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ABSTRACT

We introduce a class of robust non-parametric estimation meth-

ods which are ideally suited for the reconstruction of signals and

images from noise-corrupted or sparsely collected samples. The

filters derived from this class are locally adapted kernels which

take into account both the local density of the available samples,

and the actual values of these samples. As such, they are automat-

ically steered and adapted to both the given sampling “geometry”,

and the samples’ “radiometry”. As the framework we proposed

does not rely upon specific assumptions about noise or sampling

distributions, it is applicable to a wide class of problems includ-

ing efficient image upscaling, high quality reconstruction of an

image from as little as 15% of its (irregularly sampled) pixels,

super-resolution from noisy and under-determined data sets, state

of the art denoising of images corrupted by Gaussian and other

noise, effective removal of compression artifacts; and more.

Index Terms— Inverse problem, image reconstruction, piecewise

polynomial approximation, nonlinear estimation

1. INTRODUCTION

Image processing methods have been exploited through the years

to improve the quality of digital images. Many of the popular im-

age processing tools have a limited scope of use; some can only

be employed as denosing methods, while application of others

are limited to upscaling regularly sampled data. Moreover, such

methods estimate the underlying signal based on certain assump-

tions on data and noise models, a common example of which is

modeling the noise as pure additive i.i.d. Gaussian. Although

such limiting assumptions facilitate the design of optimal meth-

ods for a certain type of data, in real situations when the data and

noise models do not faithfully describe the measured signal, the

performance of such non-robust methods significantly degrades

[1].

Classical parametric image processing methods rely on a spe-

cific model of the signal of interest, and seek to compute the pa-

rameters of this model in the presence of noise. In contrast to

the parametric methods, non-parametric methods rely on the data

itself to dictate the structure of the model, in which case this im-

plicit model is referred to as a regression function [2]. We pro-

mote the use and improve upon a class of non-parametric meth-

ods called kernel regression [3], which generalizes some recently

presented methods namely, normalized convolution [4], bilateral

filter [5, 6], and moving least-squares [7].
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The main advantage of the presented regression method is

that it is a generic framework enabling direct use in a variety of

applications, from single frame denoising to multi frame super-

resolution [3]. Moreover, this method produces better and more

stable results comparing to the state of the art methods in the

literature, as it is robust to modeling errors and data outliers.

This paper is organized as follows. Section 2 is a brief intro-

duction to the notion of adaptive kernel regression and the novel

concept of using weighted l1 norm penalty term in the kernel

regression framework. Section 3 extends and generalizes the pre-

vious related methods to derive the details of the proposed robust

regression method, focusing on appropriate choices for the ker-

nel function. Simulation results are presented in Section 4, and

Section 5 concludes this paper.

2. DATA-ADAPTED KERNEL REGRESSION

We treat the 2-D estimation problem where the measured data yi

at the position xi = [x1i, x2i]
T is given by

yi = z(xi) + εi, i = 1, · · · , P, (1)

where z(·) is the (hitherto unspecified) regression function (i.e.

an unknown image) to be estimated, P is the number of measured

pixels, and εi’s are the independent and identically distributed

noise values (with otherwise no particular statistical distribution

assumed).

While the specific form of z(·) may remain unspecified, if we

assume that it is locally smooth to some order N , then in order

to estimate the value of the function at any given point x, we can

rely on a generic local expansion of the function about this point.

Specifically, if x is near the sample at xi, we have the N -term

Taylor series

z(xi) ≈ z(x) + {∇z(x)}T (xi − x)

+
1

2
(xi − x)T {Hz(x)}(xi − x) + · · · (2)

= β0 + βT

1
(xi − x)

+βT

2
vech

{

(xi − x)(xi − x)T
}

+ · · · , (3)

where ∇ and H are the gradient and Hessian operators respec-

tively, and vech(·) is the half-vectorization operator [2], which

lexicographically orders the “lower-triangular” portion of a ma-

trix into a column vector. Indeed the local approximation can be

also built upon bases other than polynomials [8]

