

[

xk − Fkx̂k−1|k−1

]

= E(i+1) [xk]−

Fkx̂k−1|k−1 = x̂
(i+1)
k|k − Fkx̂k−1|k−1. (106)

Exploiting (20) and (31)-(32), Bi+1
k and bi+1

k can be

calculated as

Bi+1
k =E(i+1)

{

[zk −Hkx̂
(i+1)
k|k +Hk(x̂

(i+1)
k|k − xk)]×

[zk −Hkx̂
(i+1)
k|k +Hk(x̂

(i+1)
k|k − xk)]

T
}

=(zk −Hkx̂
(i+1)
k|k )(zk −Hkx̂

(i+1)
k|k )T +

HkE
(i+1)

[

(xk − x̂
(i+1)
k|k )(xk − x̂

(i+1)
k|k )T

]

HT
k

=
(

zk −Hkx̂
(i+1)
k|k

)(

zk −Hkx̂
(i+1)
k|k

)T

+

HkP
(i+1)
k|k HT

k , (107)
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bi+1
k =E(i+1) [zk −Hkxk] = zk −HkE

(i+1) [xk]

=zk −Hkx̂
(i+1)
k|k . (108)

Substituting (33) in (49)-(50) gives

C
(i+1)
k = κ1(ξ

(i+1)
k )E(i+1)[(xk − Fkx̂k−1|k−1 − ξ

(i+1)
k β1)

(xk − Fkx̂k−1|k−1 − ξ
(i+1)
k β1)

T], (109)

D
(i+1)
k = κ2(λ

(i+1)
k )E(i+1)[(zk −Hkxk − λ

(i+1)
k β2)×

(zk −Hkxk − λ
(i+1)
k β2)

T]. (110)

Employing (20), (36)-(37), (65) and (67) in (109)-(110),

Ci+1
k and Di+1

k are recalculated as

C
(i+1)
k = κ1(ξ

(i+1)
k )E(i+1)

[

(xk − x̂
(i+1)
k|k + x̂

(i+1)
k|k −

Fkx̂k−1|k−1 − ξ
(i+1)
k β

(i+1)
1 + ξ

(i+1)
k β

(i+1)
1 − ξ

(i+1)
k β1)×

(xk − x̂
(i+1)
k|k + x̂

(i+1)
k|k − Fkx̂k−1|k−1 − ξ

(i+1)
k β

(i+1)
1 +

ξ
(i+1)
k β

(i+1)
1 − ξ

(i+1)
k β1)

T
]

= κ1(ξ
(i+1)
k )

[

P
(i+1)
k|k +

(

ai+1
k − ξ

(i+1)
k β

(i+1)
1

)(

ai+1
k − ξ

(i+1)
k β

(i+1)
1

)T

+

(

ξ
(i+1)
k

)2

P
(i+1)
β1

]

, (111)

D
(i+1)
k = κ2(λ

(i+1)
k )E(i+1)

[

(zk −Hkx̂
(i+1)
k|k − λ

(i+1)
k ×

β
(i+1)
2 +Hkx̂

(i+1)
k|k −Hkxk + λ

(i+1)
k β

(i+1)
2 − λ

(i+1)
k β2)×

(zk −Hkx̂
(i+1)
k|k − λ

(i+1)
k β

(i+1)
2 +Hkx̂

(i+1)
k|k −Hkxk +

λ
(i+1)
k β

(i+1)
2 − λ

(i+1)
k β2)

T
]

= κ2(λ
(i+1)
k )

[

HkP
(i+1)
k|k HT

k+
(

bi+1
k − λ

(i+1)
k β

(i+1)
2

)(

bi+1
k − λ

(i+1)
k β

(i+1)
2

)T

+

(

λ
(i+1)
k

)2

P
(i+1)
β2

]

. (112)

According to (105)-(108) and (111)-(112), we can obtain

(64)-(69).

G. Special Cases

Exploiting (27)-(28), log q(i+1)(ξk) and log q(i+1)(λk) can

be written as the unified form as follows

J(y) = −
η1
2
κ(y) + η2yκ(y)−

η3
2
y2κ(y) +

s

2
log κ(y) +

log π(y), (113)

where J(y) turns into log q(i+1)(ξk) and log q(i+1)(λk) if the

following equations hold respectively

η1 = tr
{

Ai+1
k E(i)[Σ−1

k ]
}

, η2 =
{

E(i)[β1]
}T

×

E(i)[Σ−1
k ]ai+1

k , η3 = tr
{

E(i)[β1β
T
1 ]E

(i)[Σ−1
k ]

}

,

y = ξk, s = n, κ(·) = κ1(·), π(·) = π1(·), (114)

η1 = tr
{

Bi+1
k E(i)[R−1

k ]
}

, η2 =
{

E(i)[β2]
}T

×

E(i)[R−1
k ]bi+1

k , η3 = tr
{

E(i)[β2β
T
2 ]E

(i)[R−1
k ]

}

,

y = λk, s = m, κ(·) = κ2(·), π(·) = π2(·). (115)

According to (15)-(16), (48), (60)-(64), (66), (68)-(69) and

(114)-(115) and using Pk−1|k−1 > 0 and R̄k > 0, we can

obtain

η1 > 0, η3 ≥ 0, (116)

where η3 = 0 if β̄1 = 0 and σ1 = 0 or β̄2 = 0 and

σ2 = 0, and the proof of (116) is given in Appendix H. Next,

several particular solutions will be derived when certain GSM

distributions are employed.

1) Pearson type-VII distribution: We can see from Table I

that β = 0, κ(y) = y, π(y) = G(y; ν
2 ,

δ
2 ) and y > 0 when

the Pearson type-VII distribution is utilized. Since β = 0, the

prior parameters of the shape parameters satisfy

β̄1 = 0, β̄2 = 0, σ1 = σ2 = 0, (117)

Substituting (117) in (38)-(43), we have

β
(i+1)
1 = 0, P

(i+1)
β1

= 0, (118)

β
(i+1)
2 = 0, P

(i+1)
β2

= 0. (119)

Utilizing (118)-(119) in (114)-(115) gives

η2 = η3 = 0. (120)

Employing (120), κ(y) = y and π(y) = G(y; ν
2 ,

δ
2 ) in (113)

yields

J(y) = −
η1 + δ

2
y +

s+ ν − 2

2
log y + cy. (121)

Using (121), the maximum point y∗ satisfies the following

equations

−(η1 + δ)y∗ + s+ ν − 2 = 0, (122)

s.t. y∗ > 0, s+ ν − 2 > 0, (123)

where s.t. represents to “subject to”.

Solving equations (122)-(123) and using (116), we obtain

y∗ =
s+ ν − 2

η1 + δ
, s.t. s+ ν > 2. (124)

Substituting (114)-(115) in (124), we can obtain MAP

estimates ξ
(i+1)
k and λ

(i+1)
k respectively for the Pearson type-

VII distribution.

2) Slash distribution: It is seen from Table I that β =
0, κ(y) = y, π(y) = Be(y; ν, 1) and 0 < y < 1 for the

Slash distribution. Since β = 0, we can obtain (117)-(120).

Substituting (120), κ(y) = y and π(y) = Be(y; ν, 1) in (113)

yields

J(y) = −
η1
2
y +

s+ 2ν − 2

2
log y + cy. (125)

According to (125), the maximum point y∗ satisfies the

following equations

−η1y∗ + s+ 2ν − 2 = 0, (126)

s.t. 0 < y∗ < 1, s+ 2ν − 2 > 0. (127)

Solving equations (126)-(127) and using (116), we have

y∗ =
s+ 2ν − 2

η1
, s.t. 2 < s+ 2ν < η1 + 2. (128)

Exploiting (114)-(115) in (128), we can obtain MAP esti-

mates ξ
(i+1)
k and λ

(i+1)
k respectively for the Slash distribution.
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3) Variance gamma distribution: It can be seen from Table

I that, for the variance gamma distribution, β = 0, κ(y) =
y, π(y) = IG(y; ν

2 ,
ν
2 ) and y > 0. Since β = 0, we can

obtain (117)-(120). Substituting (120), κ(y) = y and π(y) =
IG(y; ν

2 ,
ν
2 ) in (113) yields

J(y) = −
η1
2
y +

s− ν − 2

2
log y −

ν

2y
+ cy. (129)

Employing (129), the maximum point y∗ satisfies the fol-

lowing equations

η1y
2
∗ − (s− ν − 2)y∗ − ν = 0, (130)

s.t. y∗ > 0, s− ν − 2 +
2ν

y∗
> 0. (131)

Solving equations (130)-(131) and using (116), we obtain

y∗ =
s− ν − 2 +

√

(s− ν − 2)2 + 4νη1
2η1

, (132)

Substituting (114)-(115) in (132), we can obtain MAP esti-

mates ξ
(i+1)
k and λ

(i+1)
k respectively for the variance gamma

distribution.