The above suggests that if we now think of the Taylor se-

ries as a local representation of the regression function, estimat-

ing the parameter β0 can yield the desired (local) estimate of the

regression function based on the data. Indeed, the parameters



{βn}
N

n=1
will provide localized information on the n-th deriva-

tives of the regression function. Naturally, since this approach is

based on local approximations, classical regression methods es-

timate the coefficients {βn}
N

n=0
from the data while giving the

nearby samples higher weights than samples farther away (“ge-

ometric” weighting). However, it is also appropriate to weight

samples based on their relative location with respect to a local

edge (“radiometric” weighting), preforming the regression along

and not across the edges, which is the basis of modern adaptive

methods . A general formulation we propose, capturing this idea

is to solve the following optimization problem:

min
{β

n
}N

n=0

P
∑

i=1

∣

∣

∣
yi − β0 − βT

1
(xi − x)−

βT

2
vech

{

(xi − x) (xi − x)
T
}

− · · ·
∣

∣

∣

m

K(xi − x, yi − y) (4)

where K(·) is the kernel function which penalizes both geomet-

ric and radiometric distances and will be described in detail in

Section 3, and m is the penalizing parameter. To the best of our

knowledge, all kernel regression based methods in the literature

choose the penalizing parameter as m = 2, and therefore pose

(4) as a weighted least-squares problem. In Section 4, we show

that robustness with respect to the outliers can be significantly

improved by exploiting other values for the penalizing parameter

such as m = 1, which in effect incorporates a robust l1 norm es-

timator [1] in the kernel regression framework. Furthermore, we

propose novel ways to adopt the kernel.

Using the matrix form, the optimization problem (4) can be

posed as weighted lm norm:

b̂ = arg min
b

∥

∥y − Xxb
∥

∥

m

Wx

, (5)

where

y = [y1, y2, · · · , y
P
]T , b =

[

β0, β
T

1
, · · · , βT

N

]T

, (6)

Wx = diag [K(x1 − x, y1 − y), · · · , K(x
P
− x, y

P
− y)] , (7)

Xx =

⎡

⎢

⎢

⎢

⎣

1 (x1− x)T vechT
{

(x1− x)(x1− x)T
}

· · ·

1 (x2− x)T vechT
{

(x2− x)(x2− x)T
}

· · ·
...

...
...

...

1 (x
P
− x)T vechT

{

(x
P
− x)(x

P
− x)T

}

· · ·

⎤

⎥

⎥

⎥

⎦

, (8)

with “diag” defining the diagonal elements of a diagonal matrix.
We use steepest descent to find the solution to this minimization
problem:

b̂
(n+1)

= b̂
(n)

+ αX
T

xWxsign
“

y − Xxb̂
(n)

”

⊙

˛

˛

˛
y − Xxb̂

(n)
˛

˛

˛

m−1

, (9)

where α is a scalar defining the step size in the direction of the

gradient, and ⊙ is the element by element multiplication operator.

The order (N ) of regression affects the complexity of the

local approximation of the signal. In the non-parametric statis-

tics literature, locally constant, linear and quadratic approxima-

tions (corresponding to N = 0, 1, 2 respectively) have been most

widely considered [2]. In particular, choosing local constant es-

timation with m = 2, a locally linear adaptive filter is obtained,

which is known as the Nadaraya-Watson Estimator (NWE) [3].

In general, lower order approximates, such as NWE, result in

smoother images (large bias and small variance) as there are fewer

degrees of freedom. On the other hand over-fitting happens in re-

gressions using higher orders of approximation, resulting in small

bias and larger estimation variance. Note that, in the experiments

of Section 4 we used the second order (N = 2) approximation.

3. KERNEL FUNCTION SELECTION

The choice of kernel function greatly affects the quality of re-

construction. In this section, first we briefly review the classic

“non-adaptive” kernel function, and then generalize it to derive

two adaptive kernel functions with superior performance.

3.1. Classic Kernel Function

In classic kernel regression, samples are weighted based only on

their spatial distances to a sample of interest, which simplifies the

kernel K(·) in (4) to

K(xi − x, yi − y) ≡ KHi
(xi − x), (10)

where KHi
(·) is defined as

KHi
(t) =

1

det(Hi)
K

(

H
−1

i t
)

, (11)

which penalizes distance away from the local position where the

approximation is centered. The 2 × 2 “smoothing” matrix Hi

controls the strength of this penalty. The standard choice of the

smoothing matrix is Hi = hµiI2, where µi is a scalar that cap-

tures the local density of data samples and h is the global smooth-

ing parameter, extending the kernel to contain “enough” samples.

As described in [3], in case of irregularly sampled data, it is rea-

sonable to use smaller kernels in the areas with more available

samples, whereas larger kernels are more suitable for the more

sparsely sampled areas of the image. The choice of the particular

form of the function K(·) is open, and may be selected as any

symmetric function, which attains its maximum at zero such as

Gaussian.

Since the shape of the classic kernels is independent of the

radiometric (gray level) information, as described in [3], classic

kernel based regression methods suffer from an inherent limita-

tion due to the local linear action on the data. In what follows,

we discuss extensions of the kernel regression method that en-

able this structure to have nonlinear, more effective, action on the

data. The proposed adaptive kernel functions rely on not only

the sample location and density, but also the radiometric proper-

ties of these samples. Therefore, the effective size and shape of

the regression kernel are adapted locally to image features such

as edges. This property is illustrated in Fig. 1, where the clas-

sical and adaptive kernel shapes in the presence of an edge are

compared.

3.2. Bilateral Kernel Function

A simple and intuitive choice of the adaptive kernel K(·) is to

use separate terms for penalizing the spatial and radiometric dis-

tances. Indeed this is precisely the thinking behind the bilateral

filter, introduced in [5, 6]. The bilateral kernel choice is then

K(xi − x, yi − y) ≡ KHi
(xi − x)Khr

(yi − y), (12)



Edge

Orientation vector

(a) (b)

Fig. 1. Kernel spread in a uniformly sampled data set. (a) Kernels

in the classic method depend only on the sample density. (b)

Adaptive kernels elongate with respect to the edge.

where hr is the radiometric smoothing scalar that controls the

rate of decay, and KHi
(·) and Khr

(·) are the spatial and radio-

metric kernel functions, respectively. In general, the application

of bilateral kernel is limited to denoising problem, since the pixel

value (y) at an arbitral position (x) might not be available from

data. This limitation, however, can be overcome by using an ini-

tial estimate of y by an appropriate interpolation technique [3].

Also, breaking K(·) into spatial and radiometric terms as utilized

in the bilateral case weakens the estimator performance since it

limits the degrees of freedom and ignores correlations between

positions of the pixels and their values. The following section

provides a solution to overcome this drawback.

3.3. Steering Kernel Function

Based upon the earlier non-parametric framework, the filtering

procedure we propose next takes the above ideas one step further.

In particular, we observe that the effect of computing Khr
(yi−y)

in (12) is to implicitly measure a function of the local gradient es-

timated between neighboring values, and to use this estimate to

weight the respective measurements. As an example, if a pixel is

located near an edge, then pixels on the same side of the edge will

have much stronger influence in the filtering. With this intuition

in mind, we propose a two-step approach where first an initial

estimate of the image gradients is made using some kind of gra-

dient estimator (say the second order classic kernel regression

method). Next, this estimate is used to measure the dominant ori-

entation of the local gradients in the image. In a second filtering

stage, this orientation information is used to adaptively “steer”

the local kernel, resulting in elongated, elliptical contours spread

along the directions of the local edge structure. With these locally

adapted kernels, the denoising is effected most strongly along the

edges, rather than across them, resulting in strong preservation of

details in the final output. To be more specific, the steering kernel

takes the form

K(xi − x, yi − y) ≡ KHs
i
(xi − x), (13)

where Hs

i
’s are the data-dependent full matrices which we call

steering matrices. They are defined as

Hs

i = hµiC
−

1
2

i , (14)

where Ci’s are (symmetric) covariance matrices based on the lo-
cal gray-values. A good choice for Ci will effectively spread the
kernel function along the local edges as shown in Fig. 1. It is
worth noting that even if we choose a large h in order to have
a strong denoising effect, the undesirable blurring effect which

would otherwise have resulted, is tempered around edges with
appropriate choice of Ci’s. With such steering matrices, for ex-
ample, if we choose a Gaussian kernel, the steering kernel is
mathematically represented as

KH
s
i
(xi − x) =

p

det(Ci)

2πh2
exp



−
(xi − x)T Ci(xi − x)

2h2

ff

. (15)

The local edge structure is related to the gradient covariance (or

equivalently, the locally dominant orientation). In [3] we have

shown that a convenient form of representing the covariance ma-

trix, is to decompose it into three components as follows:

Ci = γiUθi
ΛiU

T

θi
, (16)

Uθi
=

[

cos θi sin θi

− sin θi cos θi

]

, Λi =

[

σi 0
0 σ−1

i

]

. (17)

where Uθi
is the rotation matrix and Λi is the elongation matrix.