4) GH skew Student’s t distribution: It is seen from Table I

that β ̸= 0, κ(y) = 1/y, π(y) = IG(y; ν
2 ,

ν
2 ) and y > 0 when

the GH skew Student’s t distribution is used. Using β ̸= 0

and (116), we have

η1 > 0, η3 > 0. (133)

Substituting κ(y) = 1/y and π(y) = IG(y; ν
2 ,

ν
2 ) in (113)

yields

J(y) = −
η1 + ν

2y
−

η3
2
y −

s+ ν + 2

2
log y + cy. (134)

Exploiting (134), the maximum point y∗ satisfies the fol-

lowing equations

η3y
2
∗ + (s+ ν + 2)y∗ − (η1 + ν) = 0, (135)

s.t. y∗ > 0, s+ ν + 2−
2(η1 + ν)

y∗
< 0. (136)

Solving equations (135)-(136) and using (133), we obtain

y∗ =
−(s+ ν + 2) +

√

(s+ ν + 2)2 + 4η3(η1 + ν)

2η3
. (137)

Substituting (114)-(115) in (137), we can obtain MAP

estimates ξ
(i+1)
k and λ

(i+1)
k respectively for the GH skew

Student’s t distribution.

5) GH variance gamma distribution: We can see from

Table I that β ̸= 0, κ(y) = 1/y, π(y) = G(y; ν
2 ,

ν
2 ) and y > 0

for the GH variance gamma distribution. Since β ̸= 0, we can

obtain (133). Substituting κ(y) = 1/y and π(y) = G(y; ν
2 ,

ν
2 )

in (113) gives

J(y) = −
η1
2y

−
η3 + ν

2
y −

s− ν + 2

2
log y + cy. (138)

Using (138), the maximum point y∗ satisfies the following

equations

(η3 + ν)y2∗ + (s− ν + 2)y∗ − η1 = 0, (139)

s.t. y∗ > 0, s− ν + 2−
2η1
y∗

< 0. (140)

Solving equations (139)-(140) and using (133), we have

y∗ =
−(s− ν + 2) +

√

(s− ν + 2)2 + 4η1(η3 + ν)

2(η3 + ν)
. (141)

Exploiting (114)-(115) in (141), we can obtain MAP es-

timates ξ
(i+1)
k and λ

(i+1)
k respectively for the GH variance

gamma distribution.

H. Proof of (116)

Considering that the estimate error covariance matrix

Pk−1|k−1 and the nominal measurement noise covariance

matrix R̄k are positive-definite and utilizing (15)-(16), we

obtain

Tk > 0, Uk > 0. (142)

According to (68)-(69) and using κ1(ξ
(i+1)
k ) > 0 and

κ2(λ
(i+1)
k ) > 0 yields

C
(i+1)
k > 0, D

(i+1)
k > 0. (143)

Substituting (142)-(143) in (48) gives

T
(i+1)
k > 0, U

(i+1)
k > 0. (144)

Exploiting (144) in (62)-(63), we have

E(i+1)[Σ−1
k ] > 0, E(i+1)[R−1

k ] > 0. (145)

Using (64) and (66) results in

Ai+1
k ≥ 0, Bi+1

k ≥ 0. (146)

Employing (145), E(i+1)[Σ−1
k ] and E(i+1)[R−1

k ] can be

factored as

E(i+1)[Σ−1
k ] = L1L

T
1 , E(i+1)[R−1

k ] = L2L
T
2 , (147)

where L1 and L2 are invertible lower triangular matrices.

Substituting (147) in (114)-(115) yields

η1 = tr
{

LT
1 A

i+1
k L1

}

, η3 = tr
{

LT
1 E

(i)[β1β
T
1 ]L1

}

,

(148)

η1 = tr
{

LT
2 B

i+1
k L2

}

, η3 = tr
{

LT
2 E

(i)[β2β
T
2 ]L2

}

.

(149)

Since L1 and L2 are invertible matrices and Ai+1
k and Bi+1

k

are nonzero positive-semidefinite matrices, LT
1 A

i+1
k L1 and

LT
2 B

i+1
k L2 are also nonzero positive-semidefinite matrices,

i.e,

LT
1 A

i+1
k L1 ≥ 0, LT

1 A
i+1
k L1 ̸= 0, (150)

LT
2 B

i+1
k L2 ≥ 0, LT

2 B
i+1
k L2 ̸= 0. (151)

Utilizing (60)-(61), we have

E(i)[β1β
T
1 ] ≥ 0, E(i)[β2β

T
2 ] ≥ 0, (152)

where E(i)[β1β
T
1 ] = 0 and E(i)[β2β

T
2 ] = 0 if

β̄1 = 0, β̄2 = 0, σ1 = σ2 = 0. (153)

Substituting (150)-(153) in (148)-(149), we can obtain

(116).
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