Now the covariance matrix is given by the three parameters γi,

θi and σi, which are the scaling, rotation, and elongation param-

eters, respectively and the effect of which are as follows. First,

the initial circular kernel is elongated by the elongation matrix

Λi with semi-minor and major axes given by σi and σ−1

i
, respec-

tively. Second, the elongated kernel is rotated by the matrix Uθi
.

Finally, the kernel is scaled by the scaling parameter γi. We re-

fer the reader to [3] for the details of estimating these parameters

in an iterative fashion. We note that the presented formulation is

close to the apparently independently derived normalized convo-

lution formulation of [4].

4. EXPERIMENTS

In this section we compare the performance of the proposed algo-

rithm to other methods. We show that in presence of white Gaus-

sian noise the proposed robust kernel regression method works

as well if not better than the state of the art recent wavelet based

denoising method of [9], and other popular methods. We also

note that the wavelet method in general is computationally more

efficient than the steering kernel method. However, in presence

of other noise models (such as salt and pepper noise) while the

performance of non-robust methods dramatically degrades, the

proposed l1 based robust method effectively removes the noise.

The criterion for parameter selections in all the examples was to

choose parameters which gave the best RMSE values.

In the first experiment, we added white Gaussian noise with

standard deviation (STD) of 25 to the original image of Fig. 2(a)

resulting in the noisy image of Fig. 2(b). Denoised images us-

ing the wavelet1 method of [9]; classic kernel regression method

(m = 2, h = 1.33), steering kernel regression method (m = 2,

h = 1.33, 7 iterations initialized with l2 classic), steering kernel

regression method (m = 1, h = 3, 2 iterations initialized with

l1 classic) and corresponding Root Mean Square Error (RMSE)

values are shown in Fig. 2(c)-(f), respectively.

In the second experiment we added 20% salt and pepper noise

to the original image of Fig. 2(a) resulting in the noisy im-

age of Fig. 3(a). Denoised images using a 3 × 3 median filter,

wavelet method of [9], classic kernel regression method (m = 2,

1This result is produced by the software, available on

http://decsai.ugr.es/∼javier/denoise/index.html.



(a) Original (b) Noisy (c) Wavelet [9]

(d) l2 Classic (e) l2 Steering (f) l1 Steering

Fig. 2. Gaussian noise removal experiment. Corresponding

RMSE values for (b)-(f) are 25.0, 9.71, 11.36, 10.11, and 10.71,

respectively.

(a)Noisy (b) Median (c) Wavelet [9]

(d) l2 Classic (e) l2 Steering (f) l1 Steering

Fig. 3. Salt & pepper noise removal experiment. Corresponding

RMSE values for Figures(a)-(f) are 63.84, 11.05, 21.54, 21.81,

21.06, and 7.14, respectively.

h = 2.46), steering kernel regression method (m = 2, h = 2.25,

20 iterations initialized with l2 classic), steering kernel regression

method (m = 1,h = 2.25, zero iteration initialized with l1 clas-

sic) and corresponding RMSE values are shown in Fig. 3(b)-(f),

respectively.

In our final experiment, we added white Gaussian noise with

STD of 10 along with 5% salt and pepper noise to the original

image of Fig. 2(a). Then, we randomly eliminated 85% of these

noisy pixels, creating the sparse image of Fig. 4(a). Interpo-

lated and denoised images using the Delaunay-spline smoother

(refer to [3] for details), and the iterative steering kernel regres-

sion method (m = 1, h = 3, 0 iterations) and corresponding

RMSE values are shown in Fig. 4(b)-(c), respectively.

5. CONCLUSIONS

In this paper we promoted, extended, and demonstrated kernel

regression as a general framework for studying several efficient

denoising and interpolation algorithms. To overcome the inherent

limitations dictated by the linear filtering properties of the clas-

sic kernel regression methods, we introduced the non-linear data-

adapted class of kernel regressors with superior performance. Fur-

(a) Subsampled (b) Del. Spline (c) l1 Steering

Fig. 4. Sparse-noisy image interpolation experiment. (a) is the

input image with 85% of pixels removed, and further corrupted

by adding Gaussian and salt and pepper noise. Reconstructed im-

ages using the Delaunay-spline smoother (RMSE=22.5), and the

l1 steering kernel regression (RMSE=17.5) methods, are shown

in (b)-(c), respectively.

thermore, we achieved robustness with respect to outliers in data

and noise model by incorporating the l1 norm penalty in the ker-

nel regression framework. Image deblurring is also an important

issue in image reconstruction, and it is a part of our ongoing work

within this framework.
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